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Epoxygenase inactivation exacerbates diet and
aging-associated metabolic dysfunction
resulting from impaired adipogenesis
Antoni Olona 1,8, Ximena Terra 1,2,8, Jeong-Hun Ko 1, Carme Grau-Bové 1,2, Montserrat Pinent 2,
Anna Ardevol 2, Ana Garcia Diaz 3, Aida Moreno-Moral 4, Matthew Edin 5, David Bishop-Bailey 6,
Darryl C. Zeldin 5, Timothy J. Aitman 7, Enrico Petretto 4, Mayte Blay 2, Jacques Behmoaras 1,*
ABSTRACT

Objective: When molecular drivers of healthy adipogenesis are perturbed, this can cause hepatic steatosis. The role of arachidonic acid (AA) and
its downstream enzymatic cascades, such as cyclooxygenase, in adipogenesis is well established. The exact contribution of the P450 epox-
ygenase pathway, however, remains to be established. Enzymes belonging to this pathway are mainly encoded by the CYP2J locus which shows
extensive allelic expansion in mice. Here we aimed to establish the role of endogenous epoxygenase during adipogenesis under homeostatic and
metabolic stress conditions.
Methods: We took advantage of the simpler genetic architecture of the Cyp2j locus in the rat and used a Cyp2j4 (orthologue of human CYP2J2)
knockout rat in two models of metabolic dysfunction: physiological aging and cafeteria diet (CAF). The phenotyping of Cyp2j4�/� rats under CAF
was integrated with proteomics (LC-MS/MS) and lipidomics (LC-MS) analyses in the liver and the adipose tissue.
Results: We report that Cyp2j4 deletion causes adipocyte dysfunction under metabolic challenges. This is characterized by (i) down-regulation of
white adipose tissue (WAT) PPARg and C/EBPa, (ii) adipocyte hypertrophy, (iii) extracellular matrix remodeling, and (iv) alternative usage of AA
pathway. Specifically, in Cyp2j4�/� rats treated with a cafeteria diet, the dysfunctional adipogenesis is accompanied by exacerbated weight gain,
hepatic lipid accumulation, and dysregulated gluconeogenesis.
Conclusion: These results suggest that AA epoxygenases are essential regulators of healthy adipogenesis. Our results uncover their synergistic
role in fine-tuning AA pathway in obesity-mediated hepatic steatosis.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Obesity is a complex metabolic disorder with complications such as
insulin resistance, chronic inflammation, and hepatic steatosis, all of
which under the influence of white adipose tissue (WAT), a highly
dynamic, master-regulatory endocrine organ crucial for metabolic
homeostasis [1,2]. It is argued that the key mediators of obesity-
mediated metabolic disease (i.e. insulin resistance and inflamma-
tion) are evolutionarily conserved but could display pathological
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properties under modern obesogenic environment, which is charac-
terized by excess nutrient consumption [3].
At the heart of WAT homeostasis, adipogenesis is the process of dif-
ferentiation of pre-adipocytes to become mature under a core tran-
scriptional program driven by nuclear hormone receptor peroxisome
proliferator-activated receptor-g (PPAR-g) and CCAAT/enhancer
binding protein-a (C/EBPa) [4,5]. In addition to the role of PPAR-g in
embryonic adipogenesis, C/EBPa and PPAR-g are actively involved in
adult WAT expansion following high dietary fat exposure [6]. During
healthy WAT expansion, hypoxia and inflammation caused by activated
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Figure 1: Cyp2j4�/� mesenchymal stromal cells (MSCs) undergo spontaneous adipogenesis, and aging Cyp2j4�/� rats show increased body weight and larger adipocytes. (A) The
genomic synteny between human CYP2J2 (reference) locus and the corresponding rat and mice loci. [ ] denote the interruption in the genomic distance scale; positions are in bp.
(B) Oil-red-o (ORO) staining in MSCs from WT and Cyp2j4�/� before (left panel, pre-adipocytes) and after (right panel, adipocytes) adipocyte differentiation with the addition of
adipogenic differentiation medium (DM). (C) ORO staining quantification as well as Fabp4 and Adipoq gene expression in MSC-derived pre-adipocytes and adipocytes. (D) Western
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Table 1 e Morphometric variables of WT and Cyp2j4�/� rats under a
standard (STD) or cafeteria (CAF) diet.

Morphometric
variables

WT (STD) Cyp2j4�/�

(STD)
WT (CAF) Cyp2j4�/�

(CAF)

Body weight (g) 341.3 � 19.7 326.4 � 7.1 398.7 � 3.7* 429.4 � 16.8*
WAT weight (g) 14.3 � 0.7 13.9 � 0.7 25.6 � 1.7* 37.7 � 1.86*,#

% Adiposity 4.2 � 0.1 4.3 � 0.2 6.4 � 0.4* 8.8 � 0.2*,#

% Body weight gain 111.4 � 12.2 114.5 � 8.1 128.1 � 5.5 176.4 � 14.2*,#

Values are means � SEM. *, P < 0.05, Comparison between diets (CAF vs STD). #,
P < 0.05, Comparison between strains (Cyp2j4�/� vs. WT).

Original Article
macrophages lead to extracellular matrix (ECM) remodeling, which
enables adipocyte hypertrophy [7]. However, in the case of chronic
over-nutrition, this state of homeostasis is perturbed and causes un-
resolved, low grade WAT inflammation and fibrosis. The fibrotic and
unrestrained WAT expansion, often promoted by pro-inflammatory
macrophage activity, can eventually progress into adipose tissue
dysfunction and ectopic lipid accumulation, in particular in the liver,
one of the major contributors of obesity-mediated type 2 diabetes [1].
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic
lipid accumulation, which could lead to inflammation and fibrosis in the
liver. The central role of adipose tissue in the development of NAFLD
was established in humans [8,9] and animal models of diet-induced
obesity [10]. Aging is also considered as a risk factor for insulin
resistance and adipose tissue plays a central role in longevity. Aging
and diet-induced obesity share pathways including WAT-mediated
lipotoxicity [11], which suggests that common genes orchestrate
WAT homeostasis and its regulatory role on NAFLD.
Oxylipins are endogenous, bioactive lipid mediators derived from
arachidonic acid (AA) and related polyunsaturated fatty acids. Pros-
taglandins and leukotrienes are eicosanoids generated by well-defined
enzymatic cascades initiated by cyclooxygenase and lipoxygenase
[12]. A third pathway involves cytochromes P450 (CYPs). In humans,
cytochrome P450 2J2 (CYP2J2), CYP2C8, and CYP2C9 are considered
to be largely responsible for metabolizing AA into four regioisomeric
epoxyeicosatrienoic acids (5,6-, 8,9-, 11,12-, and 14,15-EET) [13].
EETs are metabolized by soluble epoxide hydrolase (sEH) to the cor-
responding dihydroxyeicosatrienoic acids and sEH inhibition is a
commonly used pharmacological approach aimed to increase intra-
cellular EET pools. The previously reported biological effects of EETs
are remarkably pleiotropic, ranging from anti-inflammatory and car-
dioprotective actions [14e16] to a regulatory role in cancer [17], or-
gan/tissue regeneration [18], and embryonic haematopoiesis [19].
EETs are PPARg ligands [20] and activators of PPARa [21]. Given the
central role exerted by PPARg in regulating adipogenesis, the link
between epoxygenase-mediated EET production and obesity-
associated syndromes was explored in transgenic animal models
over-expressing human endothelial CYP2J2 or by inactivation of sEH
(either by pharmacological inhibition or its targeted gene deletion [22e
25]). These studies, which aimed to increase endogenous EET levels,
achieved amelioration of obesity-associated metabolic dysfunction (i.e.
dyslipidemia, prevention of hyperglycemia, improved insulin signaling
and sensitivity, reduced AT inflammation). However the exact mech-
anisms through which the main endogenous epoxygenase regulate
metabolic dysfunction remain poorly understood, mainly because of
the technical obstacle encountered in gene targeting approaches in
mice. The Cyp2j locus in mice contains eight potentially functional
genes as it underwent allelic expansion [26]. The synthenic rat Cyp2j
locus contains three genes and offers a relatively simplified genetic
architecture for studying epoxygenase-related mechanisms. Thus, we
have generated a rat deficient in Cyp2j4, the orthologue of human
CYP2J2 [27]. Cyp2j4 is the main rat macrophage epoxygenase, which
also shows wide-tissue expression including brain, left ventricle,
kidney, lung, and spleen [27]. Although Cyp2j3 (LOC100912642, cy-
tochrome P450 2J3-like) maps to rat chromosome 5 and was initially
reported as the rat orthologue of human CYP2J2 [28], both genes were
found to be expressed in major rat organs and share 79% homology.
blot analysis of PPARg (pre-adipocytes) and C/EBPa (adipocytes) in Cyp2j4�/� and WT ce
PPARg and C/EBPa in the adipose tissue from WT and Cyp2j4�/� rats. (F) Glucose, insuli
plasma (G) Body weight evolution in aging WT (n ¼ 4) and Cyp2j4�/� (n ¼ 6) rats under sta
(WAT) staining (left panel) and adipocyte area quantification in 15-month old WT and Cyp
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Here we took advantage of the reduced allelic expansion in the rat
Cyp2j locus and used two distinct models of metabolic dysfunction to
study epoxygenase-mediated adipogenesis in the wider context of
obesity and NAFLD. In addition to physiological aging, we used a
Western diet-induced obesity model, previously described as cafeteria
diet (CAF), which takes into account hedonic feeding (or voluntary
hyperphagia) [29]. We have previously shown strain-specific differ-
ences in CAF-induced metabolic dysfunction in the rat [30,31]. We
report that Cyp2j4 is essential for maintaining a healthy adipogenesis
status, which, under metabolic challenges (e.g. CAF, aging), causes
adipocyte dysfunction characterized by down-regulation of WAT
PPARg and C/EBPa and AA pathway shunt towards COX and LOX-
derived eicosanoids. This dysfunctional adipogenesis causes hepatic
lipid accumulation and Cyp2j4�/� treated with CAF show increased de
novo lipogenesis in the liver, dysregulated gluconeogenesis, and
increased hepatic and systemic triglyceride levels. These results
determine the role of Cyp2j4 in physiological (healthy) adipogenesis
and show how this ‘controlled’ phenomenon progresses into adipocyte
dysfunction and NAFLD under metabolic stresses such as CAF and
aging.

2. MATERIALS AND METHODS

2.1. Animals
Male wild type Wistar Kyoto (WKY) rats (Charles River, UK) and
Cyp2j4�/� rats, previously generated on a WKY genetic background
[27] were housed individually at 22 �C with a 12 h light/dark cycle with
access to water and a standard diet ad libitum. The animals were
maintained according to the ethical guidelines of Universitat Rovira i
Virgili (URV, Committee on Animal Investigations) or the UK Home
Office (United Kingdom Animals Scientific Procedures Act, 1986).

2.2. Cells and reagents
Mesenchymal stromal cells (MSCs) from 12-week old WT and
Cyp2j4�/� rats were obtained as previously described [32]. MSCs cells
were allowed to grow in Supplemented MesenCult� MSC Medium
(STEMCELL Technologies, UK) for 5 days on Petri dishes (Nunc,
ThermoFisher Scientific, UK). MSCs from WT and Cyp2j4�/� rats were
differentiated into mature adipocytes by incubation with an adipogenic
induction medium (StemPro�,Gibco, UK) for 14 days.
Antibodies used in western blot were: anti-PPAR-g (C26 H12, Cell
Signaling #2435, 1:1000), anti CEBP-a (Cell Signaling #2295, 1:1000),
anti-Phospho-Akt-Ser473 (D9E, Cell Signaling #4060, 1:2000), anti-
Phospho-Akt-Thr308 (244F9, Cell Signaling #4056, 1:1000), anti-
lls. Blots are representative of 2 independent experiments. (E) Western blot analysis of
n levels, and HOMA-IR index in 15-month old WT (n ¼ 4) and Cyp2j4�/� (n ¼ 6) rats’
ndard chow diet. (H) Representative Haematoxylin and Eosin (H&E) white adipose tissue
2j4�/� rats. Error bars are s.e.m. Scale bars; 250 mm (B); 100 mm (H).
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Figure 2: Cyp2j4�/� rats show relatively increased metabolic dysfunction under CAF. (A) Percentage of body weight gain in WT (n ¼ 5) Cyp2j4�/� (n ¼ 4) rats during 12 weeks of
CAF. (B) Glucose, insulin, HOMA-IR, TAG, and NEFA levels measured in WT and Cyp2j4�/� rats’ plasma upon standard (STD) or cafeteria diet (CAF). At least n ¼ 3 rats were used in
each group. (C) Representative H&E staining in epididymal (left panel) and subcutaneous fat (right panel) sections. The arrows indicate the thickness of the subcutaneous adipose
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Original Article
panAkt (C67E7, Cell Signaling #4691, 1:1000) and anti-b-Actin Anti-
body (C4, sc-47778, 1:10,000), anti-PPARa (H2, SC-398,394,
1:1000), anti-PPARb/d (F-10, SC-74517, 1:1000), anti-FXR (D-3,
SC-25309, 1:1000), anti-LXRa (ab2585, 1:1000), and anti-b-Actin
Antibody (C4, sc-47778, 1:10,000).

2.3. Cafeteria diet and aging
Eight-week-old WT and Cyp2j4�/� rats were randomly distributed into
the four different experimental groups to receive either a standard
laboratory chow (STD, A-04; Panlab) or a standard laboratory chow
together with cafeteria diet (CAF) consisting of 300 ml of sugary milk
(220 g/L), 25 g of bacon, 1 sausage, 1/4 carrot and 2 biscuits smeared
with paté. Both WT and Cyp2j4�/� rats were fed either with standard
diet (WT STD, Cyp2j4�/� STD) or CAF (WT CAF, Cyp2j4�/� CAF).
Animals were fed ad libitum with fresh food daily for 12 weeks. For the
aging protocol, WT and Cyp2j4�/� rats received a standard laboratory
chow during 15 months. At the end of both CAF and aging protocols,
plasma was collected from all animals and kept for biochemistry
analysis. A section of the liver and skin were kept in formalin for further
immunohistochemical studies. Retroperitoneal, mesenteric, epidid-
ymal, and subcutaneous white adipose tissues, were isolated,
weighed, and kept in formalin for immunohistochemistry. Sections
from the liver and adipose tissue were frozen in optical coherence
tomography (OCT) solution at �80 �C for Oil-Red-O staining and
immunofluorescence. To isolate the stromal vascular fraction (SVF)
from the adipose tissue following CAF, the tissue was first washed to
remove red blood cells, cut in small pieces and incubated for 45 min
with collagenase P (Worthington-Biochem, USA) in HBSS at 37 �C. The
digested adipose tissue was then passed through a sterile strainer
(70 mm porus diameter), washed three times in PBS, incubated with
red blood cell lysis solution. Following CAF, frozen liver and SVF
fractions were kept for quantitative proteomics by LC-MS/MS. The
morphometric and biochemical measurements, food intake, as well as
adipocyte size and volume quantification are detailed in Supplementary
methods A.

2.4. Western blotting
Protein lysates from liver and epididymal white adipose tissue (WAT)
were homogenized in RIPA buffer (SigmaeAldrich) supplemented with
1% protease inhibitor Cocktail (Thermo Fisher Scientific). Lysates were
centrifuged for 10 min, 10,000 g, at 4 �C and supernatants were used
for Western blot analysis. Total protein concentration was determined
by Bicinchoninic Acid Kit for Protein Determination (Thermo Fisher
Scientific). 20 mg of total cellular protein was diluted 1:1 with 2x
Laemmli buffer (Bio-Rad) and denatured at 95 �C for 5 min. MSC
protein lysates were directly homogenised in 2x Laemmli buffer (Bio-
Rad). Final protein lysates were resolved by SDS-PAGE 7% and
transferred to PVDF membranes in 20% methanol, 200 mM Gly,
25 mM Tris, pH 8.3. The membrane was blocked for 1 h at room
temperature and then incubated overnight at 4 �C with primary anti-
bodies. The blots were washed and exposed to horseradish peroxi-
dase-labeled secondary antibody (1:10,000) for 1 h at room
temperature. The blots were then washed and the immunocomplexes
visualized by the chemiluminescence detection system SuperSignal
West Pico PLUS Substrate (Thermo Fisher Scientific).
tissue layer and its larger magnification (�40) is shown at bottom left. (D) Adipocyte area di
grouped into ascending sizes of 250 mm2 (size range 250 mm2) in epididymal (left panel) an
adipocyte area is shown for all groups (epididymal AT, top left). Subcutaneous (SBC) ad
(subcutaneous AT, top right). (E) WAT cell density in WT and Cyp2j4�/� rats in STD diet a
100 mm (epididymal AT) and 500 mm (subcutaneous AT).
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2.5. Quantitative Reverse Transcription PCR
Total RNA from liver, adipose tissue, and MSCs was extracted using
Trizol (Ambion) according to the manufacturer’s instructions. Com-
plementary DNA (cDNA) was obtained from 1 mg of mRNA using the
Bio-Rad iScript kit (Bio-Rad, UK) according to the manufacturer’s in-
structions. Quantitative Reverse Transcription PCR (qRT-PCR) reactions
were performed using the Viaa 7 Real-Time PCR system (Life tech-
nologies). A total of 10 ng of cDNA per sample was used for PCR using
Brilliant II SYBR Green QPCR Master Mix (Agilent). Viia 7 RUO Software
was used for the determination of Ct values. Results were analyzed
using the comparative Ct method and each sample was normalized to
the reference gene (Hprt or Ppia) to account for any cDNA loading
differences. The forward and reverse primer sequences used are
provided in Supplementary methods A.

2.6. Immunohistochemistry and immunofluorescence
For rat ED-1 (CD68) immunostaining, 3 mm thick paraffin adipose
tissue sections were prepared using a Microm HM 440E (Thermo
Fisher Scientific, Waltham, MA, USA) and blocked with 3% bovine
serum albumin (BSA; SigmaeAldrich) for 1 h at room temperature. The
sections were then incubated with primary antibodies against ED-1
(Bio-Rad AbD Serotec, UK) in phosphate-buffered saline (PBS) and
supplemented with 3% BSA overnight at 4 �C. The sections were
washed in PBS, followed by the incubation with horseradish peroxi-
dase-labeled secondary antibody (1:10,000) for 1 h at room temper-
ature (DAKO EnVision�þ System; Agilent Technologies (UK)).
Diaminobenzidine (DAB) chromogen was then added, and the slides
were visualized using an Olympus BX40 microscope (Olympus, UK)
equipped with a digital camera Retiga 2000R CCD (QImaging, Canada).
Pictures were further analyzed using ImageJ software. For immuno-
fluorescence, adipose tissue and liver samples were fixed in 10%
formalin overnight, processed and embedded in paraffin blocks. 5 mm
thick sections were placed onto microscope slides, dewaxed and
rehydrated. Antigen retrieval with sodium citrate buffer (pH 6) was
carried out prior to blocking. Slides were then incubated overnight with
Goat Anti-Type I Collagen (1310-01) or Goat Anti-Type VI Collagen
(1360-01) from Southern Biotech (Birmingham, USA). After washing,
slides were incubated 1 h with Donkey Anti-Goat Alexa Fluor 488
(ab150129, Abcam, Cambridge, UK). Slides were mounted using
VECTASHIELD medium. Images were taken using epi-fluorescent Leica
DM4B microscope and the raw fluorescence intensity was acquired
using the ImageJ software.

2.7. Lipid oil-red-O staining and TAG quantification
Frozen rat liver tissues and formalin (10%) fixed MSCs were used for
Oil Red O staining (0.5% Oil Red O dye in isopropanol; Sigma) and H&E
and photographed by light microscopy (Olympus BX40 microscope).
For the MSCs, the ratio of oil red o þ red area to total area in each
microscopic field was calculated by the ImageJ software.
For TAG quantification, liver tissue samples were homogenized in 5%
NP-40 in ddH2O. Samples were progressively heated to reach 100 �C
and left to cool down. After repeating this process, samples were
centrifuged to remove insoluble material. Total TAG content was
quantified using Infinity Triglycerides Liquid Stable Reagent (Sigma)
following the manufacturer's instructions.
stributions in WT CAF (open bars) and Cyp2j4�/� CAF (black bars) where adipocytes are
d subcutaneous fat (right panel). For clarity, 9 group sizes are shown in the x-axis. Mean
ipocyte layer and mean adipocyte layer are shown for WT (CAF) and Cyp2j4�/� rats
nd CAF. At least n ¼ 3 rats were used in each group. ns, non-significant. Scale bars,
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Figure 3: Macrophage infiltration and early fibrosis in Cyp2j4�/� rats WAT upon CAF. (A) CD68 (rat ED-1; CLS denotes Crown-like structures) staining in WT (CAF) and Cyp2j4�/�

(CAF) and qRT-PCR for Cd68 and Adipoq (B) in STD or CAF-trated WT and Cyp2j4�/� rats. (C) WAT hydroxyproline levels in STD or CAF-treated WT and Cyp2j4�/� rats. (D)
Representative immunofluorescence images for type I (left panel) and type VI (right panel) collagens and their quantification (bottom). (E) LC-MS/MS quantification of FUCA1 and
IGF2R, two HIFa targets (TF-binding enrichment) in the stromal vascular fraction of WT and Cyp2j4�/� rats under CAF. Error bars are s.e.m. At least n ¼ 3 rats were used in each
group. ns, non-significant. Scale bars, 100 mm (A) and 50 mm (D).
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2.8. Quantitative proteomics by LC-MS/MS
Liver, AT stromal vascular fraction (SVF), and BMDM lysates containing
a total protein amount of 200 mg in 8 M urea and 20 mM HEPES buffer
(pH 8.0) were reduced and alkylated sequentially with 10 mM
Dithiothreitol and 50 mM Iodoacetamide, respectively. Trypsin Gold
(Promega, V5280) was added into the diluted samples (2 M Urea) to
reach a final protease to protein ratio of 1:50. Samples were incubated
overnight at 37 �C, acidified with trifluoroacetic acid (TFA) and de-
salted using solid phase extraction (Waters OASIS HLB 10 mg car-
tridges) according to the manufacturer’s instructions. Eluents were
vacuum centrifuged to dryness.
Samples were re-dissolved in 0.1% TFA (200 ml/sample) by shaking
(1200 rpm) for 30 min and sonicated in an ultrasonic water bath for
10 min, followed by centrifugation (14,000 rpm, 4 �C) for 10 min. LC-
MS/MS analysis was carried out in technical duplicates. Peptides
were first separated using an Ultimate 3000 RSLC nano liquid
chromatography system (Thermo Scientific) coupled to a Q-Exactive
mass spectrometer (Thermo Scientific) via an EASY-Spray source.
For LC-MS/MS analysis, sample volumes containing 1.0 mg of total
tryptic digest were injected and loaded onto a trap column (Acclaim
PepMap 100 C18, 100 mm � 2 cm) for desalting and concentration
at 8 mL/min in 2% acetonitrile, 0.1% TFA. Peptides were then eluted
on-line to an analytical column (Acclaim Pepmap RSLC C18,
75 mm � 25 cm). Peptides were separated using a linear 120 min
gradient, 4e45% of buffer B (composition of buffer B e 80%
acetonitrile, 0.1% formic acid), and eluted peptides were analyzed by
the Q-Exactive operating in positive polarity using a data-dependent
acquisition mode. Ions for fragmentation were determined from an
initial MS1 survey scan at 70,000 resolution (at m/z 200), followed by
higher-energy collisional dissociation of the top 12 most abundant
ions at a resolution of 17,500. MS1 and MS2 scan AGC targets were
set to 3e6 and 5e4 for a maximum injection times of 50 ms and
100 ms respectively. A survey scan m/z range of 400e1600 m/z was
used, with a normalised collision energy set to 28%, underfill ratio e
2%, charge state exclusion enabled for unassigned, þ1, þ6e8 and
>þ8 ions.
Data were processed using the MaxQuant software platform (v1.5.6.0),
with database searches carried out by the in-built Andromeda search
engine against the Uniprot rattus norvegicus _20,170,214 database
(Downloaded e 2nd February 2017version 20,170,214, number of
entries: 35,839). A reverse decoy database approach was used at a 1
& 5% false discovery rate (FDR) for peptide spectrum matches and
protein identification. Search parameters included: maximum missed
cleavages set to 2, fixed modification of cysteine carbamidomethyla-
tion and variable modifications of methionine oxidation, protein N-
terminal acetylation, Asparagine deamidation, and cyclization of N-
terminal glutamine to pyroglutamate. Label-free quantification was
enabled with an LFQ minimum ratio count of 2. ‘Match between runs’
function was used with match and alignment time limits of 2 and
20 min respectively. The LC-MS/MS differential protein analysis is in
Supplementary methods A.

2.9. Lipidomics by LC-MS
Frozen WAT (50 mg) was homogenized in 400 ml ice-cold methanol
with 0.1% acetic acid and internal standard for 10 min, centrifuged at
10,000 rpm, 10 min at 4 �C, and the pellets were re-extracted with
100 ml of ice-cold methanol containing 0.1% of acetic acid. The su-
pernatants were spiked with internal standard [3 ng PGE2-d4, 11,12-
EET-d11 and 11,12-DHET-d11, (Cayman Chemical, Detroit, MI),
combined with 2 ml of water and shaken. Following serial passage
through HyperSep Retain SPE columns (Thermo Scientific, Bellefonte,
24 MOLECULAR METABOLISM 11 (2018) 18e32 � 2018 The Authors. Published by Else
PA), the columns were washed and then eluted with 0.5 ml of
methanol and 1 ml of ethyl acetate into glass tubes containing 10 ml of
glycerol (30%) in methanol. The eluates were dried under vacuum
centrifugation and reconstituted in 50 ml of ethanol (30%).
Eicosanoid extraction was performed as previously described [33].
Briefly, online LC of extracted samples was performed with an Agilent
1200 series capillary HPLC (Agilent Technologies, Santa Clara, CA).
Separations were achieved using a Halo C18 column (2.7 um,
100 � 2.1 mm; MAC-MOD Analytical, Chadds Ford, PA). Electrospray
ionization MS/MS was performed on an MDS Sciex API 3000 equipped
with a TurboIonSpray source (Applied Biosystems, Foster City, CA). The
relative response ratios was calculated based on a curve of known
standards (Cayman Chemical) with correction for recovery of internal
standards using Analyst 1.5.1 software (Applied Biosystems). Eicos-
anoid concentrations were normalized to tissue weight. Adipose tissue
eicosanoid levels in WAT were represented in a heatmap (see
Supplementary Figure A. 5B), where rows (z-scores) were clustered by
using correlation distance measure from Heatmap function in XLStat
19.5 (Addinsoft) software. Non-specific filtering was used to remove
the features with low variability (interquartile range < 0.25) prior to
analyses.

2.10. Statistical analysis
Results are expressed as the mean � SEM and were analyzed using
GraphPad Prism 6.0 software (GraphPad, USA). All statistical analyses
were performed with Student’s t-test or ANOVA. Statistical analysis of
LC-MS/MS data is detailed in Supplementary methods A.

2.11. Data availability
The rat macrophage RNA-seq data is available at the National Center
for Biotechnology Information’s Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE65715.
The LC-MS/MS Maxquant as well as lipidomics (LC-MS) data are
available upon request.

3. RESULTS

3.1. Cyp2j4 deletion causes enhanced adipogenesis and weight
gain during aging
The CYP2J locus containing CYP2J2 in humans and its synteny with
mice and rats shows a reduced allelic expansion in the rat, suggesting
that the rat (Figure 1A) is a more appropriate model to study the role of
P450 epoxygenases in adipogenesis and metabolic syndrome.
Mesenchymal stromal cells (MSCs) have been largely described for
their multipotent capacity to differentiate into osteoblasts, chon-
drocytes, and adipocytes in vitro and in vivo [34]. Here we cultured
primary bone marrow derived MSCs from WT and Cyp2j4�/� rats and
observed spontaneous adipogenesis (i.e. without the addition of the
adipogenic differentiation media) in Cyp2j4�/� MSCs, showing
26.78% oil-red-o positivity and significantly higher Fabp4 and Adipoq
expression (Figure 1BeC). The addition of adipocyte differentiation
media stimulated adipogenesis on a relatively faster rate in Cyp2j4�/�

MSCs (Figure 1BeC). In non-differentiated MSCs (designated as pre-
adipocytes), the Cyp2j4 deletion is associated with increased PPARg
levels (Figure 1D). Because C/EBPa is induced at later stages and is
active in mature adipocytes [6,35], we tested whether C/EBPa levels
were under the control of Cyp2j4 and found up-regulation of C/EBPa
protein levels in the absence of Cyp2j4 (Figure 1D). In addition to the
modulation of adipogenesis, recent studies identified PPARg as an
important regulator of extracellular matrix homeostasis [36]. In line
with the overall reduced extracellular matrix (ECM) remodeling during
vier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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adipogenesis [37,38], we found that in pre-adipocytes and differenti-
ated adipocytes, Cyp2j4 deletion resulted in a significant reduction in
type I, III, and VI collagen expression levels, suggesting its regulatory
role on collagens involved in WAT expansion (Supplementary
Figure A.1). Based on the in vitro results showing the regulatory role
of Cyp2j4 in adipogenesis, we hypothesized a wider in vivo metabolic
effect of this epoxygenase. Accordingly, PPARg and C/EBPa were
found to be up-regulated in Cyp2j4�/� WAT (Figure 1E). Furthermore,
15-month-old Cyp2j4�/� rats showed an altered systemic glycemic
profile (Figure 1F) and, when body weight was monitored monthly in
aging rats on a standard chow diet, we observed a significant weight
gain (Figure 1G) and significantly increased adipocyte hypertrophy in
Cyp2j4�/� rats when compared with the WT controls (Figure 1H).

3.2. Epoxygenase-mediated metabolic dysfunction and adipocyte
hypertrophy upon CAF
The spontaneous adipogenesis in Cyp2j4�/� MSCs led us hypothesize
that the deletion of Cyp2j4 could cause metabolic dysfunction upon
treatment with CAF. To test this, WT and Cyp2j4�/� rats were sub-
jected to either a standard (STD) or CAF, and body, WAT weights, as
well as the percentage of adiposity were measured. The energy intake
was not found to be different between the WT and Cyp2j4�/� animals
under the CAF (Supplementary Figure A.2). As expected, animals that
received a CAF had increased body weight, WAT weight, and per-
centage of adiposity when compared with those treated with a STD diet
(Table 1). Cyp2j4�/� (CAF) rats showed higher percentage of body
weight increase, adiposity, and WAT weight than the WT (CAF) controls
(Table 1). Throughout the 12-weeks of CAF treatment, Cyp2j4�/� rats
showed a significantly higher percentage of weight increase, from the
first week onwards, reaching the strongest difference with WT animals
at week 12 (Figure 2A).
In addition to morphometric variables, we examined parameters related
to the metabolic state of the animals after the CAF. For this purpose, the
glycemic profile (glucose, insulin, and HOMA-IR index) and lipid levels
(triacylglyceride or TAGs; non-esterified fatty acids or NEFAs) were
measured in all groups (Figure 2B). Cyp2j4�/� and WT rats under a STD
diet showed significant differences only in insulin and HOMA-IR.
Cyp2j4�/� rats showed relatively higher glucose and insulin levels,
resulting in a higher HOMA-IR index under CAF (Figure 2B). In addition,
TAG and NEFA levels were significantly increased in Cyp2j4�/� (CAF)
when compared to WT (CAF) (Figure 2B).
We then compared the adipocyte area in WAT and subcutaneous
adipose tissue (SAT) and found greater numbers of larger and irreg-
ularly shaped adipocytes and SAT thickening in Cyp2j4�/� (CAF) rats
(Figure 2C,D). A lower cell density was observed in Cyp2j4�/� (CAF)
rats when compared with WT (CAF) rats (Figure 2E) confirming
adipocyte hypertrophy in these animals.

3.3. Macrophage infiltration and early fibrosis in Cyp2j4�/� rats’
WAT upon CAF
During adipose tissue expansion, early fibrosis can lead to the infil-
tration of macrophages, resulting in a chronic inflammatory response
[39]. We found relatively increased CD68 positive macrophages
organised in Crown-like structures (CLS), and increased Cd68 mRNA
levels in Cyp2j4�/� WAT (Figure 3A). Adiponectin mRNA levels were
significantly reduced in Cyp2j4�/� (CAF), suggesting a dysfunctional
WAT (Figure 3B). To assess ECM remodeling, we first measured the
total hydroxyproline content in WAT. We found relatively decreased
hydroxyproline levels in Cyp2j4�/� rats under STD diet (Figure 3C),
which is in line with the previously observed down-regulation of col-
lagens in MSc-derived adipocytes (Supplementary Figure A.1).
MOLECULAR METABOLISM 11 (2018) 18e32 � 2018 The Authors. Published by Elsevier GmbH. This is an o
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Importantly, under CAF, there were significantly higher hydroxyproline
levels in Cyp2j4�/� rat when compared with WT (Figure 3C). Because
the major collagen components in WAT are type I and type VI collagens
[37], we next measured these specific collagen types and found
significantly higher levels of type I and VI collagens in Cyp2j4�/� rats
under CAF (Figure 3D). Since adipose tissue hypoxia has been tightly
linked to inflammation and fibrosis in metabolic syndrome [38,40], we
next examined hypoxia markers in the stromal vascular fraction (SVF)
by quantitative proteomics using liquid chromatography-tandem mass
spectrometry (LC-MS/MS). The results showed an enrichment of
hypoxia inducible factor 1 a (HIF-1 a) binding sites (1% FDR,
P ¼ 0.0112), through translational activation of alpha-L-fucosidase
(FUCA1) and insulin-like growth factor II receptor (IGF2R), in Cyp2j4�/�

(CAF) SVF (Figure 3D). Taken together, the results indicate that
Cyp2j4�/� rats show a down-regulation of ECM remodeling under STD
diet. However, upon CAF, macrophage infiltration in the WAT and
elevated levels of type I and VI collagens together with markers of
hypoxia, suggest an early stage phase fibrosis in Cyp2j4�/� rats.

3.4. Increased de novo lipogenesis and gluconeogenesis in
Cyp2j4�/� livers upon CAF
An impaired lipid storage capacity and ECM remodeling of white adi-
pose tissue is related to ectopic fat accumulation, triggering hepatic
steatosis. As expected, CAF induced hepatic lipid accumulation in WT
and Cyp2j4�/� rats as well as increased hepatic TNFa levels
(Figure 4A and Supplementary Figure A.3). Consistent with the pre-
viously observed early fibrosis in Cyp2j4�/� (CAF) WAT, the knockout
animals also showed relatively increased hepatic TAGs (Figure 4A).
Interestingly, aged Cyp2j4�/� rats showed similarly increased hepatic
TAG levels (Figure 4B), suggesting that hepatic lipid accumulation is a
common feature following CAF and aging when Cyp2j4 is deleted. In
CAF, livers from Cyp2j4�/� rats showed relatively increased C/EBPa
protein levels (Figure 4C) and fatty acid synthase (Fasn) mRNA levels
(Figure 4D). To gain insights into metabolic dynamics underlying fatty
liver disease in the absence of Cyp2j4, we conducted quantitative
proteomics analysis by LC-MS/MS in WT (CAF) Cyp2j4�/� (CAF) and in
Cyp2j4�/� (STD) rat livers. This analysis identified 1,436 proteins
confidently quantified after filtering (1% false discovery rate (FDR), see
also Supplementary Methods A). Differential peptide analysis in the
liver showed 150 up-regulated and 164 down regulated proteins be-
tween Cyp2j4�/� (STD) and Cyp2j4�/� (CAF) (Supplementary Table A).
Among the up-regulated proteins, the glycolysis/gluconeogenesis,
pentose phosphate and HIF signaling pathways showed a significant
enrichment (FDR < 0.01) while lipid oxidation, mitochondrion orga-
nization and propanoate metabolism were significantly represented
pathways among the down-regulated proteins (FDR < 0.05;
Figure 4E). When Cyp2j4�/� (CAF) and WT (CAF) comparison was
considered, the proteins belonging to the glycolysis/gluconeogenesis
pathway showed an overall up-regulation in the Cyp2j4�/� (CAF) livers
(Figure 4F), suggesting a dysregulated hepatic glycolysis/gluconeo-
genesis. In order to link these results to the corresponding cell
signaling pathway, insulin sensitivity in the liver was assessed in
Cyp2j4�/� (CAF) by comparing phosphorylated levels of Akt with the
ones in WT (CAF) (Figure 4G).These results indicate a selective hepatic
insulin resistance scenario [41] in Cyp2j4�/� animals whereby
gluconeogenesis is not suppressed while lipogenesis remains active.
To find out whether the exacerbated hepatic lipid accumulation is
associated with hepatic inflammation and/or fibrosis, we have
measured total hydroxyproline, type I collagen, and TNFa protein levels
but found no differences between Cyp2j4�/� (CAF) and WT (CAF)
conditions (Supplementary Figure A.3). Liver LC-MS/MS analysis of
pen access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 25

http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


F
E

C/EBPα

kDa
42

30

38 actin

B

WT  (STD) WT  (CAF)

WT (15 months) Cyp2j4-/- (15 months)

P = 0.030

WT Cyp2j4-/-

2

4

6

8

C
A

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

5

10

15

20 P = 0.008

ns

Cyp2j4-/-WT Cyp2j4-/-WT
STD CAF

TA
G

 (μ
g 

/ m
g 

of
 ti

ss
ue

)
TA

G
 (μ

g 
/ m

g 
of

 ti
ss

ue
)

0

1

2

3

P = 0.008

Cyp2j4-/-WT Cyp2j4-/-WT
STD CAF

Fa
sn

ex
pr

es
si

on

Pgm1
Fbp1
Aldob
Ldha
Gapdh
Gpi
Pklr
Eno1
Dlat

9.70

9.75

9.80

9.85

9.90
Fbp1

P = 0.0444

WT (CAF) Cyp2j4-/-

(CAF)

10.32

10.36

10.40

Aldob
P = 0.0251

10.00

10.05

10.10

10.15

Ldha

P = 0.0452

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

WT (CAF) Cyp2j4-/-

(CAF)
WT (CAF) Cyp2j4-/-

(CAF)

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

9.90
9.93
9.96
9.99

10.02
10.05
10.08
10.11

Gapdh
P = 0.1051

9.20

9.25

9.30

9.35

9.40

Gpi

P = 0.1571

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

LC
- M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

WT (CAF) Cyp2j4-/-

(CAF)
WT (CAF) Cyp2j4-/-

(CAF)

9.60

9.64

9.68

9.72

9.76

9.80

9.84

Pklr

P = 0.0547

9.86

9.88

9.90

9.92

9.94

9.96

9.98

Eno1
P = 0.0439

8.40

8.44

8.48

8.52

8.56

8.60

Dlat

P = 0.061

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

WT (CAF) Cyp2j4-/-

(CAF)
WT (CAF) Cyp2j4-/-

(CAF)
WT (CAF) Cyp2j4-/-

(CAF)

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

LC
-M

S
/M

S
 (L

og
10

 In
te

ns
ity

)

D

pAkt Ser473

Akt

Actin

pAkt Thr308

G

Cyp2j4-/- (CAF)Cyp2j4-/- (STD)

Figure 4: De novo lipogenesis and increased gluconeogenesis in Cyp2j4�/� livers under CAF. (A) ORO staining and triglyceride (TAG) quantification in STD and CAF-treated WT and
Cyp2j4�/� rats’ livers. (B) ORO staining (left) and TAG quantification in 15-month old WT and Cyp2j4�/� livers. (C) C/EBPa Western blot analysis in STD and CAF-treated WT and

Original Article

26 MOLECULAR METABOLISM 11 (2018) 18e32 � 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


inflammatory markers (Crp, Eif2ak2, Ikbkg) did not show any signifi-
cant protein level differences (Supplementary Figure A.3), suggesting
that enhanced lipid accumulation did not translate into an increased
inflammatory or fibrotic state in Cyp2j4�/� rats following 12 weeks
of CAF.

3.5. Cyp2j4 deletion causes WAT dysfunction and a shunt in AA
pathway following aging and CAF
Increased macrophage infiltration, early fibrosis, and presence of
markers of hypoxia, when coupled with adipocyte hypertrophy reflect
adipocyte dysfunction [42]. To examine whether Cyp2j4�/� WAT
present characteristics of altered adipogenesis, we evaluated PPARg
and C/EBPa protein levels (Figure 5A) as well as PPARa, PPARb/d,
LXRa, and FXR (Supplementary Figure A.4). Notably, CAF and aging
caused down-regulation of PPARg and C/EBPa protein levels in
Cyp2j4�/� rats (Figure 5A), suggesting dysfunctional adipogenesis in
WAT, leading to ectopic lipid accumulation in both conditions
(Figure 4A,B). When epoxygenase-derived EETs were measured in
WAT from Cyp2j4�/� and WT rats under a STD diet, LC-MS analysis
showed a reduction in all four EET regioisomers (5,6-, 8,9-, 11,12-,
and 14,15-EET) as well as a drastic reduction in Cyp2j4 mRNA levels
(Supplementary Figure A.5A). CAF induced a further down-regulation
of Cyp2j4 mRNA and EET levels (Supplementary Figure A.5A).
We next examined the AA-derived eicosanoids other than P450
epoxygenase-derived EETs. LC-MS analysis of hydroxyeicosatetraenoic
acids (11- and 12-HETE), hydroxyoctadecadienoic (9- and 13-HODE),
Cyp450 linoleic acid (LA) and docosahexaenoic acid (DHA)-derived ei-
cosanoids (9,10- and 12,13-EpOME; 9,10- and 12,13-DHOME, 19,20
EpDPE, 19,20 DiHDPA, 17,18Ep-ETE), COX pathway-derived prosta-
glandins (6ketoPGF1a, PGE2, PGD2 and PGF2), DHETs, TXB2 and LTB4
showed a general down-regulation of these eicosanoids following CAF
(Supplementary Figure A.5B). Importantly, 12 AA and LA-derived me-
tabolites showed a general up-regulation either in aged or in CAF-
treated Cyp2j4�/� rats (Supplementary Figure A.6A). Figure 5B sum-
marizes all quantified WAT eicosanoids showing an up-regulation in
either aging or CAF conditions when Cyp2j4 is deleted. This indicates
alternative usage of WAT AA and LA-derived eicosanoids following CAF
or aging in Cyp2j4�/� rats. Specifically, LA-derived eicosanoids
(DHOMEs and EpOMEs) were more significantly up-regulated in aging
whereas the prostaglandins were more significantly up-regulated under
CAF (Supplementary Figure A.6A).
Taking into account (i) the preferential up-regulation of prostaglandins
in Cyp2j4�/� (CAF) WAT (Supplementary Figure A.6A), (ii) the previ-
ously described pro-inflammatory properties of prostaglandins [43],
and (iii) the increased macrophage infiltration and fibrosis found in
Cyp2j4�/� (CAF) WAT, we integrated the WAT eicosanoid LC-MS
dataset with quantitative proteomics in SVF as well as RNA-seq ob-
tained from WT and Cyp2j4�/� basal (unstimulated) bone marrow-
derived macrophages (Figure 5C). By doing so, we investigated
whether any enzyme in the COX pathway shows differences at mRNA
and/or protein level in SVF and/or macrophage fractions. When we
screened for all the potential enzymes in the AA and LA pathways, we
found that Ptgs2 is the only COX pathway enzyme in macrophages
Cyp2j4�/� rats’ livers. Blots are representative of 2 independent experiments. (D) qRT-PCR
heatmap displaying the proteins with significant differential protein abundance between C
regulated proteins respectively, false discovery rate (FDR) < 0.05). In the heatmap, z-s
pathways in these two protein sets are shown together with proteins contributing to these
quantification profiles between WT (CAF) and Cyp2j4�/� (CAF) for Pgm1, Fbp1, Aldob, Ldha
Western blot in CAF-treated WT (n ¼ 3) and Cyp2j4�/�(n ¼ 3) rats’ livers. Numbers denote
ns, non-significant. Scale bars, 100 mm.
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which showed a significant up-regulation in its mRNA reads upon
deletion of Cyp2j4 (Supplementary Figure A.6B). We further confirmed
up-regulation of enzymes involved in the COX pathway both in mac-
rophages and SVF following CAF at the protein level. Ptges3 and Cbr1
were found to be significantly up-regulated in Cyp2j4�/�macrophages
(Figure 5D) whereas Cyp2j4�/� SVF showed a trend for up-regulation
of Ptgis after CAF (Figure 5E). Thus, up-regulation of COX pathway
enzymes in macrophages could partly explain the increased prosta-
glandin metabolites in the CAF WAT (Figure 5F). Altogether, these
results show that upon CAF, the ‘uncontrolled’ adipogenesis causes an
early fibrosis, PPARg/C/EBPa down-regulation, and an increase in
WAT prostaglandins, which are likely to derive from infiltrating mac-
rophages. This dysfunctional adipose tissue is characterized by NAFLD
(Figure 5G).

4. DISCUSSION

A critical step during the progression from the lean to obese state is the
rapid expansion of adipose tissue, which is accompanied by the
remodeling of the extracellular network to accommodate the dynamic
changes occurring in WAT. Here we report that the rat epoxygenase
Cyp2j4 is critical in adipogenesis and subsequent ECM remodeling. We
found that deletion of Cyp2j4 resulted in spontaneous adipogenesis in
MSCs with up-regulation of PPARg and C/EBPa, two transcription
factors that cooperate to allow a wide regulation of adipocyte meta-
bolism [5,44e46]. In homeostatic conditions (under STD chow diet),
Cyp2j4�/� rats also showed relatively increased levels of PPARg and
C/EBPa in their WAT. This genetically determined, enhanced adipo-
genesis was associated with a decreased type1 collagen and hy-
droxyproline levels, and in line with the latter, Cyp2j4�/� MSCs-
derived pre-adipocytes and adipocytes showed a relatively
decreased mRNA levels of adipose tissue-related collagens. The in-
verse correlation between adipocyte expansion and ECM reduction was
previously reported [47], and it is now emerging that a looser (or
relaxed) ECM may allow for enhanced adipocyte growth and reduced
mechanical stress as it was shown for type VI collagen in mice [37,48].
Interestingly, deletion of Cyp2j4 resulted in a similar PPARg up-
regulation in bone marrow-derived macrophages but this caused a
general up-regulation of ECM-related genes [27], suggesting that up-
regulation of PPARg can have opposite transcriptional effects due to a
cell specific epigenetic signatures [49]. It was indeed shown that
macrophage-specific PPARg binding sites are associated with gene
silencing in adipocytes [49].
We found that the homeostatic state of accelerated but healthy adi-
pogenesis shifts towards adipocyte dysfunction and increased ectopic
lipid accumulation when Cyp2j4�/� rats are fed with CAF or left aging
on a normal chow diet. In these rats, CAF caused a more pronounced
metabolic syndrome with higher degree of obesity and dyslipidemia.
The WAT from Cyp2j4�/� rats showed features of early fibrosis
characterized by significantly higher levels of type I and VI collagens
and total hydroxyproline levels. Defining adipose tissue fibrosis re-
quires cautious interpretation as one should take into account de novo,
pericellular (collagen fibers adjacent to individual adipocytes) ECM
analysis of Fasn in STD and CAF-treated WT and Cyp2j4�/� rats’ livers. (E) LC-MS/MS
yp2j4�/� (CAF) when compared with Cyp2j4�/� (STD) (150 and 164 up- and down-
cores of the log-transformed intensities are displayed. Relevant functionally enriched
enrichments (red and blue bars). (F) LC-MS/MS heatmap (zoomed from E) and protein
, Gapdh, Gpi, Pklr, Eno1, and Dlat. (G) Phospho-AKT (Ser473 and Thr308) and total Akt
biological replicates. Error bars are s.e.m. At least n ¼ 3 rats were used in each group.
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deposition, or a defect in degrading existing collagen fibers during
adipose tissue expansion [48]. Nevertheless, when combined with
increased macrophage infiltration organised in CLS, which often as-
sociates with pericellular fibrosis, our results indicate an early stage
fibrosis (i.e. mechanical stress resulting from adipocyte hypertrophy)
occurring in Cyp2j4�/� rats following CAF. Subsequently, increased
adipocyte death rate and CLS formation as a result of maximal
adipocyte expansion is likely to progress into insulin resistance and
liver damage [50], a hallmark of Cyp2j4�/� rats fed with CAF.
Our study establishes adipocyte dysfunction in Cyp2j4�/� rats after
CAF with hypertrophic adipocytes, down-regulation of PPARg and C/
EBPa, and decreased mRNA levels of adiponectin. Hypertrophic adi-
pocytes become dysfunctional and less efficient as metabolic buffers
[51]. We observed that adipocytes from Cyp2j4�/� rats showed an
irregular polygonal shape, characteristic of stressed cells [52,53].
PPARg down-regulation and reduced genomic occupancy was previ-
ously observed in models of obesity and diabetes [54e57]. Specif-
ically, the PPARg-2 isoform prevents lipotoxicity [58] and rare and
severely deleterious dominant-negative mutations PPARg cause pro-
nounced insulin resistance [59]. Here we present that two distinct
metabolic stresses with different degrees of intensity (aging and CAF)
cause a down-regulation of WAT PPARg and C/EBPa in Cyp2j4�/�

rats, which coincides with hepatic lipid accumulation. When consid-
ered within a wider clinical context [60], our results suggest that a
better fat storage capacity of adipose tissue depending on optimal
levels of PPARg and C/EBPa is essential for reducing the risk of he-
patic steatosis.
The exact mechanisms linking Cyp2j4 deficiency and increased PPARg
levels remain to be elucidated, though prostaglandins could be
possible intermediate lipid mediators. In WAT, prostaglandins were
down regulated in Cyp2j4�/� rats compared with WT under STD, and
this trend was reversed under CAF. Intriguingly, this pattern inversely
correlated with WAT PPARg and C/EBPa, while there was a positive
correlation with hydroxyproline and type I collagen levels, in agreement
with the previously proposed role of PGF (2alpha) signaling in pul-
monary fibrosis [61]. These findings support the idea that decreased
PPARg and C/EBPa are related to higher fibrosis and prostaglandin
levels in WAT. Given the previously established modulation of PPARg
transcriptional activity by prostaglandins [62], and their well-known
involvement in adipogenesis [63,64], these eicosanoids could be up-
stream of PPARg as a result of a crosstalk between the COX and P450
pathways [65,66]. We found that Cyp2j4 deletion in basal (unstimu-
lated) macrophages resulted in Ptgs2 over-expression and in a general
up-regulation of prostaglandin producing enzymes in these cells
(Ptges3 and Cbr1) and the stromal vascular fraction of the WAT after
CAF (Ptgis). These up-regulated COX pathway enzymes in macro-
phages could be the result of their respective transcriptional activation
due to reduced EETs in macrophages as it was previously proposed
[66]. The increased prostaglandin levels in the WAT of Cyp2j4�/� rats
treated with CAF is concomitant with an increased macrophage infil-
tration. Hence it is likely to be a reflection of macrophage numbers
infiltrating WAT yet the basal macrophage COX up-regulation in the
Figure 5: Cyp2j4 deletion causes WAT dysfunction and a shunt in the AA pathway. (A) PPA
(4-month vs.15-month old) conditions. (B) Schematic representation of AA and LA-derived
derived EET production. All eicosanoids in green are up-regulated either in aging or CAF
Figure A.6A. (C) Schematic illustration of the quantitative lipidomics, proteomics, and RNA-
responsible for the generation of the eicosanoids detected in (B) were investigated in SVF
Ptges3 and Cbr1 protein levels in WT and Cyp2j4�/� BMDMs by LC-MS/MS (n ¼ 3 rats
Schematic illustration of the AA COX pathway showing the enzymes that catalyze the s
meostasis under aging and CAF in WT Cyp2j4�/� rats. Error bars are s.e.m.
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absence of Cyp2j4 suggests that macrophage function is also a
contributing factor to WAT prostaglandin levels. Determining this
crosstalk between the COX and P450 branches of the AA pathway
during adipogenesis require further studies as deleting Cyp2j4 in
macrophages or adipocytes could have different consequences.
Furthermore the Cyp2j metabolizing rates have been previously found
to be different in male and female rodent hearts [67], suggesting that
the AA pathway crosstalk need to be considered in the wider hormonal
context. Taken together, our results suggest that a macrophage-
derived prostaglandin up-regulation may contribute to WAT dysfunc-
tion in Cyp2j4�/� rats. Although prostaglandins offer a potential
mechanistic link, we cannot exclude an EET-mediated effect on PPARg
transcriptional activity.
EETs have been previously shown to decrease adipogenesis in 3T3-L1
cells [68], and CYP2J2 and EET levels were found to be decreased in
human MSC-derived adipocytes when compared with MSCs [69]. Here
we show that Cyp2j4 deletion resulted in w50% reduction in all WAT
EET regioisomers, suggesting its predominant role in the generation of
these eicosanoids. CAF resulted in a drastic reduction in Cyp2j4
together with EETs and 28 other eicosanoids measured, which con-
firms the previously established effect of high fat diet on adipose tissue
EET production [70]. In keeping with this, human obesity is charac-
terized by a decreased expression of CYP2J2 in subcutaneous AT [71]
and a down-regulation of CYP epoxygenases associate with hepatic
insulin resistance in mice [72].
Our study determines the role of Cyp2j4 and, more generally, AA
pathway in adipogenesis by maintaining a balance between pro-
inflammatory and anti-inflammatory eicosanoids. We show that
Cyp2j4 has a regulatory role in maintaining healthy adipogenesis
through WAT PPARg-C/EBPa levels and ECM remodeling. The absence
of Cyp2j4 causes adipocyte dysfunction in diet-induced CAF model
and, to a lesser extent, in aging. This adipocyte dysfunction associates
with lipid accumulation and insulin resistance in the liver. We therefore
propose the epoxygenase pathway as a critical checkpoint that could
be targeted in obesity-associated hepatic steatosis and insulin
resistance.
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