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Abstract

Background: In the emergency room, clinicians spend a lot of time and are exposed to mental stress. In addition,
fracture classification is important for determining the surgical method and restoring the patient’s mobility. Recently,
with the help of computers using artificial intelligence (Al) or machine learning (ML), diagnosis and classification of
hip fractures can be performed easily and quickly. The purpose of this systematic review is to search for studies that
diagnose and classify for hip fracture using Al or ML, organize the results of each study, analyze the usefulness of this
technology and its future use value.

Methods: PubMed Central, OVID Medline, Cochrane Collaboration Library, Web of Science, EMBASE, and AHRQ
databases were searched to identify relevant studies published up to June 2022 with English language restriction. The
following search terms were used [All Fields] AND (", "[MeSH Terms] OR (""[All Fields] AND "bone"[All Fields]) OR "bone
fractures"[All Fields] OR "fracture"[All Fields]). The following information was extracted from the included articles:
authors, publication year, study period, type of image, type of fracture, number of patient or used images, fracture
classification, reference diagnosis of fracture diagnosis and classification, and augments of each studies. In addition, Al
name, CNN architecture type, ROl or important region labeling, data input proportion in training/validation/test, and
diagnosis accuracy/AUC, classification accuracy/AUC of each studies were also extracted.

Results: In 14 finally included studies, the accuracy of diagnosis for hip fracture by Al was 79.3-98%, and the accu-
racy of fracture diagnosis in Al aided humans was 90.5-97.1. The accuracy of human fracture diagnosis was 77.5-93.5.
AUC of fracture diagnosis by Al was 0.905-0.99. The accuracy of fracture classification by Al was 86-98.5 and AUC
was 0.873-1.0. The forest plot represented that the mean Al diagnosis accuracy was 0.92, the mean Al diagnosis AUC
was 0.969, the mean Al classification accuracy was 0.914, and the mean Al classification AUC was 0.933. Among the
included studies, the architecture based on the GoogleNet architectural model or the DenseNet architectural model
was the most common with three each. Among the data input proportions, the study with the lowest training rate
was 57%, and the study with the highest training rate was 95%. In 14 studies, 5 studies used Grad-CAM for highlight
important regions.

Conclusion: We expected that our study may be helpful in making judgments about the use of Al in the diagnosis
and classification of hip fractures. It is clear that Al is a tool that can help medical staff reduce the time and effort
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required for hip fracture diagnosis with high accuracy. Further studies are needed to determine what effect this

causes in actual clinical situations.

Keywords: Hip fracture, Artificial intelligence, Machine learning, Diagnosis, Classification

Background

In the emergency room, clinicians spend a lot of time and
are exposed to mental stress [1]. There are many things
to check due to various images and laboratory tests, and
fatigued clinicians (especially residents) are prone to
misdiagnosis [2]. According to previous studies, it has
been reported that about 2—10% of hip fractures are mis-
diagnosis [3]. Early diagnosis and treatment of elderly
patients with hip fracture are very important for the clin-
ical course [4]. Delay in diagnosis or surgery causes com-
plications such as pneumonia and psoa in these patients
and increases morbidity and mortality rates [1]. This not
only reduces the patient’s quality of life, but also causes
economic exhaustion.

Diagnosis can be defined as determining the cause and
characteristics of an individual patient’s disease, and clas-
sification is mainly for creating a relatively homogeneous
population through standardized criteria, which is mainly
an important factor in disease research [5]. In addition,
fracture classification is important for determining the
surgical method and restoring the patient’s mobility [6].
Since the surgical method is directly related to the medi-
cal cost, several countries have provided guidelines for
treatment methods according to the classification of hip
fractures [7]. However, classifying fractures from a lot of
image information is time-consuming [8].

Currently, most medical institutions use digital medical
imaging systems, which overcomes the temporal and spa-
tial limitations of access to image information.[9] In addi-
tion, recently, with the help of computers using artificial
intelligence (AI) or machine learning (ML), diagnosis and
classification of hip fractures can be performed easily and
quickly [10]. Studies reporting the effects of applying Al
or ML to hip fracture detection used various image infor-
mation such as computed tomography as well as radio-
graphs, and presented various results on the usefulness of
diagnosis and the accuracy of fracture classification.

Therefore, the purpose of this systematic review is to
search for studies that diagnose and classify for hip frac-
ture using Al or ML, organize the results of each study,
analyze the usefulness of this technology and its future
use value.

Methods

Study eligibility criteria

Studies were selected based on the following inclu-
sion criteria: (1) studies using Al or ML techniques for

diagnosis or classification of hip fracture; and (2) studies
reporting on the type of imaging information used; and
(3) studies reporting on statistical analysis of accuracy
or area under the ROC (receiver operating character-
istic) curve (AUC) for diagnosis or classification of hip
fracture. Studies were excluded if they failed to meet the
above criteria.

Search methods for identification of studies

PubMed Central, OVID Medline, Cochrane Collabo-
ration Library, Web of Science, EMBASE, and AHRQ
databases were searched to identify relevant studies pub-
lished up to June 2022 with English language restriction.
The following search terms were used [All Fields] AND
(", "[MeSH Terms] OR ("[All Fields] AND "bone"[All
Fields]) OR "bone fractures"[All Fields] OR "fracture"[All
Fields]). Manual search was also conducted for pos-
sibly related references. Two of us reviewed the titles,
abstracts, and full texts of all potentially relevant studies
independently, as recommended by the Cochrane Col-
laboration. Any disagreement was resolved by the third
reviewer. We assessed full-text articles of the remaining
studies according to the previously defined inclusion and
exclusion criteria, and then selected eligible articles. The
reviewers were not blinded to authors, institutions, or the
publication.

Data extraction

The following information was extracted from the
included articles: authors, publication year, study period,
type of image, type of fracture, number of patient or
used images, fracture classification, reference diagnosis
of fracture diagnosis and classification, and augments of
each studies. In addition, AI name, CNN architecture
type, ROI or important region labeling, data input pro-
portion in training/validation/test, and diagnosis accu-
racy/AUC, classification accuracy/AUC of each studies
were also extracted.

Results

The initial search identified 123 references from the
selected databases and 4 references from manual search-
ing. Eighty-two references were excluded by screening
the abstracts and titles for duplicates, unrelated articles,
case reports, systematic reviews, and non-comparative
studies. The remaining 45 studies underwent full-text
reviews, and subsequently, 31 studies were excluded.
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Finally, 14 studies are included in this study [1, 7, 8, 11—
21]. The details of the identification of relevant studies
are shown in the flow chart of the study selection process
(Fig. 1).

In 14 studies, the type of image used for Al learning
was all X-ray. However, one study additionally used CT
images and another additionally used CT and MRI [8,
18]. Four studies included only the neck [11, 16, 17, 21],
and two studies included only the intertrochanter frac-
ture [8, 18]. The rest of the studies included both frac-
tures. There were 4 studies that reported the accuracy of
fracture classification by Al [8, 14—16]. The number of
images used varied from 234 to 10,484. The demographic
data including reference diagnosis and augments method
of each studies are showed in Table 1.

The accuracy of diagnosis for hip fracture by Al was
79.3-98%, and the accuracy of fracture diagnosis in Al
aided humans was 90.5-97.1. The accuracy of human frac-
ture diagnosis was 77.5-93.5. AUC of fracture diagnosis
by AI was 0.905-0.99. The accuracy of fracture classifica-
tion by Al was 86—98.5 and AUC was 0.873-1.0 (Table 2).
The forest plot of Al accuracy and AUC of diagnosis and
classification is presented in Figs. 2, 3, 4, 5. In the included
study, the mean Al diagnosis accuracy was 0.92 (Fig. 2),
the mean AI diagnosis AUC was 0.969 (Fig. 3), the mean
Al classification accuracy was 0.914 (Fig. 4), and the mean
Al classification AUC was 0.933 (Fig. 5).
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Among the included studies, the architecture based
on the GoogLeNet architectural model [7, 11, 18] or the
DenseNet architectural model [13, 14, 20] was the most
common with three each. Among the data input propor-
tions, the study of Adams et al. had the lowest training
rate of 57% [11], and the study of Yamada et al. had the
largest training rate of 95% [19]. In 14 studies, 5 studies
used Grad-CAM for highlight important regions. The
information on Al for all included studies is presented in
Table 3 [1, 8, 16, 20, 21].

Discussions

Expected effects of Al in hip fracture diagnosis

As human lifespans prolong and the elderly population
grows, the socioeconomic problems associated with hip
fractures and postoperative care are public concerns
worldwide [13]. Early diagnosis and treatment are essen-
tial to preserving patient function, improving quality of
life and alleviating economic burden. Rapid diagnosis
of non-displaced hip fractures by human could be diffi-
cult and sometimes requires the use of additional radio-
graphs, bone scans, CT, or MRI. But, these additional
tests are not always available in all hospitals. In addition,
demineralization and overlying soft tissues may inter-
fere with diagnosis of hip fracture [18]. Delayed diag-
nosis and treatment may lead to complications, such as
malunion, osteonecrosis, and arthritis [19]. Moreover, as
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Fig. 1 The flow chart of the study selection process
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Table 2 Accuracy and AUC of fracture diagnosis and fracture classification in included studies
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Study Fx. Diagnosis Fx. classification

Accuracy (%) AUC Accuracy (%) AUC
Adams [11] 88.1-94.4 (Al) 0.94-0.98 (Al)

93.5 (specialist)

929 (residents)

90.5 (Al 4+ medically naive)

87.6 (medically naive)
Urakawa [12] 95.5 (Al) 0.984 (Al

92.2 (human) 0.969 (human)
Cheng [13] 91 (Al) 0.98 (Al)
Krogue [14] 93.7 (Al) 0.975 (Al) 91.2 (Al) 0.873-1.00 (Al)
Yu [15] 96.9 (Al) 0.9944 (Al) 93.9-98.5 (Al) 0.95-0.99 (Al)
Mutasa [16] 92.3 (Al) 0.92 (Al) 86 (Al) 0.96 (Al)
Beyaz [17] 79.3 (Al)
Mawatari [18] 0.832 (human)

0.905 (Al)
0.876 (Al4+human)

Yamada [19] 98 (Al)
Cheng [10] 92.67(Al)

97.1 (Al4+human)
Yoon [8] 97 (Al) 90 (Al)
Sato [1] 96.1 (Al) 0.99(A)

84.7 (human)

91.2 (Al4+human)
Bae [21] 97.1 (Al) 0.977 (Al)
Murphy [7] 77.5 (human) 0.98 (Al) for normal

92 (Al) 0.99 (Al) for neck Fx

0.97(Al) for ITC Fx

Fx fracture, Al artificial intelligence, AUC area under the ROC curve, ROC receiver operating characteristic, Al +human: Al aided human

Study type Num Accuracy Low High
Adams AlexNet 805 0909 | |
Adams GoogLeNet architecture 805 0.855 .
Urakawa VGG16 architecture 3346 0.955 0931 0.976 —.—
Cheng DenseNet-121 architecture 3605 091 084 0.96 4F
Krogue DenseNet containing 169 layers architecture 3026 0.937 0.908 0.965 —.—
Yu Inception-V3 architecture 1061 0.969 .
Mutasa Residual network based architecture 1063 0923 .
Beyaz CNN containing GA blocks architecture 234 0.793 .
Yamada Xception architecture 2923 0.98 0.96 1 l
Cheng DenseNet-121 architecture 3605 0.927 0.903 0.947 —.—
Sato EfficientNet-B4 architecture 10484 0.961 0.949 0973 .
Murphy GoogLeNet network architecture 3659 0.92 .
Total Al 2884.667 0.92 0.905 0.932 ’
1
Fig. 2 Forest plot of artificial intelligence (Al) diagnosis accuracy
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total number of imaging and radiological examinations
has increased, radiology departments cannot report all
acquired radiographs in timely manner [7]. For this rea-
son, several studies on detecting hip fractures using ML
have already been reported [1, 7, 8, 11-21]. Early diag-
nosis of hip fracture by Al algorithm in clinical course
could help reduce medical costs, facilitate further pre-
ventive practices, and increase the quality of health care
[20]. It also improves the allocation of resources, reduce
the need for unnecessary consultations, and facilitate
faster patient disposition. In particular, physicians can
focus on conceptually more demanding tasks in high-
volume clinics. However, reports on the effectiveness of
early diagnosis of hip fractures by Al algorithm seem to
be insufficient. It is considered that further studies are
needed.

CNN architecture used for hip fracture diagnosis

In this study, several CNN structures were used for
radiograph image analysis in each study for hip fracture
diagnosis. Among the included studies, CNNs using
DenseNet or GoogLeNet architecture models were
used the most. These two CNNs are inception architec-
ture, which are deep CNNs with an architecture design
composed of repeating components [22]. GoogLenet is
a CNN architecture with 22 layers and is widely used in
image analysis such as radiographs because of its excel-
lent ability to recognize visual patterns [23]. In addition,
GoogLeNet has 9 inception modules including 1 x 1 con-
volution which allows to derive various characteristics by
accumulating the feature maps generated in the previous
layer [22]. This structure of GoogLenet allows to extract
features from different layers without the need for addi-
tional computational burdens [24]. DenseNet is a Dense
Convolution Network, a CNN that can receive input
from all previous layers through concatenation in a more
advanced architecture than that of GoogleNet. DenseNet
has the advantage of increasing computational efficiency
through a compact network and being able to train by
considering more diverse feature sets in all layers [25]. In
addition, Inception-V3 and Xception used in the included
studies are the more advanced CNN architectures of
GoogLenet. These results suggested that researchers have
been applied progressively advanced CNN architectures
of AI for hip fracture diagnosis (Table 3).

Diagnosis accuracy in Al versus human: Can Al replace
human role in hip fracture diagnosis?

In the results of the articles included in our study, the
accuracy of diagnosis for hip fracture by Al algorithm
was over 90%, except for the results of Beyaz et al., and
AUC of fracture diagnosis was over 0.9, which was very
high [17]. Also, the diagnostic accuracy of Al was higher
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in a comparative study on the accuracy of hip fracture
diagnosis between Al and human. Urakawa et al. pre-
sented a AI model that detected intertrochanteric frac-
tures with an accuracy of 95.5% and an AUC of 0.984
[12]. This was higher than human’s diagnostic accuracy of
92.2% and AUC of 0.969. Adams et al. reported a conven-
tional neural network model to diagnose femoral neck
fractures with an accuracy of 88.1-94.4% [11]. These
figure is also comparable to experts and resident's diag-
nostic accuracy of 93.5 and 92.9%. In the study of Cheng
et al. and Sato et al., human diagnostic accuracy was
lower than that by Al algorithm [1, 20]. Nevertheless, it
is still questionable whether can Al replace human role in
hip fracture diagnosis. Bae et al. used Al to diagnose fem-
oral neck fracture after deep learning of Al using 4,189
images. Diagnostic accuracy of Al algorithm was 97.1%.
However, they reported that it is difficult to detect a non-
displaced fracture of the femoral neck, despite high diag-
nostic accuracy of Al [21]. This means that AI can reveal
the limits of diagnosis in cases where Al is not trained or
lacks learning. In addition, since all AI systems included
in this study are not integrated with other clinical infor-
mation, we consider that the clinical suspicion of human
for occult fracture through evaluation of the patient’s
overall condition cannot yet be simulated by Al algo-
rithm. Mawatari et al. also argued that, because the AUC
values of Al aided experts were higher than the Al algo-
rithm alone, a valid diagnosis could not be obtained by
the radiograph alone, and it was inevitably affected by the
quality of Al algorithm [18]. Thus, we believed that Al
algorithm does not totally replace human intelligence in
the current clinical environment; however, Al algorithms
can complement and augment the ability and knowledge
of physicians.

The increase in human dependence on hip fracture
detection using Al algorithm may be another issue
because it is difficult and time-consuming for doctors
to make their own clinical judgments by synthesizing
the results of examinations performed face-to-face with
patients [20]. To solve this issue, Cheng et al. made the
hip fracture detection site by AI to be highlighted and
displayed so that physicians could check the results of
the AL algorithm and make a final clinical judgment [20].
With the development of technology, the AI algorithm
will further develop, and the tendency of humans to rely
on Al will increase further in future. Further research is
needed for further solutions to this problem in future.

Efforts for Al deep learning and high diagnostic accuracy
for hip fracture

Because deep learning of Al automatically and adaptively
learn features from data, large and clean datasets are
required [17]. Better results for detection of hip fracture
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Study type Num AuC Low High
Adams AlexNet architecture 805 095 091 098 ——
Adams GoogLeNet architecture 805 098 094 1 —.—
Urakawa VGG16 architecture 3346 0.984 097 0.996 .
Cheng DenseNet-121 architecture 3605 0.98 0.96 1 '
Krogue DenseNet containing 169 layers architecture 3026 0975 .
Yu Inception-V3 architecture 1061 0.994 .
Novel 2D neural

Mutasa network utilizing a customized residual network based architecture 1063 092 [ |
Mawatari GoogLeNet architecture 352 0.905 | |
Sato EfficientNet-B4 architecture 10484 0.99 098 1 .
Bae Modified spatial attention module and ResNet18 architecture 4189 0977 0.965 0.984 .
Murphy Al (No fracture 3659 0.98 0.98 0.99 .
Murphy Al (Tronchanteric 3659 0.99 0.98 0.99 .
Murphy Al (Intracapsular 3659 0.97 0.95 0.98 —.
Total Al 3054.846 0.969 0.956 0.978 ‘
Fig. 3 Forest plot of Al diagnosis area under the curve (AUC)
Study type Num Accuracy Low High
Krogue DenseNet containing 169 layers architecture 3026 0.908 0875 0.942 l
Yu Inception-V3 architecture 1061 0.864 .

Novel 2D neural
Mutasa network utilizing a customized residual network based architecture 1063 0.86 .
Yoon 2 class(Math-Works architecture 3343 097 0.931 1 1
Yoon 3 class(Math-Works architecture 3343 0.95 0911 0.989 —.—
Yoon 4 class(Math-Works architecture 3343 0.94 0.92 0.96 l
Yoon 7 class(Math-Works architecture 3343 0.92 09 0.94 l
Yoon 10 class(Math-Works architecture 3343 09 0.861 0.939 {
Total Al 2733.125 0.914 0.89 0.937 ‘
Fig. 4 Forest plot of Al classification accuracy

by Al are decided according to the number of images. In
our study, we summarized the 2 methods suggested by
previous studies to overcome this. The first is data aug-
mentation and generation where data are manipulated
to artificially enlarge the dataset. The number of patients
visiting a single hospital is limited, and acquiring image
information from other institutions may cause a problem

of personal information leakage. Sato et al. created aug-
mented 10,484 images by classifying the images of 4851
patients into fractured side and normal side according to
the time they were taken, and used it for deep learning
of AI [1]. Mutasa et al. created 9063 augmented images
with 737 hip fracture images and 326 normal images
in 550 patients, and Beyaz et al. also generated 2106
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Study type Num AUC Low High

Krogue DenseNet containing 169 layers architecture 3026 087 .

Yu Inception-V3 architecture 1061 097 095 099 .
Novel 2D neural

Mutasa network utilizing a customized residual network based architecture 1063 0.96

Total Al 1716.667 0.933 0.927 0.94 ’

Fig. 5 Forest plot of Al classification AUC

augmented images from 234 radiographs of 65 patients
[16, 17]. The second is to use various type of image infor-
mation. Yu et al. reported that a distinctive fracture line
or cortical angular deformity of a neck fracture is easy to
detect in a single radiographic view, but a larger sample
size is required for intertrochanteric fractures with com-
plex and multiple fracture lines because the spectrum of
fracture morphology is large [15]. Also, soft tissue shad-
ing or femur alignment variation may affect the detection
of fractures by AI [13]. To overcome this, Yamada et al.
argued that the fracture detection rate could be increased
by adding a lateral view as well as a hip AP view [19]. On
the other hand, Yoon et al. reported that CT images as
well as radiographs were used for fracture classification
of intertrochanteric fractures, reducing time consump-
tion due to fracture classification and helping to plan
accurate surgery [8]. Also, Mawatari et al. used MRI as
well as CT for hip fracture detection [18]. However, this
has a disadvantage in that additional cost is consumed
and it is difficult to obtain a normal hip lateral view.

As Al can quickly process large amounts of patient
information, it has incredible potential in diagnosing
and classifying patients’ diseases [26]. Especially the use-
fulness of Al is being studied in the trauma prediction,
which has a wide range of individual differences in the
number and severity of injuries due to the involvement
of many external and internal factors [27]. The present
study is expected to be helpful in verifying the effective-
ness of Al in diagnosing these specific diseases.

There are several limitations in our study. First, we
did not consider the type of Al algorism and degree

of training of AI algorism. Second, we did not con-
sider the quality of radiographs for deep learning. The
selected images are likely to have high quality. Also,
these images can only represent characteristics of a
specific age and sex. Third, implants used for surgical
treatment of hip fracture were not considered.

Conclusions

We expected that our study may be helpful in mak-
ing judgments about the use of Al in the diagnosis and
classification of hip fractures. It is clear that Al is a tool
that can help medical staff reduce the time and effort
required for hip fracture diagnosis. Further studies are
needed to determine what effect this causes in actual
clinical situations.
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