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we investigate how strongly local vaccination levels 
were associated with socioeconomic and racial/eth-
nic composition as authorities first extended vaccine 
eligibility to all adults. We harmonize administrative, 
demographic, and geospatial data across postal codes 
in eight large US cities over 3 weeks in Spring 2021. 
We find that, although vaccines were free regard-
less of health insurance coverage, local vaccination 
levels in March and April were negatively associ-
ated with poverty, enrollment in means-tested public 
health insurance (e.g., Medicaid), and the uninsured 
population. By April, vaccination levels in Black and 
Hispanic communities were only beginning to reach 
those of Asian and White communities in March. 

Abstract  Rollouts of COVID-19 vaccines in the 
USA were opportunities to redress disparities that 
surfaced during the pandemic. Initial eligibility crite-
ria, however, neglected geographic, racial/ethnic, and 
socioeconomic considerations. Marginalized popula-
tions may have faced barriers to then-scarce vaccines, 
reinforcing disparities. Inequalities may have sub-
sided as eligibility expanded. Using spatial modeling, 
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Increases in vaccination were smaller in socioeco-
nomically disadvantaged Black and Hispanic com-
munities than in more affluent, Asian, and White 
communities. Our findings suggest vaccine rollouts 
contributed to cumulative disadvantage. Populations 
that were left most vulnerable to COVID-19 benefited 
least from early expansions in vaccine availability in 
large US cities.

Keywords  COVID-19 · Disparities · Inequality · 
Neighborhood · Pandemic · Race · Socioeconomic · 
Spatial · Urban · Vaccine

Introduction

Background: COVID‑19 Vaccine Rollouts in the 
USA

In early 2021, state and local authorities in the USA 
vaccinated millions of people weekly against coro-
navirus disease 2019 (COVID-19).[1] Vaccination 
curbed viral infection and transmission and reduced 
illness, hospitalization, and death from COVID-19.
[2, 3, 4, 5, 6, 7,  8] Vaccines were free countrywide 
regardless of health insurance coverage. Eligibility 
progressed in stages per state and local policy. Health 
care employees received first priority, followed by 
seniors, workers in designated occupations, and indi-
viduals with particular medical conditions.[9]

The most significant expansion in eligibility 
occurred from late March through April 2021. Doses 
remained scarce, but most jurisdictions allowed eve-
ryone age 16 and older to be vaccinated.[10, 11, 12, 
13, 14,  15] On January 1, 2021, 5.5 million people 
had received at least one dose of a COVID-19 vac-
cine. That number increased to 30.3 million by Feb-
ruary 1, 57.0 million by March 1, 111.1 million by 
April 1, and 153.7 million by May 1.[16] Growth pla-
teaued in May. Over 206.6 million US residents were 
at least partially vaccinated by September 1; nearly 
half of them received their first dose in March or 
April. Eligibility expansion enabled rapid increases 
during these months.

Vaccine eligibility rules did not account for two 
key predictors of the burden of the COVID-19 pan-
demic in the USA: race/ethnicity and socioeconomic 
status (SES). At the community level, infection 
and mortality were more common where low-SES 

individuals and people of color (POC) comprised 
more of the population.[17, 18, 19, 20, 21, 22, 23, 9] 
At the individual level, Black and Hispanic people 
were disproportionately likely to experience infec-
tion, hospitalization, and death.[24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 34] Socioeconomic variables par-
tially mediated racial/ethnic disparities.

Decision-makers might have opted against condi-
tioning vaccine eligibility on racial/ethnic or socio-
economic factors to avoid legal challenges.[35,36] 
Still, there were viable ways to use vaccine eligibil-
ity policy to mitigate inequality.[37] For example, 
the Advisory Committee on Immunization Practices 
(ACIP) initially recommended prioritizing essential 
workers, which would have increased eligibility for 
low-SES people and POC.[38] Authorities ultimately 
hewed closer to ACIP’s final recommendations, giv-
ing greater weight to advanced age.[39]

Geographic allocation may have been the most 
promising indirect means of addressing disparities 
through the rollout of COVID-19 vaccines. SES, 
race/ethnicity, and geography are tightly linked in 
the reproduction of inequality in the USA; socioeco-
nomic and racial/ethnic inequalities manifest in space, 
usually at hyperlocal scales.[40, 41, 42, 43, 44,  45, 
46, 47, 48, 49, 50, 51] Prioritizing local geographies 
in which residents had the highest risks of hardship 
from COVID-19 probably would have reduced mor-
tality more than the age-based rollouts authorities 
chose.[52] Regardless of whether demographic tar-
geting was constitutional, spatial targeting could have 
advanced vaccine equity.

Motivation: Early Vaccine Distribution and 
Cumulative Disadvantage

Authorities relied on individual initiative to distrib-
ute vaccines outside the health care workforce. This 
approach favored individuals with internet access, 
reliable transportation, and flexible schedules. States 
and localities used first-come, first-served online 
scheduling for scarce appointments at small num-
bers of sites. People with reliable internet access 
and white-collar jobs were better positioned to sign 
up. Limited locations and timed appointments were 
disadvantageous for people with restricted tran-
sit options and strict or uncertain work schedules, 
including the poor and many people with disabili-
ties. Barriers to vaccination in March and April 2021 
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may have reinforced socioeconomic and racial/ethnic 
disparities.

Concern over vaccine hesitancy in the USA has 
abounded, but framing vaccination solely as a matter 
of individual choice obscures structural and material 
impediments. Researchers mostly attribute stagnant 
US vaccination rates to misinformation, mistrust in 
institutions, and political party affiliation [53, 54, 55, 
56, 57, 58, 59, 60, 61,62, 63, 64]. At the same time, 
survey evidence suggests vaccination was linked to 
SES in Spring 2021[65]. Unvaccinated respondents 
reported three major economic concerns: taking time 
off work to get the vaccine, missing work due to side 
effects, and out-of-pocket costs. Plausible economic 
determinants of vaccine uptake as eligibility first 
expanded suggest racial/ethnic and socioeconomic 
disparities may have arisen.

If disparities persisted through April 2021, vaccine 
rollouts contributed to cumulative disadvantage [66, 
67]. Advantages secure future advantages; inequal-
ity begets inequality—including at the neighborhood 
level.[43, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78] 
Vaccine rollouts may have propelled a circular pro-
cess. POC and low-SES communities were most 
likely to experience serious illness or die from 
COVID-19. Equitable vaccine distribution would 
have mitigated racial/ethnic and socioeconomic gaps, 
but early vaccine distribution did not account for 
these inequalities. As a result, geographic clusters of 
unvaccinated people could have emerged, restarting 
the cycle by facilitating viral transmission [79, 80, 81, 
82, 83, 84, 85]. Understanding racial/ethnic and soci-
oeconomic vaccination disparities at the local level 
identifies harms that marginalized people experienced 
during the pandemic and helps explain the reproduc-
tion of urban spatial inequality in the USA [86, 87, 
88, 89].

Overview

Our analysis provides a unique perspective on socio-
economic, racial/ethnic, and spatial disparities dur-
ing the pandemic in the USA. Numerous studies 
have focused on geographic dimensions of COVID-
19–related inequality,[90, 91, 92, 93, 94, 95, 96, 97] 
but few have examined spatial differences in vaccina-
tion below the state level.[59, 98, 99, 100] The tem-
poral persistence of geographical vaccination dispari-
ties is particularly underexplored. We also contribute 

a novel dataset[101] that harmonizes initially incom-
patible sources. And unlike many studies of COVID-
19 disparities—even analyses with a geographical 
focus—we modeled spatial dynamics.

We tested two hypotheses. First, we hypothesized 
that local areas in which POC and low-SES individu-
als comprised more of the population had lower vac-
cination levels in March and April 2021. Second, 
we hypothesized that, despite lower starting points, 
the same areas had smaller increases in vaccination 
between March and April.

We used spatial quantitative methods to test these 
hypotheses. We estimated associations between vac-
cination levels and racial/ethnic and socioeconomic 
composition, adjusting for populations with early 
eligibility due to age or employment. We collected 
administrative data on vaccination by postal code, 
covering eight of the 10 most populous US cities in 
March and April 2021. We combined these data with 
demographic estimates and geospatial data from the 
US Census Bureau. We used spatial interpolation to 
reconcile reporting irregularities.

We found that, although vaccines were free regard-
less of health insurance coverage, local vaccination 
levels in March and April were negatively associ-
ated with poverty, enrollment in means-tested public 
health insurance (e.g., Medicaid), and the uninsured 
population. By April, vaccination levels in Black and 
Hispanic communities were only beginning to reach 
those of Asian and White communities in March. 
Increases in vaccination were smaller in socioeco-
nomically disadvantaged Black and Hispanic com-
munities than in more affluent, Asian, and White 
communities. Our findings suggest vaccine rollouts 
contributed to cumulative disadvantage.

Data and Methods

Data

From online public databases maintained by state 
and local public health authorities, we gathered offi-
cial counts of individuals with at least one dose 
of a COVID-19 vaccine in March and April 2021. 
Only geographically aggregated data were publicly 
available. We secured them for eight of the 10 most 
populous US cities: New York, Chicago, Houston, 
Phoenix, Philadelphia, San Antonio, San Diego, and 
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Dallas (in descending order of population). The vac-
cination data capture a 3-week window during which 
eligibility expanded significantly. The number of 
individuals with at least one dose of a COVID-19 
vaccine in the eight cities increased 34.7% from 4.6 to 
7.1 million during this period. We present key details 
of the vaccination data in Table  1; we elaborate in 
Section e2.1 of the online supplement.

We used two datasets from the US Census Bureau. 
We collected demographic data from the 2015–2019 
American Community Survey (ACS) Five-Year Esti-
mates[102] and geospatial vector data from the 2019 
TIGER/Line Shapefiles.[103] We provide further 
detail on these sources in Sections  e2.2 and e2.3 of 
the online supplement.

Unit of Analysis

For brevity and interpretability, we refer to our units 
of analysis as ZIP Codes, the name for postal codes 
in the USA. The units of analysis were based on ZIP 
Codes, but reporting irregularities made ZIP Codes 
themselves inviable. Where necessary, we used over-
lay interpolation[104, 105] to exclude populations 
residing outside city limits. We provide extensive 
detail on the units of analysis and interpolation in 
Section e3 of the online supplement.

Independent Variables

Vaccination Priority Populations

We accounted for vaccination priority regulations by 
adjusting for populations of health care workers and 
seniors. Specific estimates were unavailable for health 
care workers, but ACS provided estimated counts of 

individuals employed in “health care and social assis-
tance.” We also adjusted for the share of the popula-
tion age 65 or older. These variables were the best 
available measures of the first groups prioritized for 
vaccination. We include more information on these 
variables in Section e2.2 of the online supplement.

Socioeconomic Composition

To examine the dependent variable’s association with 
socioeconomic composition, we included four indi-
cators of SES. Two independent variables estimated 
health insurance status. Health insurance coverage 
was not universal in the USA as of the COVID-19 
pandemic, and medical care remained expensive 
and stratified compared to other rich countries.[106, 
107] We included variables estimating the share of 
the population enrolled in Medicaid or other means-
tested public health insurance and the share without 
health insurance altogether. Together, these vari-
ables captured populations that were among the least 
integrated into the US health care system. We also 
included variables estimating the shares of the pop-
ulation under the federal poverty line and without 
internet access. We included the latter because mak-
ing appointments online was usually the best way 
to secure a vaccine in early 2021. We include more 
information on our socioeconomic variables in Sec-
tion e2.2 of the online supplement.

Racial/Ethnic Composition

We accounted for racial/ethnic composition because 
racism causes health inequity in the USA.[108, 109, 
110, 111, 112, 113, 114, 115] Although race/ethnicity 

Table 1   Vaccination data sources and coverage

City Source Time 1 Time 2

New York New York City Department of Health and Mental Hygiene March 22, 2021 April 13, 2021
Chicago Chicago Department of Public Health March 22, 2021 April 13, 2021
Houston Texas Department of State Health Services March 22, 2021 April 11, 2021
Phoenix Arizona Department of Health Services March 22, 2021 April 13, 2021
Philadelphia Philadelphia Department of Public Health March 21, 2021 April 12, 2021
San Antonio Texas Department of State Health Services March 22, 2021 April 11, 2021
San Diego County of San Diego Health and Human Services Agency March 21, 2021 April 12, 2021
Dallas Texas Department of State Health Services March 22, 2021 April 11, 2021
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itself cannot cause anything, distributive systems that 
allocate resources according to racial/ethnic hierar-
chies create disparities among racial/ethnic groups.
[116, 117, 118, 119, 120] These disparities often sur-
face the net of SES. Including measures of racial/eth-
nic composition in our models enabled us to examine 
its direct association with vaccination, adjusting for 
SES.

Racism, however, is more than a conditional asso-
ciation between an outcome and racial/ethnic com-
position.[121, 122, 123, 124, 125, 126] It undergirds 
the gamut of US social, economic, and political pro-
cesses. The distributions of socioeconomic covariates 
and unobserved mechanisms were racialized. We ana-
lyzed racism in the aggregate by considering direct 
and indirect pathways—mainly through simulations, 
described below and in Section  e4.3 of the online 
supplement.

From ACS racial/ethnic categories, we created 
variables measuring the estimated populations of 
four mutually exclusive, non-exhaustive racial/eth-
nic groups: Asian, Black, Hispanic, and White. We 
defined Hispanic as Hispanic, Latino, or Spanish 
origin, of any race(s). We defined Black, Asian, and 
White as non-Hispanic and Black or African Ameri-
can alone, Asian alone, and White alone, respectively. 
This approach implies a fifth category comprised of 
non-Hispanic individuals of multiple races or any 
other race alone. The racial/ethnic variables did not 
sum to one (100%) unless the estimated population of 
the fifth category was zero.

We include more information on our framework 
for race/ethnicity and racial/ethnic variables in Sec-
tion e2.2 of the online supplement.

Dependent Variable

The dependent variable approximated the share of 
each ZIP Code’s vaccine-eligible population that was 
partially or fully vaccinated against COVID-19. We 
calculated it by dividing the estimated number of 
residents with at least one dose of an approved vac-
cine by the estimated population age 15 and older. 
This denominator was the best available measure of 
the population to whom agencies were authorized to 
administer vaccines in March and April 2021. More 
information on the dependent variable is available in 
Section e2 of the online supplement.

Spatial‑Statistical Analysis

We estimated population-weighted regressions  with 
conventional adjustments for spatial clustering [127]. 
We report spatial error models (SEMs) estimated by 
maximum likelihood [127, 128, 129, 130, 131, 132]. 
Standard linear models (SLMs) are ill suited to esti-
mate associations that vary across space. In this 
analysis, spatial heterogeneity could have arisen from 
unmeasurable factors such as COVID-19 exposure, 
hyperlocal idiosyncrasies in the effects or imple-
mentation of vaccination policies, and cultural influ-
ences. Standard tests[133, 134] strongly suggested 
SLMs exhibited spatial heterogeneity in our setting. 
We estimated SEMs with row-standardized k near-
est-neighbor weights ( k = 8 ) [135, 136, 137]. As the 
Moran’s I test statistics in Table 3 [138] demonstrate, 
the SEMs eliminated the residual spatial clustering 
that emerged in the SLMs. The models incorporated 
city fixed effects to adjust for unmeasured variables 
that were constant among ZIP Codes within each 
city,[139] including elements of vaccination policies. 
Because multiple cities were in Texas, we calculated 
heteroskedasticity-robust standard errors clustered by 
state [140].

To illustrate the estimated associations, we simu-
lated outcomes at representative values in the racial/
ethnic and socioeconomic distributions of the sample. 
This approach resembled a marginal effects analysis 
but accounted for spatial clustering and yielded an 
overall average rather than a unit-level estimate.[141, 
142, 143, 144] We present eight simulated scenarios: 
ZIP Codes with high Black populations and (1) low 
SES or (2) high SES; high Hispanic populations and 
(3) low SES or (4) high SES; high Asian populations 
and (5) low SES or (6) high SES; and high White 
populations and (7) low SES or (8) high SES. We 
defined low and high levels as below the 10th and 
above the 90th within-city percentiles, respectively.

We provide additional details on all aspects of our 
analytical approach, including the models and simula-
tions, in Section e4 of the online supplement.
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Table 2   Descriptive statistics on COVID-19 vaccination and population composition in ZIP Codes within and across eight large US 
cities, March and April 2021

M SD M SD M SD

New York ( n = 175) Chicago ( n = 53) Houston ( n = 99)
     % vaccinated, March 28.18 7.94      % vaccinated, March 28.70 5.50      % vaccinated, March 27.23 10.03
     % vaccinated, April 43.60 11.71      % vaccinated, April 45.08 9.46      % vaccinated, April 40.97 13.64
     % vaccinated, dif-

ference
15.42 5.24      % vaccinated, dif-

ference
16.38 5.21      % vaccinated, dif-

ference
13.75 4.03

     % 65 +  14.98 5.09      % 65 +  12.55 4.06      % 65 +  10.32 3.09
     % health care work-

ers
17.42 6.49      % health care work-

ers
13.93 3.73      % health care work-

ers
10.81 3.31

     % under poverty line 15.91 9.42      % under poverty line 17.93 9.90      % under poverty line 18.33 9.36
     % w/ Medicaid, etc 16.61 9.96      % w/ Medicaid, etc 12.98 9.48      % w/ Medicaid, etc 6.35 4.13
     % w/o health insur-

ance
8.16 4.40      % w/o health insur-

ance
10.13 5.97      % w/o health insur-

ance
25.09 12.31

     % w/o internet access 14.62 6.47      % w/o internet access 16.34 9.10      % w/o internet access 16.51 10.85
     % Black 19.82 23.39      % Black 29.67 33.53      % Black 22.73 18.63
     % Hispanic 26.37 19.34      % Hispanic 22.43 21.94      % Hispanic 42.58 22.27
     % Asian 14.77 13.96      % Asian 7.87 8.61      % Asian 6.56 6.23

Phoenix ( n = 50) Philadelphia ( n = 46) San Antonio ( n = 48)
     % vaccinated, March 27.78 11.00      % vaccinated, March 23.30 7.65      % vaccinated, March 29.10 9.04
     % vaccinated, April 40.17 13.48      % vaccinated, April 35.58 8.74      % vaccinated, April 42.21 11.90
     % vaccinated, dif-

ference
12.38 3.19      % vaccinated, dif-

ference
12.28 2.01      % vaccinated, dif-

ference
13.11 3.33

     % 65 +  11.32 4.35      % 65 +  14.18 4.61      % 65 +  11.90 3.24
     % health care work-

ers
12.08 2.16      % health care work-

ers
20.63 4.38      % health care work-

ers
14.06 2.31

     % under poverty line 16.82 10.04      % under poverty line 22.25 11.17      % under poverty line 16.55 8.85
     % w/ Medicaid, etc 12.38 7.14      % w/ Medicaid, etc 15.52 9.37      % w/ Medicaid, etc 4.99 3.01
     % w/o health insur-

ance
14.37 8.32      % w/o health insur-

ance
8.74 3.58      % w/o health insur-

ance
18.89 8.42

     % w/o internet access 13.49 9.36      % w/o internet access 18.16 8.49      % w/o internet access 15.69 9.88
     % Black 6.04 4.29      % Black 38.51 30.97      % Black 7.13 7.67
     % Hispanic 37.30 23.95      % Hispanic 11.99 13.48      % Hispanic 61.79 20.90
     % Asian 3.96 2.77      % Asian 6.96 5.82      % Asian 2.85 2.72

San Diego ( n = 33) Dallas ( n = 48) Overall ( N = 552)
     % vaccinated, March 34.16 8.45      % vaccinated, March 27.02 10.40      % vaccinated, March 27.95 9.00
     % vaccinated, April 50.30 10.81      % vaccinated, April 42.04 13.92      % vaccinated, April 42.44 12.34
     % vaccinated, dif-

ference
16.13 3.45      % vaccinated, dif-

ference
15.02 4.72      % vaccinated, dif-

ference
14.48 4.56

     % 65 +  13.18 4.36      % 65 +  10.55 5.72      % 65 +  12.75 4.81
     % health care work-

ers
12.87 2.00      % health care work-

ers
11.22 2.42      % health care work-

ers
14.58 5.45

     % under poverty line 11.98 6.68      % under poverty line 17.11 9.02      % under poverty line 17.08 9.64
     % w/ Medicaid, etc 9.63 7.17      % w/ Medicaid, etc 5.11 3.89      % w/ Medicaid, etc 11.52 9.04
     % w/o health insur-

ance
8.11 5.43      % w/o health insur-

ance
24.26 11.89      % w/o health insur-

ance
14.33 10.65

     % w/o internet access 7.03 5.30      % w/o internet access 18.29 12.72      % w/o internet access 15.28 9.26
     % Black 5.34 4.40      % Black 22.88 19.50      % Black 19.89 23.32
     % Hispanic 26.84 21.38      % Hispanic 36.52 20.75      % Hispanic 32.68 23.95
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Results

Descriptive Findings

In Table 2, we present descriptive statistics at the ZIP 
Code level. On average across all 552 ZIP Codes, 
28.0% of the population in March and 42.4% of the 
population in April had at least one dose of a COVID-
19 vaccine, with a mean difference of 14.5 percentage 
points (p.p.) between March and April. Other than 
Philadelphia and San Diego, each city’s mean vac-
cination level fell within a two-point range (27–29%) 
in March and a five-point range (40–45%) in April. 
Although there was some variation between cities, 
vaccination levels varied considerably more across 
ZIP Codes within cities (see Fig.  1). In March, the 
standard deviation in vaccination levels was 3.0 p.p. 
between cities and 8.8 p.p. within cities; in April, it 
was 4.2 p.p. between cities and 11.9 p.p. within cit-
ies. The mean difference between the 10th and 90th 
percentiles of vaccination levels across cities was 
21.6 p.p. in March and 31.0 p.p. in April.

Model Estimates

In Table  3, we summarize the results of the SEMs 
with all independent variables for three outcomes: 
March vaccination levels, April vaccination levels, 
and the difference between March and April vaccina-
tion levels. In both March and April, four variables 
were significantly associated with the dependent vari-
able. The first, the percent of the population age 65 
and older, reflects the policy choice to place older 
individuals among the earliest priority groups. The 
other three variables were measures of socioeconomic 
composition: the shares of the population under the 
poverty line, with means-tested public health insur-
ance, and without health insurance. Adjusting for vac-
cination priority populations and racial/ethnic compo-
sition, markers of low SES were negatively associated 
with vaccination levels. In April, vaccination levels 

were positively associated with the Asian share of the 
population.

Five variables were significantly associated with 
differences in vaccination between March and April. 
The shares of the population age 65 and older and 
employed in health care were associated with smaller 
increases. These associations probably reflect that 
these prioritized populations were widely vaccinated 
by the end of March. The Hispanic and Asian popu-
lation shares were associated with larger increases 
in vaccination levels. The share of the population 
without health insurance was associated with smaller 
increases in vaccination levels.

As we detail in Tables e4.1 and e4.2 in the online 
supplement, we examined associations stepwise for 
socioeconomic and racial/ethnic composition. Racial/
ethnic composition measures were often statistically 
significant in the absence of covariates measuring 
socioeconomic composition. When we included soci-
oeconomic variables; however, the coefficients of the 
racial/ethnic variables were indistinguishable from 
zero. We further discuss implications below and in 
Section e4.3 of the online supplement.

Simulated Outcomes

The simulations, illustrated in Fig. 2 and in Fig. e4.2 
in the online supplement, contextualize relationships 
between racial/ethnic and socioeconomic composi-
tion. At both time points regardless of racial/ethnic 
composition, vaccination levels were higher where 
SES was higher. Socioeconomic disparities in vac-
cination were smaller where there was a high White 
population and larger where there were high Black, 
Hispanic, or Asian populations. In March, the highest 
vaccination levels (36.1%) were associated with high 
White populations and high SES; the lowest levels 
(17.7%) were associated with high Black populations 
and low SES. In April, the highest vaccination levels 
(53.8%) were associated with high Asian populations 

N = 552 ZIP Codes across eight of the 10 most populous US cities. “Health care workers” refers to individuals employed in health 
care and social assistance. “Medicaid, etc.” refers to Medicaid or any other means-tested public health insurance. The “% vaccinated” 
is the percent of the population age 15 and older with at least one dose of a COVID-19 vaccine.

Table 2   (continued)

M SD M SD M SD

     % Asian 15.39 11.40      % Asian 5.23 9.70      % Asian 9.18 10.79
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Fig. 1   COVID-19 vaccination levels in the population age 15 
and older of ZIP Codes in eight large US cities, March and 
April 2021. Note: Figures are box-and-whisker plots of vacci-
nation levels in N = 552 ZIP Codes across eight of the 10 most 
populous US cities. The boxes represent interquartile ranges. 

The vertical lines represent medians. The horizontal lines 
extend from the 10th to the 90th percentiles. Circles represent 
observations below the 10th and above the 90th percentiles. 
The “% vaccinated” is the percent of the population age 15 and 
older with at least one dose of a COVID-19 vaccine
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and high SES; the lowest levels (27.5%) were associ-
ated with high Black populations and low SES.

Across racial compositions, the simulated change 
in vaccination levels between March and April was 
larger where SES was higher, as indicated by the 
numbers above each line in Fig.  2. Vaccination lev-
els increased most (18.3 p.p.) where there were high 
Asian populations with high SES, followed by high 
White populations with high SES (16.9 p.p.). Vac-
cination levels increased least (9.8 p.p.) where there 
were high Black populations with low SES, followed 
by high Hispanic populations with low SES (11.4 
p.p.).

Discussion

Key Findings

We examined COVID-19 vaccination in eight of the 
10 most populous cities in the USA. In March and 
April 2021, vaccination levels varied more within 
cities—across ZIP Codes—than between cities. This 
finding suggests differences in state and local eligibil-
ity criteria contributed negligibly to disparities. Our 
models and simulations confirmed our hypotheses 
that ZIP Codes with higher shares of POC and low-
SES individuals had lower vaccination levels and 
smaller increases over time. We now turn to three key 
findings.

Our finding that measures of racial/ethnic compo-
sition were statistically insignificant in the presence 
of socioeconomic covariates does not rule out racial/
ethnic disparities. It suggests economic inequality and 
access to health insurance were fundamental mecha-
nisms of local racial/ethnic gaps in vaccination. Fur-
thermore, the relative magnitudes of the racial/eth-
nic variables’ coefficients were sometimes nearly as 
large as those of socioeconomic variables, albeit with 
slightly larger standard errors. Given the distribution 
of SES, ZIP Codes with high Black or Hispanic popu-
lations were associated with lower vaccination levels 
than those with high Asian or White populations.

Unlike internet access, measures of health insur-
ance coverage were consistently associated with 
lower vaccination outcomes. This finding is surpris-
ing because internet access but not health insurance 
was directly tied to obtaining vaccine appointments. 
The insurance-related variables may capture multiple 

unobserved mechanisms: unfamiliarity with the med-
ical system, perhaps due to reduced or discriminatory 
encounters with providers and insurers; incomplete 
or inaccurate information, including unawareness or 
skepticism that vaccines were free; and employment 
or other economic circumstances that impeded get-
ting vaccinated or recovering from side effects. Sur-
vey or interview data may clarify individual-level 
mechanisms. Nonetheless, our results show that resi-
dents of large US cities who had tenuous connections 
to the health care system were less likely to benefit 
from an intervention that was free to all regardless of 
insurance coverage.

While several inequalities increased from March to 
April, one waned. ZIP Codes with high Hispanic pop-
ulations were associated with larger increases in vac-
cinations, adjusting for other demographic and socio-
economic factors. Still, accounting for socioeconomic 
distributions, Hispanic communities were left behind 
overall as vaccination eligibility expanded.

Limitations

This study has several limitations. Authorities pub-
lished vaccination data by ZIP Code only. Because 
ZIP Codes are suboptimal units for measuring ine-
quality, disparities may be understated in this analy-
sis. Representing ZIP Codes as areal polygons is 
distortive, potentially leading to measurement error.
[145,   146,  147,  148,  149, 150, 151,  152] Further-
more, while they afford more local vantage points 
than states and counties, ZIP Codes cannot reveal 
finer, neighborhood-level dynamics. Our units of 
analysis averaged 38,123 residents, and one-quarter 
exceeded 50,000. At this scale, observations had 
substantial within-unit variation and relatively low 
between-unit variation, likely obscuring disparities.
[52, 86, 89, 153, 154, 155, 156, 157,  158] We fur-
ther discuss the analytical limitations of ZIP Codes in 
Section e3.1 of the online supplement.

The absence of individual-level data limited this 
analysis, but geographically aggregated data also 
presented advantages. It is difficult to determine how 
much our results reflected differential vaccine eligi-
bility across ZIP Codes. We adjusted for key prior-
itized populations, however, and by mid-April, eligi-
bility was approaching universal among US adults. 
In addition, the complete administrative data we 
used was more comprehensive than small surveys of 
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self-reported behavior. Spatial analysis could also be 
optimal for guiding policy. Allocating resources geo-
graphically may be less resource-intensive than focus-
ing on demographic subgroups. And, as we highlight 
above, spatial targeting is an effective tool for health 
equity.

Conclusion

Even as the number of vaccinated individuals 
increased by 7.1 million (34.7%) in the large US cit-
ies we studied, COVID-19 vaccination lagged in 

marginalized communities from late March to mid-
April 2021. Vaccination gaps increased between low- 
and high-SES communities and between White or 
Asian and Black or Hispanic communities. The spa-
tial clustering of unvaccinated individuals probably 
led to further public health issues.

Our findings suggest vaccination rollouts contrib-
uted to cumulative disadvantage at the community—
and likely individual—level. Populations that experi-
enced the highest burdens of infection and mortality 
from COVID-19 before vaccines were available had 
lower levels of vaccination during restricted vaccine 
eligibility. Gaps persisted or widened as eligibility 

Table 3   Spatial error model (SEM) estimates of COVID-19 vaccination levels in the population age 15 and older of ZIP Codes 
across eight large US cities, March and April 2021

SEMs estimated by maximum likelihood with row-standardized nearest-neighbor spatial weighting ( k = 8).N = 552ZIP Codes 
across eight of the 10 most populous US cities. City fixed effects (reference: New York) and constant terms not shown. Percentages 
scaled from zero to one. All models weighted by estimated population age 15 and older. Heteroskedasticity-robust standard errors 
clustered by state in parentheses. ***p < 0.001 ; **p < 0.01 ; * p < 0.05 . Moran’sIp-values calculated by permutation bootstrap (9999 
iterations). “Health care workers” refers to individuals employed in health care and social assistance. “Medicaid, etc.” refers to Med-
icaid or any other means-tested public health insurance. The “% vaccinated” is the percent of the population age 15 and older with at 
least one dose of a COVID-19 vaccine.

(1) (2) (3)
% vaccinated, March % vaccinated, April Difference

Vaccination priority populations
  % 65 +  0.593*** 0.470***  − 0.122*

(0.048) (0.075) (0.054)
  % health care workers 0.147  − 0.063  − 0.201***

(0.257) (0.309) (0.055)
Socioeconomic composition
  % under poverty line  − 0.102*  − 0.138**  − 0.039

(0.051) (0.051) (0.023)
  % w/ Medicaid, etc  − 0.102***  − 0.127**  − 0.021

(0.024) (0.046) (0.029)
  % w/o health insurance  − 0.418***  − 0.655***  − 0.234***

(0.039) (0.053) (0.023)
  % w/o internet access  − 0.040  − 0.036 0.003

(0.051) (0.060) (0.011)
Racial/ethnic composition
  % Black  − 0.111  − 0.132  − 0.021

(0.061) (0.084) (0.025)
  % Hispanic 0.041 0.076 0.036***

(0.035) (0.041) (0.010)
  % Asian 0.101 0.230* 0.127***

(0.067) (0.103) (0.037)
Residual Moran’sI

  Standard linear model (SLM) 0.250*** 0.222*** 0.202***
  Spatial error model (SEM) 0.027 0.014  − 0.015
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first expanded. These disparities may have contrib-
uted to a bifurcated recovery in which advantaged 
communities began to move on from the COVID-19 
pandemic while marginalized people continued to 
suffer.
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