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Abstract. Spcl10p (Nuflp) is an essential component 
of the yeast microtubule organizing center, or spindle 
pole body (SPB). Asynchronous wild-type cultures con- 
tain two electrophoretically distinct isoforms of 
Spcll0p as detected by Western blot analysis, suggest- 
ing that Spcll0p is modified in vivo. Both isoforms in- 
corporate 32p i in vivo, suggesting that Spcll0p is post- 
translationally modified by phosphorylation. The 
slower-migrating 120-kD Spcll0p isoform is converted 
to the faster-migrating ll2-kD isoform after incubation 
with protein phosphatase PP2A, and specific PP2A in- 
hibitors block this conversion. Thus, additional phos- 
phorylation of Spcll0p at serine and/or threonine resi- 
dues gives rise to the slower-migrating 120-kD isoform. 
The 120-kD isoform predominates in cells arrested in 
mitosis by the addition of nocodazole. However, the 
120-kD isoform is not detectable in cells grown to sta- 
tionary phase (GO) or in cells arrested in G1 by the ad- 
dition of a-factor. Temperature-sensitive cell division 

cycle (cdc) mutations demonstrate that the presence of 
the 120-kD isoform correlates with mitotic spindle for- 
marion but not with SPB duplication. In a synchronous 
wild-type population, the additional serine/threonine 
phosphorylation that gives rise to the 120-kD isoform 
appears as cells are forming the mitotic spindle and di- 
minishes as cells enter anaphase. None of several se- 
quences similar to the consensus for phosphorylation 
by the Cdc28p (cdc2 p34) kinase is important for these 
mitosis-specific phosphorylations or for function. Car- 
boxy-terminal Spcll0p truncations lacking the calmod- 
ulin binding site can support growth and are also phos- 
phorylated in a cell cycle-specific manner. Further 
truncation of the Spcll0p carboxy terminus results in 
mutant proteins that are unable to support growth and 
now migrate as single species. Collectively, these results 
provide the first evidence of a structural component of 
the SPB that is phosphorylated during spindle forma- 
tion and dephosphorylated as cells enter anaphase. 

T 
HE centrosome is an essential organelle of eukary- 
otic cells, serving as the microtubule organizing cen- 
ter responsible for producing both cytoplasmic and 

nuclear microtubules. In the yeast Saccharomyces cerevi- 
siae, centrosome function is provided by the spindle pole 
body (SPB) t, an essential organelle involved in nuclear fu- 
sion as well as the formation of the mitotic and meiotic 
spindles necessary for chromosome segregation (Byers 
and Goetsch, 1974, 1975). 

Ultrastructural analysis of wild-type SPBs shows that 
this organelle is composed of three distinct electron-dense 
layers or plaques. The central plaque is embedded in the 
nuclear envelope and the inner and outer plaques are as- 
sociated with nuclear and cytoplasmic microtubules, re- 
spectively (reviewed by Rose et al., 1993; Winey and By- 
ers, 1993). SPB duplication is coincident with initiation of 
DNA synthesis and bud formation in wild-type cells (By- 
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1. Abbreviat ions used in this paper. SPB, spindle pole body; cdc, cell divi- 
sion cycle. 

ers and Goetsch, 1974). The SPBs separate after DNA 
synthesis to form a short spindle in preparation for segre- 
gating the chromosomes at mitosis. Analysis of cell divi- 
sion cycle (cdc) mutants shows that these SPB events are 
orchestrated by an elaborate control mechanism that also 
governs bud formation and DNA synthesis (Byers and 
Goetsch, 1974, 1975). However, the cell cycle controls for 
these processes are separable, since SPB function, DNA 
synthesis and bud formation can be uncoupled by cdc mu- 
tations. 

Using monoclonal antibodies raised against purified 
SPBs, Rout and Kilmartin (1990) determined the subor- 
ganellar localization of several SPB components. The ll0- 
kD Spcll0p localizes to the region spanning the central 
and inner plaques of the SPB. Spcll0p contains a large 
central coiled-coil domain which serves as a spacer be- 
tween the amino- and carboxy-terminal globular domains 
that are thought to reside in the central and inner plaques 
(Kilmartin et al., 1993). Strains dependent on mutant 
Spcll0ps missing up to 82% of the central coiled-coil re- 
gion are viable and produce SPBs with correspondingly 
shorter distances between the central and inner plaques. 
In addition, segments of the central coiled-coil region puri- 
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Table L Strains Used in This Study 

Strain name Genotype Source or reference 

CRY1 
DFY1 
DFY3 
HSY2-12C 
JGY44-2A 

Sup407 
JGY44-2A 

Sup412 
JGY44-2A 

Sup419 
9065-12-4 
#245 

RM14-3A 
2785-41A 
2786-27A 

MATa ade2-1 ~ canl-lO0 his3-11,15 1eu2-3,112 trpl-1 ura3-1 
MATa ade2-1 °~ canl-lO0 his3-11,15 1eu2-3,112 trpl-1 ura3-1 SPCl10-201 
MATa ade2-1 °c canl-lO0 his3-11,15 1eu2-3,112 trpl-1 ura3-1 SPCl10-202 
MATa ade2-1 °~ ade3A canl-lO0 his3-11,15 1eu2-3,112 lys2A::HIS3 spc110A::TRPl-1 ura3-1 
MATa ade2-1 °c canl-lO0 his3-11,15 leu2-3,112 trpl-1 ura3-1 cmdl-1 SPCl10-407 

MATa ade2-1 °c canl-lO0 his3-11,15 leu2-3,112 trpl-1 ura3-1 cmdl-1 SPCl10-412 

MATa ade2-I °c canl-lO0 his3-11,15 Ieu2-3,112 trpl-1 ura3-1 cmdt-1 SPCLI0-419 

MATa cdc4-1 leu2 ura3-52 hom3 his7 
MATa GALIO-CLB2 clbl::URA3 clb2::LEU2 clb3::TRP1 clb4::HIS3 ade2-1 °c canl-lO0 

his3-11,15 leu2-3,112 trpl-1 ura3-1 
MATa cdc7-1 bar1 ura3-52 trp1-289 leu2-3,112 his6 
MATa cdc14-1 his7 leu2 can1 ura3 horn3 sap3 
MATa cdc15-2 his7 leu2 canl ura3 horn3 sap3 

R. Fuller 
This study 
This study 
This study 
Geiser et al., 1993 

Geiser et al., 1993 

Geiser et al., 1993 

B. Jensen 
Fitch et al., 1992 

McCarroll and Fangman, 1988 
L. Hartwell 
L. Hartwell 

fled from E. coli produce rod-like structures in vitro with 
dimensions expected for a coiled-coil. 

SPC110 was also identified in a screen for nuclear anti- 
gens and named NUF1 (Mirzayan et al., 1992). Antibodies 
raised against Spcll0p (Nuflp) detect a 100-kD protein in 
mammalian cells, suggesting that this protein is evolution- 
arily conserved (Mirzayan et al., 1992). The amino-termi- 
nal globular domain contains several putative consensus 
sequences for phosphorylation by the Cdc28p kinase 
(Mirzayan et al., 1992), but the phosphorylation status of 
these sites has not been determined. The carboxy-terminal 
globular domain contains a consensus sequence for cal- 
modulin binding (Geiser et al., 1993; Stirling et al., 1994), 
and carboxy-terminal Spcll0p sequences bind calmodulin 
in vivo and in vitro (Geiser et al., 1993; Stirling et al., 1994; 
unpublished results). Dominant mutations in SPC110 sup- 
press defects in chromosome segregation displayed by the 
temperature-sensitive calmodulin mutant cmdl-1 (Geiser 
et al., 1993). The interaction between Spcll0p and cal- 
modulin is required for the proper assembly of SPB com- 
ponents (Sundberg et al., 1996). 

In this paper we show that Spcll0p is phosphorylated in 
a cell cycle-dependent manner. Moreover, the presence 
and timing of Spcll0p phosphorylation during the cell cy- 
cle correlate with the presence of the mitotic spindle appa- 
ratus. Spcll0p represents the first example of a structural 
centrosome component that is modified by phosphoryla- 
tion in a regulated manner consistent with a mitosis-spe- 
cific function. 

Materials and Methods 

Media, Strains, and Genetic Manipulations 

Liquid media were YPD (Geiser et al., 1991), YPD-Pi (Warner, 1991), or 
S D - U R A  (Sherman et al., 1986). Strains used in this study are listed in 
Table I. All strains are W303 background except 9065-12-4, 2785-41A, and 
2786-27A, which are A364-A. Strains DFY1 (SPCllO-201) and DFY3 
(SPCl10-202) were constructed by integration of EcoRI-linearized plas- 
mids pDF38 and pDF37, respectively, into strain CRY1 by the two-step 
gene replacement strategy (Boeke et al., 1987). The SPCllO alleles inte- 
grated into these strains are deleted for different amounts of the coiled- 
coil domain (see below), and can support growth as the sole source of 
SPCIIO. Replacement of wild-type SPCllO sequences with those of the 

coiled-coil deletion alleles was indicated by the unique mobility of Spc110- 
201p or by the absence of signal from Spcll0-202p on Western blots. Both 
strains exhibited growth rates that were indistinguishable from CRY1. 
Strain HSY2-12C is derived from the diploid HSY2 (Geiser et al., 1993), 
and contains a precise chromosomal deletion of SPCllO. Plasmids con- 
taining various SPCIlO alleles were introduced into strain HSY2-12C by 
plasmid shuffle as described (Geiser et al., 1993). Plasmid transformations 
were carried out by the LiOAc method essentially as described (Ito et al., 
1983). 

Plasmids 

Plasmids used in this study are listed in Table II. SPCIIO alleles that are 
deleted for portions of the central coiled-coil domain were constructed as 
follows. Plasmid pDF9 was constructed by removing sequences between 
the SmaI and EcoRV sites in the multiple cloning site of plasmid pBlue- 
scriptlI KS + by cutting and subsequent ligation. A 2.5-kb HindIII frag- 
ment internal to the SPCllO open reading frame (Genbank accession 
number Zl1582) from pJG138 was then cloned into the HindIII site of 
pDF9, creating plasmid pDF12. To construct SPCllO-201, sequences be- 
tween the BglII site and NdeI site of the SPCllO HindIII fragment in 
pDF12 were removed, creating plasmid pDF28. This was accomplished by 
restriction cutting at both sites, filling in using the Klenow fragment of 
DNA polymerase, and ligation of the resulting blunt ends. The SPCIIO 
HindlII fragment (containing the internal deletion) from pDF28 was then 
used to replace the wild-type SPCllO HindlII fragment of pJGI38, creat- 
ing plasmid pDF29. The SPCllO-201 allele in plasmid pDF29 contains an 
in-frame internal deletion of 834 bp between the two destroyed enzyme 
sites. The SPCl10-202 allele was similarly constructed in pDF12 by re- 
moving the sequences between the BgllI site and the second EcoRV site. 
This created plasmid pDF13, which contains an in-frame internal deletion 
of 1,314 bp between the two destroyed enzyme sites, thereby removing 
those sequences used to generate epitopes for raising anti-Spcll0p anti- 
bodies (Geiser et al., 1993). The HindllI fragment from pDF13 was then 
used to replace the wild-type Hindlll  fragment in pJG138, creating plas- 
mid pDF25. 

Plasmids pDF37 and pDF38 are yeast integration vectors carrying ei- 
ther SPCl10-202 or SPCllO-201, respectively. They were constructed by 
replacing the AlwNI fragments of either pDF29 or pDF25 (containing 
CEN6 ARSH4) with an AIwNI fragment derived from the yeast integrat- 
ing vector pRS306. 

A truncation of Spcll0p at residue 828 was constructed as follows. 
SPCllO contains two BclI sites, the second of which overlaps with codon 
828. One of the two BclI sites in plasmid pHS29 was cleaved by partial di- 
gestion with Bcll, and the resulting linear fragments were treated with the 
Klenow fragment of DNA polymerase to fill in the ends. An oligonucle- 
otide containing a BamHI site (GGGATCCC) was then ligated to the 
blunt-end linear fragments, and the recircularized molecules were isolated 
in bacteria. Plasmids containing the linker were digested with BamHI to 
remove tandem insertions of the linker, and recircularized by ligation. 
This procedure resulted in two plasmids, pHS30 and pHS32, which con- 
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Table II. Plasmids Used in This Study 

Plasmid Parent plasmid Relevant markers* Source or reference 

pBluescriptII KS + fl origin 
pQE30 6xHIS tagged cloning vector 
YEp24 21~ origin, URA3 

pRS316 CEN4 ARSH4 URA3, fl  origin 

pRS306 URA3, fl  origin 

pTD87 pJG 138 
pGF29 pRS306 
pHS29 pRS316 

pHS30 pHS29 

pHS31 pHS29 
pHS32 pHS29 

pJG115 pGF29 
pJG138 pRS316 

pJG141 pRS316 
pDF9 pBluescriptll KS + 
pDF12 pDF9 
pDF 13 pDF 12 
pDF 19 pHS 31 
pDF20 pHS31 
pDF21 pHS31 
pDF25 pJG138 
pDF28 pDF12 
pDF29 pJG138 
pDF31 pHS31 
pDF33 pHS31 
pDF34 pDF21 
pDF37 pRS306 
pDF38 pRS306 
pDF39 YEp24 
pDF41 pHS32 
pDF42 pHS31 

1.5-kb BgllI-SspI internal SPC110 fragment 
2V~ origin (YEp24 EcoRI fragment) inserted at AatlI site 
SPC110 

SPCllO containing a BamHI 8-mer inserted in-frame at the 
first BclI site in the open reading frame 

SPC110 
SPC110 containing a BamHI 8-mer inserted in-frame at the 

BclI site overlapping codon 828 
SPC110 
SPCllO contained on a PvulI-XbaI fragment cloned into a 

filled Hindlll site and the XbaI site 
spc110-213 (truncation at residue 756) 
fl origin 
2.5-kb HindlII internal SPC110 fragment 
1.2-kb HindllI internal SPC110-202 fragment 
SPCl10-205 ($36A) 
SPC110-206 ($91 A) 
SPCl10-208 ($36A, S91A) 
SPC110-202 (1.3-kb deletion of coiled-coil region) 
1.6-kb Hindlll internal SPC110-201 fragment 
SPCl10-201 (0.8-kb deletion of coiled-coil region) 
SPCl10-204 (T18A) 
SPC110-207 (S 116A) 
SPCllO-211 (T18A, $36A, S91A, Sl l6A) 
SPC110-202 ( 1.3-kb deletion of coiled-coil region) 
SPCl10-201 (0.8-kb deletion of coiled-coil region) 
spc110-213 (truncation at residue 756) 
spc110-214 (truncation at residue 828) 
SPCLI0-212 (T840A, T847A, $853A) 

Stratagene 
Qiagen 
Genbank 

Accession no. L09156 
Sikorski and 

Hieter, 1989 
Sikorski and 

Hieter, 1989 
This study 
G. Zhu 
Sundberg et 

al., 1996 
This study 

This study 
Sundberg et 

al., 1996 
J. Geiser 
J. Geiser 

Geiser et al., 1993 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 

* All markers from the parent plasmid are present in the new construct. 

tain a unique BamHI site inserted into either the upstream or downstream 
BclI site, respectively, pHS32 has been described previously (Sundberg et 
al., 1996). Both plasmids were able to support growth as the sole source of 
SPCllO, and produced both Spcl10p isoforms. Plasmid pDF41 was cre- 
ated from pHS32 by restriction cutting at the unique BamHI site, filling in 
the sticky ends using the Klenow fragment of DNA polymerase, and ligat- 
ing the resulting blunt ends. This procedure produced a frame-shift at 
codon 828, resulting in the addition of six novel amino acids (GIDPDQ) 
followed by a stop codon. A similar truncation was made from plasmid 
pHS30, which contains the BamHI linker in the first BclI site. In this case, 
the frame-shift was made at the remaining Bcll site in a similar fashion as 
above, and resulted in a stop codon only two novel amino acids after resi- 
due 828. Both versions of this truncation produced similar results. For 
simplicity, we only show data using the first construct contained on 
pDF41. 

Plasmid pDF39 is a high copy number vector encoding a truncation of 
Spcl10p at residue 756. It was constructed by replacing the AlwNI frag- 
ment of pJG141 (containing CEN6 ARSH4) with the AlwNI fragment de- 
rived from the yeast expression vector YEp24. 

SPCllO alleles containing serine to alanine or threonine to alanine mu- 
tations were created by site-directed mutagenesis as described (Kunkel et 
al., 1987). This mutagenesis was carried out using plasmid pHS31, which 
contains SPCllO with an NcoI site engineered into the initiating methio- 
nine codon and removed from the URA3 gene by site-directed mutagene- 
sis (URA3 lacking the NcoI site was provided by M. Moser, Department 
of Biochemistry, University of Washington). Plasmids pDF31, pDF19, 
pDF20, and pDF33 carry the single-mutant alleles SPCl10-204 (TlgA), 
-205 ($36A), -206 ($91A), and -207 (Sl16A), respectively. Plasmid pDF42 

carries the triple mutant allele SPCl10-212 (T840A, T847A, $853A). Plas- 
mid pDF34, which carries the quadruple mutant allele SPCllO-211 
(T18A, $36A, S91A, SII6A), was created from a similar mutagenesis in 
which plasmid pDF21, which carries SPCl10-208 ($36A, S91A), was used 
as a starting template. The identity of each missense mutation was con- 
firmed by DNA sequence analysis (Tabor and Richardson, 1987; reagents 
from United States Biochemicals Corp., Cleveland, OH). 

Plasmid pTD87 contains a portion of the central coiled-coil region of 
SPCllO fused to a 6xHIS tag and was used for the affinity purification of 
anti-Spcll0p antibodies, pTD87 was constructed by inserting the BglII- 
SspI fragment of SPCIIO from pJG138 into the BamHI and SmaI restric- 
tion sites of pQE30, a 6xHIS fusion expression vector (Qiagen, Inc., Chats- 
worth, CA). 

a-Factor, Nocodazole, and CLB-depletion Arrests 

a-Factor arrests were performed on asynchronous cultures in early loga- 
rithmic growth by the addition of synthesized pheromone peptide (HHMI 
Biopolymer facility, University of Washington, Seattle, WA) to a final 
concentration of 6 fl, M, except for strain RM14-3A (barl) when a final 
concentration of 200 nM was used. Strains were arrested in mitosis by the 
addition of nocodazole (Jacobs et al., 1988) at a final concentration of 5 
~g/ml. Cultures were incubated in the presence of a-factor or nocodazole 
for approximately 1.5 generations, at which time the efficacy of the arrests 
was ascertained by bud morphology. Depletion of Clb2p in the clblA, 
clb2A, clb3A, clb4A, GALIO-CLB2 strain (no. 245) was performed as de- 
scribed (Fitch et at., 1992). 
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Cytological Techniques 
Cell morphology was assayed using an Olympus BH-2 compound light mi- 
croscope, and 100-200 cells were counted for each test point using a 
Petroff-Hausser counting chamber. Cells were prepared for flow cytome- 
try as described (Muller, 1991), and the data were analyzed for DNA con- 
tent as described (Method A, Slater et al., 1977). Cells were prepared for 
immunofluorescence as described (Davis, 1992), except that the primary 
antibodies were rat anti-a-tubulin ascites YOL1/34 at a dilution factor 
of 1:200, and the secondary antibodies were goat-anti-rat IgG conjugated 
to FITC (Bio-Rad Labs., Richmond, CA) at a dilution factor of 1:100. 
Stained cells were viewed using a Zeiss Axioplan microscope. Cells were 
prepared for thin-section electron microscopy as described (Byers and 
Goetsch, 1991), except that the fixative was 3% (wt/vol) glutaraldehyde in 
50 mM phosphate buffer (pH 6.5) containing 0.5 mM MgCI 2. Serial sec- 
tions were viewed using a Philips EM300 electron microscope. 

Immunoblot Analysis 
Total cell protein extracts were obtained by precipitation of whole cells 
with 10% (vol/vol) trichloroacetic acid (TCA) as described (Wright et al., 
1989) unless otherwise indicated. Proteins were separated by 6% SDS- 
PAGE as described (Laemmli, 1970) unless otherwise indicated. 

For Western blot analysis, electrophoretically separated protein ex- 
tracts were electroblotted onto nitrocellulose membranes (Schleicher & 
Schuell, Inc., Keene, NH) using a Bio-Rad Trans-Blot Semi-Dry Transfer 
Cell for 25 min at 3-5 mA/cm 2, and the blotted membranes were blocked 
for >90 min with 10% nonfat milk in 25 mM Tris buffer (pH 7.5) contain- 
ing 150 mM NaCI and 0.05% Tween-20. Blots were then incubated over- 
night in a 1% nonfat milk solution containing a 1:1,000 dilution of affinity- 
purified Spcll0p polyclonal antibodies (see below). Immunoblots were 
developed using goat anti-rabbit IgG conjugated with horseradish peroxi- 
dase (1:5,000 dilution; Bio-Rad) and the ECL chemiluminescence system 
from Amersham, and the signal was detected with Hyperfilm-MP autora- 
diography film (Amersham Corp., Arlington Heights, IL). 

The method of TCA precipitation used for the preparation of whole 
cell extracts in this study preserves both Spc110p isoforms well. Stirling et 
al. (1994) have also been able to preserve both isoforms using extracts 
made by glass bead lysis and boiling in SDS buffer. Mirzayan et al. (1992) 
only observed one Spcll0p isoform, presumably due to the spheroplast- 
lysing method of protein extraction used by these authors, which included 
long incubations at 37°C during which time degradation of the 120-kD iso- 
form might have occurred. 

Preparation of Soluble Spc l l Op 
Spc110p is largely insoluble under a variety of extraction conditions 
(Mirzayan et al., 1992). However, we were able to partially solubilize 
Spc110p by glass bead lysis in the presence of 20 mM Tris buffer (pH 8), 2 
mM EDTA, 0.1 mM DTF and protease inhibitors. We suspect that differ- 
ences in solubility arise from the pH of the solutions used (pH 6.5 buffers 
were used by Mirzayan et al., 1992). Protease inhibitors were diluted to a 
final concentration of 1 mM PMSF, 10 IxM benzamidine, and 0.5 ~g/ml 
each for antipain, leupeptin, pepstatin A and aprotinin. Cells were resus- 
pended in 1 ml of lysis buffer (with protease inhibitors) and two volumes 
of glass beads. Cells were lysed by vortexing this mixture 20 times for 30 s 
separated by 30-s incubations on ice. The soluble fraction was obtained af- 
ter centrifugation in a Sorval Microspin 24 microcentrifuge (12.3 g RCF). 

32 Immunoprecipitation of P-labeled Spc l l Op 
Radiolabeled cells were washed in 1 ml cold HzO and resuspended in 400 
Izl RIPA buffer (150 mM CaClz, 6 mM Na2HPO4, 4 mM NaH2PO4, 2 mM 
EDTA, 1% NaDOC, 1% NP-40, 0.1% SDS, and the protease inhibitors 
described above). Cells were then lysed using one volume of glass beads 
by vortexing 10 times for 30 s separated by 30-s incubation on ice. The ly- 
sate was collected and centrifuged at 4°C in a Sorval Microspin 24 micro- 
centrifuge (12.3 g RCF), and the supernatant was pre-cleared with 145 Ixl 
of de-fined Pansorbin cells (Calbiochem-Novabiochem, La Jolla, CA) for 
2 h on ice. After centrifugation at 6,000 rpm for 5 min, each pre-cleared 
supernatant was incubated with 5 ILl of affinity-purified polyclonal anti- 
Spcll0p antibodies (see below) for 1 h on ice unless otherwise indicated. 
Each sample was then incubated for an additional 30 min on ice with 50 p~l 
of de-fined pansorbin cells, followed by centrifugation through a 0.5 ml 
10% sucrose RIPA cushion at 3,000 rpm for 10 min. The pelleted immune 

complexes were then washed three times in RIPA buffer and resuspended 
in 50 Ixl of SDS-PAGE sample buffer and boiled for 5 min before separa- 
tion by 6% SDS-PAGE. Dried gels were analyzed using a Molecular Dy- 
namics Phosphorlmager model 400S (using 176 micron pixel size; Sunny- 
vale, CA) and ImageQuant software, and the resulting files were printed 
on a dye sublimation printer. 

Affinity Purification of Anti-Spcl lOp Antibodies 
Polyclonal antibodies 761H were raised against a GST fusion to the inter- 
nal EcoRV fragment, containing amino acids 422-705 of Spcll0p (Geiser 
et al., 1993). Antibodies were then affinity purified against a 6xHis tagged 
fusion protein of a larger, overlapping BglII-Sspl fragment containing 
amino acids 265-757 of Spcll0p. The fusion protein, encoded on plasmid 
pTD87, was expressed in GM1 E. coli for 3 h at 37°C after induction with 1 
mM IPTG at 30 Klett units. Cells were harvested by centrifugation and 
lysed in a French press (19,000 psi) in the presence of 1 mM PMSF, 100 
p.g/ml RNase A, and a flake of lyophilized DNase I was then added. Solu- 
ble lysate was loaded on to Ni-NTA resin (Qiagen) and washed exten- 
sively with a 50 mM phosphate buffer (pH 6.0) containing 1 M NaCI and 
10% glycerol. The fusion protein was eluted from the column with a pH 
gradient (pH 6.0-2.0) in 50 mM phosphate buffer containing 300 mM 
NaC1 and 10% glycerol. Pooled fractions were resolved by 10% SDS- 
PAGE and transferred to a nitrocellulose membrane by semi-dry elec- 
trobloning as described above. The membrane was stained with Ponceau 
S (Sigma Chem. Co., St. Louis, MO) and the 60-kD fusion protein was ex- 
cised. Antibodies were affinity purified as described (Pringle et al., 1989) 
with some modification. Briefly, antiserum was incubated with the 60-kD 
membrane-bound protein. The membrane was washed with 25 mM Tris 
buffer (pH 7.5) containing 150 mM NaCI, and 0.05% Tween-20. Finally, 
the antibodies were eluted with 100 mM glycine (pH 2.2) and neutralized 
with 0.1 vol 1 M Tris buffer (pH 8.0). 

The specificity of the affinity-purified anti-Spcll0p antibodies used in 
the experiments presented here is excellent and indistinguishable from 
that using a mixture of Spcll0p monoclonal antibodies (35All  and 
45D10; Rout and Kilmartin, 1990). Moreover, the affinity-purified anti- 
bodies detect no signal above background on Western blots of DFY3 ly- 
sates containing Spc110-202p, which lacks the antigenic region of the cen- 
tral coiled-coil domain. 

Results 

Spc l I Op Is Phosphorylated at 
Serine/Threonine Residues 

Affinity-purified polyclonal antibodies raised against a 
central portion of Spc110p (Materials and Methods) de- 
tect two electrophoretically distinct Spc110p isoforms on 
Western blots of wild-type protein lysates prepared from 
an asynchronous culture (Fig. 1 A, lane 1). Two major iso- 
forms are evident, one migrating with an apparent molecu- 
lar mass of 120 kD and the other migrating with the ex- 
pected molecular mass of 112 kD. Both Spcl10p isoforms 
incorporate radiolabeled 32P i in vivo (Fig. 1 B, lane 1), sug- 
gesting that Spcl l0p is posttranslationally modified by 
phosphorylation. 

The addition of mammalian PP2A, a serine/threonine- 
specific phosphatase, to a soluble extract containing Spcll0p 
resulted in the conversion of the 120-kD Spcl l0p isoform 
into the l l2 -kD isoform (Fig. 1 A, lane 2). Moreover, this 
conversion was blocked by the addition of the PP2A inhib- 
itors okadaic acid and microcystin (Fig. 1 A, lane 3). The 
inhibition by okadaic acid and microcystin was overcome 
by a 10-fold increase in PP2A (Fig. 1 A, lane 4). Conver- 
sion of the 120-kD isoform was a direct effect of the exog- 
enous phosphatase, since we observed the same conver- 
sion when extracts were incubated on ice in the presence 
of a nonspecific phosphatase isolated from the Arctic 
shrimp Pandalus borealis (United States Biochemicals; 
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Figure 1. Spcll0p is phosphorylated. (A) Sensitivity of Spcll0p 
modification to bovine serine/threonine-specific phosphatase 
PP2A. Spcll0p was partially solubilized from a 25-ml culture of 
strain CRY1 (100 Klett units) as described in Materials and 
Methods. Western blot analysis was performed as described in 
Materials and Methods. 10 ixl of the soluble Spcll0p extract was 
loaded on an SDS-PAGE gel for each of the following condi- 
tions. Lane 1, Soluble extract containing Spc110p incubated at 
30°C for 40 min before addition of SDS-PAGE sample buffer and 
boiling. Lane 2, Same as lane 1 except that 10 units of Bovine 
protein phosphatase PP2A (prepared from beef hearts; gift of J. 
Campbell, N. Ahn, and E. Krebs, Howard Hughes Medical Insti- 
tute, Department of Pharmacology and Biochemistry, University 
of Washington) in a solution containing protease inhibitors (Ma- 
terials and Methods) was added. Lane 3, Same as lane 2 except 
that okadaic acid (OA) and microcystin (/xC) were added to a fi- 
nal concentration of 10 nM. Lane 4, Same as lane 3 except that 
100 units (10x) of PP2A was added. (B) Immunoprecipitation of 
32Pi-labeled Spcl10p. Cultures of strain DFY3 harboring various 
SPCllO-containing plasmids were grown in SD-URA to 40 Klett 
units, washed twice in 5 ml YPD-Pi, and diluted to 20 Klett units 
in 20 ml YPD-Pi at 30°C. When cultures had grown to approxi- 
mately 100 Klett units, 32P-labeled orthophosphoric acid (DuPont 
New England Nuclear, Boston, MA) was added to a final concen- 
tration of 150 p~Ci/ml to 2 ml of each culture. Cultures were incu- 
bated with label for 60 min at 30°C, and Spc110p was immunopre- 
cipitated from each culture as described in Materials and 
Methods. Lane 1, pJG138 (CEN SPCllO). Lane 2, pJG138, but 
no primary antibody was added to the immunoprecipitation. 
Lane 3, pJG115 (2ix SPCllO). Lane 4, YEp24 (21~). Lane 5, 
pDF39 (2p~ spc110-213). Lane 6, pJG141 (CEN spcllO-213). 120- 
(p120) and 112-kD (pl12) Spc110p isoforms are indicated. The 
arrow on the right indicates the mobility of the 756 truncation. 

data not shown). Endogenous yeast enzymes are not ex- 
pected to be active on ice. Thus, the 120-kD Spc l l0p  iso- 
form results from additional serine/threonine phosphory- 
lation of the l l 2 - k D  isoform. The nature of the 32p signal 

Figure 2. Cell cycle-specific presence of Spcll0p phosphoryla- 
tion. Western blot analysis was performed as described in Materi- 
als and Methods on protein extracts from wild-type strain CRY1 
grown at 30°C under the following conditions: asynch, asynchro- 
nous culture in early logarithmic phase of growth; GO, cells grown 
to stationary phase (>48 h); G1, cells arrested by addition of 
a-factor (100% shmoo morphology); M, cells arrested in mitosis 
by the addition of nocodazole (79% large-budded cells). Aliquots 
representing extract from approximately 4 x 106 cells were 
loaded for each lane. 120- (p120) and ll2-kD (p112) Spcll0p iso- 
forms are indicated. 

arising from the l l 2 -kD isoform is not known. In some 
gels, the lower, l l 2 -kD isoform resolved into two tightly 
spaced isoforms (data not shown). The presence of  this 
tight doublet was not apparent  in every experiment and 
was not studied further. 

The 120-kD Isoform Accumulates in Mitotic Cells 

To investigate the possibility that the serine/threonine 
phosphorylation in the 120-kD isoform of Spc110p is cell 
cycle regulated, we monitored Spc110p by Western blot 
analysis f rom cells that were arrested at different stages of  
the cell cycle. Cells grown to stationary phase (GO) or ar- 
rested in G1 by the addition of the mating pheromone 
u-factor did not contain the 120-kD isoform (Fig. 2). In 
contrast, cells arrested in mitosis by the addition of no- 
codazole, which destabilizes microtubules, accumulated 
the 120-kD isoform almost exclusively (Fig. 2). 

The steady state level of Spc110p increased in cells ex- 
pressing Spc110p from a high copy number  plasmid as 
judged both by in vivo 32p i incorporation (Fig. 1 B, lane 3) 
and by Western blot analysis (Fig. 3). However,  the major- 
ity of the extra signal was found only in the lower, 112-kD 
isoform, with the 120-kD isoform present at almost equiv- 
alent levels to those observed in isogenic cells dependent  
on Spcl10p expression from a low copy number  plasmid. 
Cultures overproducing Spc110p still arrested in mitosis in 
response to nocodazole, but the conversion of Spc110p 
into the 120-kD isoform was incomplete (Fig. 3). Thus, an 
unknown mechanism limits the serine/threonine phosphor- 
ylation that gives rise to the 120-kD isoform to a subset of 
the total population of Spc110p, but the level of 32p i incor- 
poration and protein production of the lower, 112-kD iso- 
form is not limiting. 

Mutations Blocking Progression through the Cell Cycle 
Define a Window for Production of  the 120-kD Isoform 

Strains carrying several different cdc mutations were used 
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Figure 3. Overexpression of SPCllO. Western blot analysis was 
performed as described in Materials and Methods on protein ex- 
tracts from logarithmic and nocodazole-arrested cultures of strain 
HSY2-12C dependent upon SPCllO expression from either a low 
copy number plasmid or a high copy number ptasmid. Logarith- 
mic cultures were grown at 30°C to 100 Klett units, and extract 
from approximately 4 × 10 6 cells was loaded for each logarithmic 
sample. After the logarithmic samples had been taken, the re- 
mainder of each culture was arrested by the addition of nocoda- 
zole (86-89% large budded cells), and an equal volume of extract 
was loaded for each nocodazole-arrested sample. (CEN) SPCllO 
on low copy number plasmid pJG138. (2/z) SPCllO on high copy 
number plasmid pJG115. 120- (19120) and 112-kD (pl12) Spc110p 
isoforms are indicated. 

to define further the stages of  the cell cycle during which 
the 120-kD isoform is present. Cells arrested in G1 by the 
temperature-sensitive cdc4 mutation did not contain sig- 
nificant amounts of this isoform (Fig. 4). Mitotic spindles 
were not evident by tubulin immunofluorescence in these 
cdc4-arrested cells, consistent with previously published 
electron microscopy showing the presence of  duplicated 
but unseparated SPBs at a cdc4 arrest (Byers and Goetsch, 
1974). 

In contrast, the 120-kD isoform accumulated in cells ar- 
rested by the cdc7 mutation at the G1/S boundary (Fig. 4). 
Tubulin immunofluorescence revealed the presence of a 
short mitotic spindle in 93% of the cells at the cdc7 arrest. 
Cells arrested by the cdc14 mutation also accumulated the 
120-kD isoform, and cells arrested by cdc15 exhibited a 
heterogeneous population of  Spc l l0p  isoforms (Fig. 4). 
The majority of the large budded cells at the cdc14 and 
cdc15 arrests contained separated nuclei, indicating a mi- 
totic arrest point later than that for nocodazole-arrested 
cells in which the chromosomes do not segregate (Jacobs 
et al., 1988). All of  the cdc strains tested exhibited the 
same G1- and mitosis-specific Spc l l0p  isoforms described 
for wild-type strain CRY1 when arrested with a-factor or 
with nocodazole under permissive conditions (data shown 
only for cdc4 strain, Fig. 4). 

SerinelThreonine Phosphorylation of Spc l lOp 
Accumulates with the Formation of the Mitotic Spindle 
and Disappears as Cells Enter Anaphase 

The two Spc l l0p  isoforms were monitored in a synchro- 
nous wild-type culture released from a G1 ~t-factor arrest. 
The levels of the two isoforms clearly alternated with each 
other during the two cell cycles examined (Fig. 5). Signifi- 

Figure 4. Pattern of Spcll0p phosphorylation at different cdc ar- 
rests. Western blot analysis was performed as described in Mate- 
rials and Methods on extracts obtained from cells arrested at var- 
ious stages of the cell cycle specific for the indicated cdc 
mutations. 120- (p120) and ll2-kD (pl12) Spcll0p isoforms are 
indicated. (asynch) Asynchronous culture of cdc4 strain grown at 
room temperature. (a-factor) cdc4 strain arrested with a-factor at 
room temperature (95% shmoo morphology). (cdc4) cdc4 cells 
were incubated for 4 h at 36°C and displayed 91% large or multi- 
ple-elongated buds and 1N DNA content. (cdc7) cdc7 cells were 
first synchronized in G1 by the addition of a-factor, collected by 
filtration and released into fresh medium at the restrictive tem- 
perature. Cells were then incubated for 2 h at 36°C and displayed 
93% medium or large budded cells and 1N DNA content. (no- 
codazole) cdc4 cells were arrested with nocodazole at room tem- 
perature (90% large budded cells). (cdcl4) cdcl4 cells were incu- 
bated for 2 h at 36°C and displayed 98% large budded cells and 
2N DNA content. 81% of cells also contained two distinct DAPI- 
staining centers. (cdcl5) cdcl5 cells were incubated for 2 h at 
36°C and displayed 96% large budded cells and 2N DNA content. 
66% of cells also contained two distinct DAPI-staining centers. 
Aliquots representing extract from approximately 4 × 106 cells 
were loaded for each lane. 

cantly, the serine/threonine phosphorylat ion that gives rise 
to the 120-kD isoform appeared as the spindle was formed 
and was removed as the cells entered anaphase. As exam- 
ined by immunofiuorescence, the proport ion of cells with 
a pre-anaphase spindle directly correlated with the pro- 
portion of the 120-kD isoform in the culture (Fig. 5). Spin- 
dle formation occurred as cells entered G2, consistent with 
previously published studies demonstrating that spindle 
formation occurs after D N A  synthesis (Byers and Goetsch, 
1974). 

Our  analysis of  spindle formation was confirmed by 
electron microscopy in a parallel experiment. At  a time 
early in the cell cycle when 50% of Spc l l0p  was present as 
the 120-kD isoform, 64% of cells (n = 36) exhibited very 
short but complete spindles, with the remainder of the 
cells containing duplicated side-by-side SPBs. This result is 
not  significantly different f rom expected if the presence of 
the 120-kD isoform correlates with the presence of a short 
spindle (×2 = 2.78; P = 0.10). In conjunction with our find- 
ing that the 120-kD isoform is not present at a cdc4 arrest 
(Fig. 4), these results demonstrate that production of the 
120-kD isoform is not required for SPB duplication. 
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Figure 5. Pattern of Spcll0p 
phosphorylation in a syn- 
chronous wild-type culture. 
A 25-ml culture of strain 
CRY1 (at 50 Klett units) in 
YPD medium was arrested in 
G1 by the addition of 
c~-factor (Materials and 
Methods). Cells arrested in 
G1 (96% unbudded shmoo 
morphology) were released 
by collection onto a 0.8-txm 
filter disc (Millipore Corp., 
Bedford, MA) and washing 
with three culture volumes of 
pre-warmed fresh medium 
(30°C). Cells were resus- 
pended in 25 ml of pre- 
warmed fresh medium and 
placed into a 30°C shaking 
water bath. The first time 
point was taken 15 min after 
cells were initially washed 
with fresh medium lacking 
a-factor. Additional time 
points were taken at 10-min 
intervals as indicated. Cells 
at each time point were col- 
lected for measurement of 
bud morphology, Spcll0p 
modification, DNA content 

and microtubule staining pattern (Materials and Methods). BE indicates the time at which small buds first appear during each cycle. 
Shown is the percentage of phosphorylated Spcll0p relative to total Spcll0p (11) and the percentage of cells containing a mitotic spin- 
dle before anaphase (tq). The shortest mitotic spindles appeared as brightly-staining centers of tubulin, sometimes associated with 
small rays of microtubules that were not stained as intensely. This staining pattern was distinct from that for cells earlier in the cell cy- 
de, which exhibited a wider array of longer cytoplasmic microtubules, the intensity of which was no different from that of the common 
focus from which they emanated. Confirmation that these brightly staining centers of tubulin were short spindles was obtained by elec- 
tron microscopy (see text). Cells with short spindles or with long spindles and a continuous region of DAPI staining material are in- 
cluded in []. Cells exhibiting long spindles associated with two distinct DAPI-staining centers indicative of cells in the anaphase or telo- 
phase stages of mitosis are not included. Shown below is the Western blot analysis demonstrating the alternation of the 120- (p120) and 
l l2-kD (p112) Spcll0p isoforms throughout the experiment. The film used to generate this figure was scanned and analyzed using NIH 
Image software to calculate the percentage of phosphorylated Spcll0p relative to total Spcll0p shown in the graph (11). Aliquots rep- 
resenting extract from ~1.5 x 106 cells were loaded for each lane. 

Figure 6. Pattern of Spcll0p phosphorylation in a synchronous 
culture arrested by the depletion of Clb2p in the absence of 
Clblp, Clb3p, and Clb4p. Western blot analysis was performed as 
described in Materials and Methods. Strain no. 245 was grown at 
30°C to 65 Klett units, synchronized with a-factor (92% unbud- 
ded shmoo morphology) and released to the CLB-depletion ar- 
rest as described (Fitch et al., 1992). The time (in minutes) that 
each sample was taken after cultures were released into fresh 
YPD is indicated above each lane. 120- (p120) and 112-kD (p112) 
Spcll0p isoforms are indicated. Approximately 50% of the cells 
had progressed through S-phase by 30 minutes after release, and 

Production of  the 120-kD Isoform is 
Independent of  CLB1, CLB2, CLB3, and 
CLB4 Activity 

B-cyclins CLB1-CLB4 are essential  for spindle format ion  
but  not  for SPB dupl icat ion (Fitch et  al., 1992). W e  deter-  
mined  whether  the ser ine/ threonine phosphoryla t ion  of 
Spc l10p  that  gives rise to the 120-kD isoform occurs in a 
strain de le ted  for CLB1, CLB2, CLB3, and CLB4 and 
mainta ined  by constitutive expression of CLB2 (Fitch et 
al., 1992). W e  moni to red  the Spc110p isoforms in cells re- 
leased from an a- fac tor  arrest  under  condit ions that  de- 
p le ted  cells of  Clb2p (Fitch et  al., 1992). 

Upon  deple t ion  of Clb2p, these cells arres ted with an ac- 
cumulat ion of the 120-kD Spc110p isoform (Fig. 6). Ap-  
proximate ly  half of the S p c l l 0 p  was in the 120-kD isoform 
by 50 min after cells were re leased from a-factor ,  and once 

progression through S-phase was virtually complete by the 50- 
min time point. As expected from published results, at the 70-min 
time point, 84% of the cells exhibited a single elongated bud. 
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Figure 7. Phosphorylation 
state of Spcll0p containing 
serine to alanine and threo- 
nine to alanine mutations 
from asynchronous 30°C cul- 
tures (at 100 Klett units). 
Western blot analysis was 
performed as described in 
Materials and Methods on ex- 
tracts of strain HSY2-12C 
maintained by plasmids har- 
boring the following SPCllO 
alleles. (A) (WT) pHS31 
(SPC110). (T18A) pDF31 
( SPCl l O-204). ( S36A ) pDF19 
(SPCl10-205). (S91A) pDF20 
(SPCllO-206). (Sll6A) 
pDF33 (SPCl10-207). (TlSA, 
$36A, S91A, Sll6A) pDF34 
(SPCltO-2tt). (B) (T840A, 
T847A, $853A) pDF42 
(SPCl10-212). (WT) pHS31 
(SPCllO). 120- (p120) and 
ll2-kD (pl12) Spcll0p iso- 
forms are indicated. 

established, this level remained constant for the remainder 
of the experiment (>3 h). The 120-kD isoform was not ap- 
parent at the 30-min time point when ~50% of the cells 
had completed DNA synthesis, indicating that the 120-kD 
isoform arises in these cells after S-phase as it does in wild- 
type cells. Short mitotic spindles were not evident by tubu- 
lin immunofluorescence after 1 h at the arrest, consistent 
with previously published electron microscopy showing 
the presence of duplicated but unseparated SPBs in cells 
held at this arrest for 1 h (Fitch et al., 1992). 30% of the 
cells held at the CLB-depletion arrest for more than 3 h 
were found to contain short spindles (also demonstrated 
by Fitch et al., 1992). However, the 120-kD isoform first 
appeared more than two hours before these spindles 
formed. Thus, in the absence of Clblp-4p activity, the 
serine/threonine phosphorylation that gives rise to the 
120-kD isoform is not sufficient to allow spindles to form. 

The SerinelThreonine Phosphorylation Giving Rise 
to the 120-kD Isoform Does Not Occur at Canonical 
Cdc28p Phosphorylation Sequences 

The Cdc28p kinase, along with the appropriate G1- or G2- 
specific cyclin cofactors, has been shown to phosphorylate 
targets essential for the entry into S-phase or mitosis, re- 
spectively (reviewed in Nasmyth, 1993). We tested whether 
any of the putative Cdc28p phosphorylation sequences lo- 
cated in the amino terminus of Spcl l0p (Mirzayan et al., 
1992) represent the sites of Spcl l0p serine/threonine 
phosphorylation that give rise to the 120-kD isoform. We 
introduced mutations of serine to alanine or threonine to 
alanine into sequences within Spcl l0p that are similar to 
the S/TPXR/K consensus for Cdc28p phosphorylation 
(Langan et al., 1989; Shenoy et al., 1989). Of the three sites 
identified by Mirzayan et al. (1992), SPTK (residues 36- 
39) is a perfect match to this consensus, and the other two, 
SPR (residues 91-93) and SQPLK (residues 116-120), dif- 
fer at one or more residues. A liberal search for any 

Spcl l0p sequence resembling this consensus (a serine or 
threonine residue followed by a proline residue) identified 
only one additional sequence, TPV (residues 18-20). 

Yeast strains were able to survive with alleles of SPCllO 
that carried various combinations of these mutations, in- 
cluding the quadruple mutant allele, as the sole source of 
SPC110. The growth rates of these strains were indistin- 
guishable from that of CRY1. Furthermore, yeast strains 
supported by these mutant Spcll0ps still produced two 
Spcl l0p isoforms (Fig. 7 A). The quadruple mutant was 
phosphorylated in the same G1- and mitosis-specific man- 
ner as wild-type Spcl l0p when cells were arrested with 
a-factor or with nocodazole (data not shown). Both iso- 
forms of the quadruple mutant exhibited a slightly altered 
mobility which was also observed for the isoforms of the 
single mutant S91A (Fig. 7 A). Since removal of the 120- 
kD isoform by PP2A treatment does not result in a similar 
altered mobility of the lower, l l2 -kD wild-type isoform 
(Fig. 1 A), it is likely that the change in mobility of the 
quadruple mutant results from an alteration in the protein 
structure caused by the S91A mutation. Alternatively, $91 
may represent one of many residues that, when phosphor- 
ylated, collectively give rise to the 120-kD isoform. Thus, 
the four residues tested here do not represent essential 
sites of phosphorylation and, with the possible exception 
of $91, do not contribute to the formation of the 120-kD 
isoform in wild-type extracts. 

Internal Deletions and Carboxy-Terminal 
Truncations of Spc l lOp Map Regions Necessary for 
Production of the 120-kD Isoform 

To identify regions of Spcl l0p that are necessary for the 
serine/threonine phosphorylation that gives rise to the 
120-kD isoform, we monitored Spcl l0p in strains carrying 
carboxy-terminal truncations of Spcl l0p (Geiser et al., 
1993). Full-length Spcl l0p contains 944 residues. Strains 
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dependent on Spcll0-412p, Spcll0-407p, and Spcll0- 
419p, which are truncated at residues 881,863, and 856, re- 
spectively, are all viable and exhibit both isoforms in asyn- 
chronous cultures (Fig. 8). We also constructed and tested 
an in-frame internal deletion of Spcllop that was missing 
a portion of the central coiled-coil domain (Spcll0-201p). 
A strain dependent on Spcll0-201p for growth was viable 
and produced two isoforms in asynchronous cultures (Fig. 
8). Strains expressing any of these four variant proteins ex- 
hibited G1- and mitosis-specific isoforms analogous to 
those seen for the wild-type strain when arrested with 
a-factor or with nocodazole (data not shown). 

We also monitored the isoform production of additional 
Spcll0p truncations previously shown to be unable to sup- 
port growth as the sole source of Spcll0p (Geiser et al., 
1993). Protein production of these nonfunctional trunca- 
tions was assayed in strain DFY3, which is maintained by a 
variant form of Spc110p (Spcll0-202p) that is not detected 
by the antibodies used in this study (Materials and Meth- 
ods). A strain expressing a nonfunctional Spcll0p trunca- 
tion at residue 828 in the carboxy-terminal globular do- 
main was found to produce only one species (Fig. 8). 
Another nonfunctional truncation at residue 756, near the 
end of the coiled-coil domain, was also found to produce 
only one species (Fig. 8). Both non-functional truncations 

migrated with an apparent molecular mass similar to the 
predicted values for these truncations (98 and 89 kD for 
the 828 and 756 truncations, respectively). In addition, we 
occasionally observed a tight doublet for both the 756 and 
the 828 truncation analogous to the tight doublet some- 
times observed with the lower, l l2-kD isoform of the wild- 
type protein (data not shown). As a control for Spcll0p 
modification in DFY3, both the 112- and 120-kD isoforms 
were produced when this strain was transformed with a 
plasmid expressing SPC110 (data not shown). These re- 
suits delineate a region of Spcll0p between residues 828 
and 856 that either contains the phosphorylated residues 
giving rise to the 120-kD isoform, or contains sequences 
essential for this phosphorylation to occur elsewhere in 
the polypeptide. 

To determine whether the region between residues 828 
and 856 contains the phosphorylated residues giving rise 
to the 120-kD isoform, we replaced the two threonine and 
one serine residue in this region with alanine residues by 
site-directed mutagenesis (Materials and Methods). The 
resulting triple mutant allele SPCl10-212 (T840A, T847A, 
$853A) was able to support growth as the sole source of 
Spcll0p at a rate indistinguishable from that of CRY1. 
Western blot analysis showed that both isoforms were still 
present for this triple mutant (Fig. 7 B). Thus, these three 

Figure 8. Phosphorylation 
state of various Spcllop 
truncations and in-frame in- 
ternal deletions from asyn- 
chronous cultures. (A) West- 
ern blot analysis of extracts 
from strains containing the 
following proteins after sepa- 
ration by SDS-PAGE using a 
4-8% acrylamide gradient 
(stabilized by a 5-12% su- 
crose gradient). Lane 1, wild- 
type strain CRY1 (944 resi- 
dues). Lane 2, Spcllop-412p 
(881 residues) from strain 
JGY44-2A Sup412. Lane 3, 
Spcll0-407p (863 residues) 
from strain JGY44-2A 
Sup407. Lane 4, Spcllop- 
419p (856 residues) from 
strain JGY44-2A Sup419. 
Lane 5, Spc110-214p (trunca- 
tion at residue 828) from 
strain DFY3 carrying plas- 
mid pDF41. Lane 6, Spcll0- 
213p (truncation at residue 
756) from strain DFY3 carry- 
ing plasmid pJG141. Lane 7, 
Spcll0-201p (666 residues), 
which contains an internal in- 

frame deletion of a portion of the central coiled-coil domain, from strain DFY1. An equal volume of extract representing approxi- 
mately 4 × 106 cells was loaded for each lane except for lanes 5 and 6, where approximately four times and two times as much was 
loaded, respectively. (B) Graphical representation of the Spcll0p truncations and deletions shown in A with respect to certain features 
of the full-length protein (944 residues). The coiled-coil domain lies between residues 168 and 773 (Kilmartin et al., 1993). The calmod- 
ulin binding site is located between residues 900 and 914 (Stifling et al., 1994). Horizontal lines indicate regions that are left intact by 
the truncated and deleted proteins, and the numbers next to them indicate the residue number at the truncation/deletion end-points. 
The boxed region between residues 828 and 856 delineates a region of the protein that is necessary for Spcll0p phosphorylation as de- 
scribed in the text. The category labeled cell cycle--dependent phosphorylation refers to the presence of a mitosis-specific isoform ex- 
hibiting a mobility shift analogous to the mobility shift observed for the wild-type 120-kD isoform. 
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residues do not represent essential sites of phosphoryla- 
tion and do not contribute to the formation of the 120-kD 
isoform in wild-type extracts. 

We investigated several additional properties of the 
non-functional truncations at residues 828 and 756 to un- 
derstand better the nature of the defect in these proteins. 
Both non-functional truncations are expressed in cells, al- 
beit at reduced levels (Fig. 8). Overexpression of the 756 
truncation was still insufficient to support growth as the 
sole source of Spcll0p. However, overexpression of this 
truncation did result in increased steady state levels of 
both protein production and in vivo 32p i incorporation for 
this truncation (data shown only for 32p i incorporation, 
Fig. 1 B, lane 5). This same increase was found for the 
lower, l l2-kD isoform of the wild-type protein, but not for 
the 120-kD isoform (Figs. 1 B and 3). Thus, in this regard 
the 756 truncation behaves in an analogous manner to the 
lower, l l2-kD isoform of Spcll0p. 

Finally, we performed immunofluorescence studies on 
these truncations to determine if they were properly local- 
ized to the SPB. We were unable to detect the 756 or the 
828 truncation at the SPB or elsewhere in cells of strain 
DFY3 even though the wild-type protein was clearly local- 
ized to the SPB in this strain (data not shown). However, 
these negative findings could have been a consequence of 
the low abundance of the truncated proteins in DFY3. 
Overexpression of the 756 truncation resulted in a general 
nuclear staining pattern which was also observed for over- 
expressed wild type (data not shown). Thus, the 756 trun- 
cation is properly localized to the nucleus, but the high 
background of nuclear staining prohibited us from deter- 
mining whether or not the 756 truncation is incorporated 
into the SPB. 

Discussion 

We report that the l l0 -kD component of the S. cerevi- 
siae SPB, Spc110p, is phosphorylated in a cell cycle-depen- 
dent manner. Specific serine/threonine phosphorylation of 
Spc110p gives rise to a slower-migrating 120-kD isoform. 
In a synchronous culture, the 120-kD isoform appears as 
the mitotic spindle is formed and disappears as cells enter 
anaphase. DNA synthesis is completed before this phos- 
phorylation of Spc110p occurs. The level of the 120-kD 
isoform in response to drugs or a cdc4 or cdc7 mutation 
confirms that this isoform appears as the spindle forms. 
This isoform is not present in cells arrested with a single 
SPB by u-factor or in cells arrested by a cdc4 mutation 
with duplicated SPBs and no spindle. This isoform is 
present in cells arrested by a cdc7 mutation with short 
spindles and in cells blocked before anaphase by nocoda- 
zole. The presence of the 120-kD isoform is indicative of 
SPBs that are competent to form a spindle rather than 
spindle formation per se, since spindles are absent at the 
nocodazole arrest. 

Interestingly, the 120-kD isoform accumulated when 
cells were blocked by the removal of Clblp-Clb4p (Fig. 6) 
even though the duplicated SPBs were not separated by a 
mitotic spindle. As was noted at the nocodazole arrest, the 
accumulation of the 120-kD isoform at the CLB-depletion 
arrest may mark SPBs that are competent to undergo mi- 
totic spindle formation. In this case, however, spindle for- 

mation cannot commence without the activation of pro- 
cesses that are dependent on CLB1-4 activity. The 120-kD 
isoform also accumulated in cells arrested by a cdc14 mu- 
tation even though the chromosomes had segregated (Fig. 
4). Many of the cdc mutations uncouple SPB function, 
DNA synthesis and bud formation at the arrest (Byers and 
Goetsch, 1974, 1975). The cdcl4 cells may inappropriately 
transit anaphase without completing all anaphase func- 
tions (including Spcll0p dephosphorylation) at the re- 
strictive temperature. Indeed, cdc14 cultures exhibit high 
chromosome loss rates at high temperatures and become 
inviable after a few hours of incubation at the restrictive 
temperature (Hartwell and Smith, 1985; Palmer et al., 
1990; W. Raymond, personal communication). 

The fact that the 120-kD isoform is not present at the 
cdc4 block but is present in cells depleted of Clblp-Clb4p 
suggests that the serine/threonine phosphorylation giving 
rise to this isoform is dependent on Clb5p or Clb6p. Both 
of these B-cyclins are intact in the strain deleted for 
CLB1-CLB4, but Clbp-Cdc28p kinases are not active in 
cells arrested at the cdc4 block (Schwob et al., 1994). De- 
pletion of the six known B-cyclins (Clblp-6p) results in a 
cdc4 phenotype (Schwob et al., 1994). Furthermore, the 
cdc4 defect can be suppressed by overexpression of CLB4 
(Bai et al., 1994), CLB2 or CLB5 (Jensen, B., and B. By- 
ers, personal communication). It is unlikely that either 
Clb5p-Cdc28p or Clb6p-Cdc28p are directly responsible 
for the phosphorylation of Spcll0p studied here, since 
mutation of the threonine and serines in all of the sites 
that are similar to the Cdc28p consensus phosphorylation 
sequence has no effect on protein function or production 
of the 120-kD isoform. 

A deletion analysis demonstrated that the region be- 
tween residues 828 and 856 of Spcll0p is required for the 
production of mitosis-specific isoforms analogous to the 
wild-type 120-kD isoform. Since the two threonines and 
one serine in this region are not essential for function or 
for the production of the 120-kD isoform, it seems likely 
that this region of the polypeptide is essential for the 
serine/threonine phosphorylation to occur elsewhere in 
the polypeptide. For example, this region could contain 
part of a binding site for the protein kinase(s) responsible 
for the serine/threonine phosphorylation. Alternatively, 
this region of Spcll0p could contain an SPB-localization 
signal, and Spcll0p may only be phosphorylated in this 
manner when properly localized to the SPB. Our finding 
that the amount of the 120-kD isoform does not increase 
significantly when the protein is overproduced (Fig. 3) 
could be explained by either of these models, since the ki- 
nase could be limited in its activity or in its ability to bind 
Spcll0p, and the number of Spcll0p molecules that can 
assemble into the SPB is likely to be limited. 

The timing during the cell cycle of the serine/threonine 
phosphorylation specific to the 120-kD isoform is very 
similar to the appearance of centrosomal phosphoepitopes 
recognized by the monoclonal antibody MPM-2 in both 
mammalian cells (Vandr6 and Borisy, 1989) and in Schizo- 
saccharomyces pombe (Masuda et al., 1992). However, 
Spcll0p does not contain any sequences that match the 
consensus recognition sequences for MPM-2 (Westendorf 
et al., 1994), and MPM-2 antibodies do not detect either 
Spcll0p isoform in Western blots (unpublished results). 
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Additional evidence from a variety of organisms sug- 
gests that phosphorylation of certain substrates is neces- 
sary for spindle formation to occur, and removal of these 
or other phosphorylations is necessary for progression 
through anaphase. In Drosophila melanogaster, mutations 
in the aurora serine/threonine kinase arrest cells with du- 
plicated but unseparated centrosomes (Glover et al., 
1995). The mitosis-specific Human Plkl protein kinase, 
which shares homology with the S. cerevisiae Cdc5p and 
D. melanogaster polo serine/threonine kinases, localizes to 
the spindle poles of mammalian cells up to metaphase and 
then redistributes to the midzone as cells transit anaphase 
(Golsteyn et al., 1995). Mammalian cells can also be re- 
versibly arrested at a stage before anaphase onset by the 
addition of okadaic acid, a specific serine/threonine phos- 
phatase inhibitor (Vandr6 and Wills, 1992). In S. cerevi- 
siae, mutations in the serine/threonine phosphatase PP1 
lead to a similar block at the metaphase/anaphase transi- 
tion (Hisamoto et al., 1994; Black et al., 1995; MacKelvie 
et al., 1995). Our observations of the timing of Spcl l0p 
phosphorylation during mitosis implicates Spcl l0p as a 
target of these or analogous kinases and phosphatases in 
yeast. 

In summary, we have shown that the yeast l l0 -kD spin- 
dle pole body component Spcl l0p is modified by serine/ 
threonine phosphorylation as the mitotic spindle forms. 
We also show that this phosphorylation is removed as cells 
enter anaphase. This is the first evidence of a structural 
centrosomal or SPB component that is modified by phos- 
phorylation at serine or threonine residues in a cell cycle- 
dependent manner. We have mutated the obvious poten- 
tial sites of Spcl l0p phosphorylation and found them not 
to affect Spcl l0p function or production of the 120-kD 
isoform. Determining the exact nature and location of the 
phosphorylated residues in Spcl l0p will lead to a better 
understanding of how these modifications contribute to 
the cell cycle regulation of SPB function in yeast, but may 
be hampered by the low abundance and relative insolubil- 
ity of Spcl l0p in yeast. 
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