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Abstract

Background: Missing participant outcome data (MOD) are ubiquitous in systematic reviews with network meta-
analysis (NMA) as they invade from the inclusion of clinical trials with reported participant losses. There are available
strategies to address aggregate MOD, and in particular binary MOD, while considering the missing at random
(MAR) assumption as a starting point. Little is known about their performance though regarding the meta-analytic
parameters of a random-effects model for aggregate binary outcome data as obtained from trial-reports (i.e. the
number of events and number of MOD out of the total randomised per arm).

Methods: We used four strategies to handle binary MOD under MAR and we classified these strategies to those
modelling versus excluding/imputing MOD and to those accounting for versus ignoring uncertainty about MAR.
We investigated the performance of these strategies in terms of core NMA estimates by performing both an
empirical and simulation study using random-effects NMA based on electrical network theory. We used Bland-
Altman plots to illustrate the agreement between the compared strategies, and we considered the mean bias,
coverage probability and width of the confidence interval to be the frequentist measures of performance.

Results: Modelling MOD under MAR agreed with exclusion and imputation under MAR in terms of estimated log
odds ratios and inconsistency factor, whereas accountability or not of the uncertainty regarding MOD affected
intervention hierarchy and precision around the NMA estimates: strategies that ignore uncertainty about MOD led
to more precise NMA estimates, and increased between-trial variance. All strategies showed good performance for
low MOD (<5%), consistent evidence and low between-trial variance, whereas performance was compromised for
large informative MOD (> 20%), inconsistent evidence and substantial between-trial variance, especially for
strategies that ignore uncertainty due to MOD.

Conclusions: The analysts should avoid applying strategies that manipulate MOD before analysis (i.e. exclusion and
imputation) as they implicate the inferences negatively. Modelling MOD, on the other hand, via a pattern-mixture
model to propagate the uncertainty about MAR assumption constitutes both conceptually and statistically proper
strategy to address MOD in a systematic review.
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Background
Recent empirical studies on systematic reviews of rando-
mised controlled trials with at least two interventions
have revealed the ubiquity of missing participant out-
come data (MOD) in at least one included trial [1–4].
Modelling and data-manipulation strategies have been
both proposed and applied to address MOD in a meta-
analysis [5]. Modelling revolves around the joint likeli-
hood of observed and missing outcomes and the indica-
tor of observing an outcome [6]; by conditioning on the
indicator of observing an outcome or on the underlying
outcome, we obtain the pattern-mixture model and the
selection model, respectively [7–11]. In contrast, data-
manipulation strategies are based exclusively either on a
degenerate probability distribution [6] – when they aim
to impute a single value under a specific scenario to
compensate for the missing outcomes in each arm of
every trial – or on the exclusion of MOD in order to ap-
proximate the missing at random (MAR) assumption
which implies the distribution of the outcome to be the
same in completers and missing participants conditional
on the observed variables [10, 12, 13]. In the present
study, modelling and data-manipulation strategies refer
to aggregate binary outcome data, that is, summary data
from each arm of every trial (the number of events and
number of MOD out of the total randomised per arm)
as obtained from published trial-reports.
Data-manipulation strategies have thrived in system-

atic reviews with meta-analyses or network meta-
analyses (NMA) for being intuitive and straightforward
to apply as they require no sophisticated statistical soft-
ware [1–4, 13]. Nevertheless, their simplicity comes with
the price of challenging the credibility of conclusions.
Specifically, imputation of MOD mostly lacks plausibility
due to the use of a degenerate probability distribution
(i.e. the imputed values would have occurred with cer-
tainty [6]) which raises the risk of providing biased re-
sults with spurious precision as it naturally ignores
uncertainty around the assumptions made [6]. Moreover,
if MOD are substantial and the mechanism behind miss-
ingness is non-ignorable, then exclusion of MOD also
risks providing biased results [8, 10].
Imputation scenarios may be arm-specific or com-

mon for all arms in a trial, but they are customarily
applied the same across all trials included in a meta-
analysis [1, 2, 4, 12, 13]. In practice, imputation
hardly ever includes clinically plausible scenarios that
comply with the condition and interventions investi-
gated. Instead, extreme scenarios constitute the gen-
eral rule which, in the case of binary outcomes,
replace all MOD either with or without the occur-
rence of the outcome before analysis [1, 2, 4, 13]. It
is, therefore, recommended that reviewers choose sce-
narios tailored to the investigated condition and

interventions with increasing stringency to evaluate the
robustness of meta-analysis results to departures from
MAR assumption in the primary analysis [10, 14–16].
Contrary to data-manipulation, modelling MOD is

conceptually and statistically advantageous, as it quanti-
fies the plausible relationship between missing and ob-
served outcomes – rather than adjusting the dataset
before analysis – and it incorporates the uncertainty
about that relationship [7, 8, 10]. Consequently, in each
trial, treatment effects and standard errors are adjusted
for MOD, and this adjustment carries over to meta-
analysis estimates. Depending also on the extent of
MOD, accountability of uncertainty due to MOD results
in relatively larger standard errors of treatment effects
but lower between-trial variance [7, 17]; this is the trade-
off of modelling MOD in random-effects meta-analysis.
The research agenda of NMA, an extension of pair-

wise meta-analysis for multiple interventions [18], has
been refined considerably the last decade with plenty
methodological articles, hands-on and software tuto-
rials, empirical and simulation studies using Bayesian
and frequentist methods [19–21]. While Bayesian
methods constitute the norm in published systematic
reviews with NMA, frequentist approaches have also
drawn the attention of many methodologists recently
[20]. In the present study, we extended the data-
manipulation and modelling strategies, as used in the
meta-analysis, to operate in a network of interven-
tions within a frequentist framework [22, 23]. We fo-
cused only on aggregate binary outcomes for being
the most frequently investigated outcome in system-
atic reviews [19, 24], and we considered the MAR as-
sumption for being recommended as a ‘starting point’
in the primary analysis [8, 10, 25]. Ultimate objectives
of this study were to direct the attention of reviewers
to the implications on the NMA estimates of various
data-manipulation strategies for binary MOD under
MAR as compared to modelling MOD and to provide
recommendations for good practice.
The present article has been structured as follows.

In Section “Methods”, we first review the data-
manipulation strategies and modelling that we consid-
ered under MAR and then, we describe the dataset
we used to perform the empirical comparisons and
the tools we applied to illustrate the results. In Sec-
tion “Results of the empirical study”, we present the
results of the empirical analyses. In Section “Simula-
tion study”, we describe the set-up of the simulation
study to supplement the results from the empirical
analyses and in Section “Results of the simulation
study”, we present the simulation results. In Section
“Discussion”, we discuss our findings and highlight
important limitations and in Section “Conclusions”,
we conclude with recommendations for practice.
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Methods
Addressing binary MOD under MAR
Suppose a network of N trials comparing different sets
of T interventions for a patient-important binary out-
come [26]. We observe the number of events in arm k of
trial i, ri, k, and the number of MOD, mi, k, out of the
number randomised, ni, k. Four strategies have been de-
scribed to address MOD under MAR [8, 10, 13]. These
strategies differ not only on how MOD are handled (i.e.
imputed, excluded or modelled) but also on whether and
how uncertainty due to MOD is addressed. We delineate
these strategies at trial-level to obtain log odds ratios
(OR) and standard errors that will be fed into the
frequentist random-effects NMA model as described by
Rücker [23] and Rücker and Schwarzer [22] in the
context of electrical network theory.

Exclusion of MOD and ignorance of uncertainty due to
MOD
Exclusion of MOD before analysis is a common data-
manipulation strategy in systematic reviews either as
sensitivity or primary analysis [1–4, 13]. We call this
strategy ‘complete case analysis’ (CCA). CCA implies
MAR, and therefore, excludes missing participants from
the randomised sample – an approach that contradicts
the desired intention-to-treat principle in clinical trials
[15, 27] (i.e. those randomised should be analysed re-
gardless of withdrawal or intervention received) and may
lead to biased results if not valid [10]. Under CCA, the
log OR of an event between arm k and the baseline arm
of trial i is estimated after restricting the analysed sam-
ple to those completing the trial, ni, k −mi, k:

yi;k1 ¼ logit ri;k= ni;k−mi;k
� �� �

−logit ri;1= ni;1−mi;1
� �� �

ð1Þ
with variance approximated by

vi;k1 ¼ 1=ri;k
� �þ 1=ri;1

� �þ 1= ni;k−ri;k−mi;k
� �� �

þ 1= ni;1−ri;1−mi;1
� �� �

In the case of zero events in trial i, a continuity correc-
tion of 0.5 is commonly applied to all cells of the ai × 2
table where ai is the number of arms in trial i [28].

Exclusion of MOD but accountability of uncertainty due to
MOD
Gamble and Hollis introduced the ‘uncertainty interval’, a
hybrid of the confidence interval for the within-trial log
ORs as estimated after excluding missing participants
(Eq. (1)) to reflect the uncertainty stemming from having
missing participants in addition to sampling error [13].
‘Uncertainty interval’ is calculated for each trial and it re-
sults from the lowest and uppermost bound of 95%

confidence interval for the within-trial log OR under the
best- and worst-case scenarios (i.e. all missing participants
experienced and did not experience the beneficial
outcome in the active arm, respectively, as opposed
to the control arm). Being a product of the most ex-
treme scenarios, ‘uncertainty interval’ is wider than
the 95% confidence interval and thus, the former pro-
vides smaller weights than the latter in the presence
of MOD [13].

Modelling MOD using a two-stage pattern-mixture model
Instead of excluding MOD before analysis, we can
model MOD using the pattern-mixture model which
is an elegant and statistically appropriate approach
as it adjusts the within-trial treatment effects for po-
tential bias due to MOD and it accounts for the un-
certainty due to MOD. The within-trial adjustments
constitute the first stage [8]. In the case of zero
events, a continuity correction of 0.5 is used before
adjustment, as described in Section “Exclusion of
MOD and ignorance of uncertainty due to MOD”.
Then, at the second stage, the adjusted within-trial
results (i.e. log OR and standard error) constitute
the dataset to apply random-effects NMA (see, Sec-
tion “Model specification”) [8].
Under this model, the underlying probability of an

event in arm k of trial i, pi, k, is equated with the sum of
marginal probability of observing an event (Zi, k, l = 1, Ri,

k, l = 1) and the marginal probability of missing an event
(Zi, k, l = 1, Ri, k, l = 0):

pi;k ¼ P Zi;k;l ¼ 1;Ri;k;l ¼ 1
� �þ P Zi;k;l ¼ 1;Ri;k;l ¼ 0

� �

¼ P Zi;k;l ¼ 1jRi;k;l ¼ 1
� � � P Ri;k;l ¼ 1

� �

þP Zi;k;l ¼ 1jRi;k;l ¼ 0
� � � P Ri;k;l ¼ 0

� �

¼ pci;k � 1−qi;k
� �

þ pmi;k � qi;k
ð2Þ

where Zi, k, l indicates the occurrence of an event for
participant l (l = 1, 2, …, ni, k) in arm k of trial i, Ri,

k, l indicates whether participant l completed arm k of
trial i, pci;k is the probability of event conditional on

the completers, pmi;k is the probability of event condi-

tional on missing participants (the missingness param-
eter) and qi, k is the probability of MOD in arm k of
trial i.
If we have some prior belief regarding the associ-

ation between outcome and status of a participant
being missing or observed, then a relative missing-
ness parameter, such as the informative missingness
odds ratio (IMOR), may be preferred to the absolute
pmi;k [7]. IMOR is the ratio of the odds of an event

among MOD to the odds of an event among

Spineli and Kalyvas BMC Medical Research Methodology           (2020) 20:48 Page 3 of 15



completers [7, 8, 10]. After replacing pmi;k with the

IMOR parameter, eδi;k , in Eq. (2) we obtain:

pi;k ¼ pci;k ∙ 1−qi;k
� �

þ pci;k ∙e
δi;k

pci;k ∙e
δi;k þ 1−pci;k

∙qi;k ð3Þ

Then, our prior belief about the missingness process
can be quantified via a normal distribution for log IMOR
(i.e. δi, k) with mean Δi, k reflecting our belief on average
and variance Vi, k indicating our uncertainty about this
belief [7, 8]:

δi;k � Ν Δi;k ;V i;k
� �

i ¼ 1; 2;…;N and k ¼ 1; 2;…; ai

ð4Þ

Under MAR, Δi, k = 0 and we call this strategy ‘on
average MAR’. In practice, Vi, k can be considered con-
stant and equal to any positive value up to four; other-
wise, vi, k1 becomes inaccurate using the Taylor series
approximation (Fig. 2 in White et al. [8]). In the present
study, we used Vi, k = 1.
Under ‘on average MAR’, pi, k in Eq. (3) corre-

sponds to ri, k/(ni, k −mi, k) in Eq. (1). Now, vi, k1

needs to accommodate two sources of variance: one
due to sampling error and one arising from δi, k. Fol-
lowing White et al. [8] the variance due to sampling
error can be approximated using Taylor series (Eq.
(13) in White et al. [8]), whereas the variance due to
δi, k can be approximated using Eq. (16) in White
et al. [8] and assuming zero correlation between log
IMORs of the compared arms.
Note that in a strict sense, the selection model directly

reflects the taxonomy of missingness mechanisms (i.e.
missing completely at random (MCAR), MAR, and miss-
ing not at random) according to Little and Rubin [29].
For the definition of MCAR and MAR in a series of tri-
als for two interventions via the selection model, we dir-
ect the readership to White et al. [9] (Eqs. 2 and 3,
respectively, there).

Imputing the same risk as observed and ignoring
uncertainty due to MOD
Using the pattern-mixture model and assuming that
both missing participants and completers have the same
risk to experience the event (MAR assumption), we can
replace pmi;k with pci;k in Eq. (2), and obtain pi;k ¼ pci;k . We

call this data-manipulation strategy ‘imputed case ana-
lysis of observed event risks’ (ICAp, as in Higgins et al.
[10]). Then, the log OR of trial i is obtained using
Eq. (1), and the variance is calculated based on the ran-
domised sample as follows:

vi;k1 ¼ 1

ni;k ∙pi;k ∙ 1−pi;k
� �þ 1

ni;1∙pi;1∙ 1−pi;1
� �

Contrary to CCA, this strategy maintains the rando-
mised sample in each arm of every trial and therefore, it
reduces the standard error because the imputed risks are
mistreated as observed. Based on empirical studies, the
prevalence of this strategy in systematic reviews with
two interventions ranges from 1 to 6% [1, 2, 4].
While yi, k1 s will be the same in all four strategies, the

corresponding vi, k1 s will differ to some degree, and
consequently, they will affect the estimation of NMA log
ORs and their standard errors.

An empirical investigation of the strategies
We considered ‘on average MAR’ to be the reference
strategy for being conceptually and statistically appropri-
ate. We compared ‘on average MAR’ with the other
three strategies in terms of (i) NMA log ORs of the com-
parisons with the selected reference intervention of the
network and their standard error, (ii) (common within
the network) between-trial variance, τ2, (iii) inconsist-
ency factors (IF) and their standard error obtained via
the back-calculation approach [30], and (iv) P-score [31]
which is the frequentist equivalent of the surface under
the cumulative ranking curve (SUCRA) value (it reflects
the percentage of potency (e.g. effectiveness or safety) of
each intervention when compared to an imaginary inter-
vention that always ranks first with certainty on the in-
vestigated outcome) [32].

Analysed dataset of systematic reviews with NMA
To perform this empirical study, we used our collection
of 29 systematic reviews with NMA on patient-
important binary outcomes from 12 different health-
related fields [33]. Initially, for each network, we com-
pared the median of the total percentage of MOD
(%MOD) across the included trials with the ‘five-and-
twenty rule’ as proposed by Sackett et al. [34] and we
considered MOD to be low for median less then 5%,
moderate for median at least 5% and up to 20% and
large for median above 20% [33]. Subsequently, we di-
vided each network to trials with balanced and trials
without balanced MOD in the compared arms according
to the two-sided Pearson’s chi-squared test statistic (we
tested the null hypothesis that the difference in %MOD
between the compared arms in each trial is zero) and we
used a density plot to visualise the distribution of the
differences in %MOD for each group of trials: the two
densities intersected at 6.5% [33]. Then, for each net-
work, we compared this threshold with the median of
the difference in %MOD between the compared arms
across the included trials: networks with median larger
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than 6.5% were considered to have an imbalance in
MOD. According to this decision rule to characterise
the amount of MOD in a network, we distinguished the
networks to those with ‘low MOD’ (41%), ‘moderate and
balanced MOD’ (48%), ‘moderate and unbalanced MOD’
(7%), ‘large and balanced MOD’ (0%), and ‘large and un-
balanced MOD’ (4%) [33]. We re-structured the dataset
of each network by recoding the outcome so that OR
more than 1 indicated a beneficial effect for the first
intervention in each comparison [33].

Bland-Altman plots to investigate the agreement
To illustrate the level of agreement between ‘on average
MAR’ and the other strategies in terms of the NMA esti-
mates, we used Bland-Altman plots [35, 36]. For each
NMA estimate, we plotted the differences between ‘on
average MAR’ and the other strategies against their aver-
ages. For the standard error of log ORs and IFs, we plot-
ted the ratios of the estimates from the compared
strategies against their averages. On the y-axis, we dis-
played the average bias (i.e. mean of the differences or
mean of log ratios exponentiated) alongside the 95%
limits of agreement (LoA) [35, 36]. We considered the
compared strategies to have a good agreement when the
average bias for a specific NMA estimate was approxi-
mating 0 (for differences) or 1 (for ratios) and most of
the points were uniformly scattered around the average
bias within narrow LoA. To construct the Bland-Altman
plots, we used the statistical software R version 3.3.1
[37] where we wrote user-defined functions while using
the R package ggplot2 [38].

Cohen’s kappa statistic to measure agreement
We used the Cohen’s kappa statistic [39] to compare ‘on
average MAR’ with the other strategies in terms of
strength and direction of log ORs and IFs as well as in
terms of the extent of τ2 in each network. To define the
extent of τ2 in each network, we referred to the predict-
ive distributions as elicited by Turner et al. [40], and we
judged the median of τ2 to be low, moderate and large,
if it was below the second quartile, between the second
and third quartile and above the third quartile of the se-
lected predictive distribution, respectively. We used the
divisions of the agreement as reported in Landis and
Koch to infer on the degree of agreement [41].

Model specification
For each network, we used the four strategies described
aboved to obtain the within-trial log ORs and standard
errors, and then, we applied the random-effects NMA
model as described by Rücker [23] and Rücker and
Schwarzer [22] using electrical network theory. We used
the R package netmeta to fit all NMA models [42]. For
the estimation of τ2, netmeta uses the generalisation of

DerSimonian and Laird’s procedure in the multivariate
setting as proposed by Jackson et al. [43]. The dataset
used for the empirical comparisons can be found in
Additional file 1. The R scripts applied to convert the
dataset into a contrast-level long format to implement
the four strategies and then to be used in the netmeta
function can be found in Additional file 2.

Results of the empirical study
‘On average MAR’ appeared to agree with both CCA
and ICAp in all NMA estimates, though the differences
in the point estimates tended to range in slightly nar-
rower LoA for ‘on average MAR’ versus CCA (Fig. 1).
Despite the relatively low average bias, the agreement
between ‘on average MAR’ and ‘uncertainty interval’ was
inadequate overall, as the differences in the point esti-
mates were scattered within substantially wide LoA that
reflected discrepancies between these strategies (Fig. 1).
Furthermore, ‘uncertainty interval’ led to systematically
smaller τ2 s as compared to ‘on average MAR’. Interest-
ingly, ‘uncertainty interval’ led also to systematically
smaller and larger P-scores for interventions that ranked
high or very low in the hierarchy, respectively, as com-
pared to ‘on average MAR’, especially for moderate and
large missingness (Fig. 1).
As expected, ignoring the uncertainty about MAR –

either via CCA or ICAp – led to relatively smaller stand-
ard errors of log ORs and IFs, especially for moderate
and large missingness in case of CCA, compared to ‘on
average MAR’, as most points were scattered above the
line of no difference – though within a wider LoA for
‘on average MAR’ versus ICAp (Fig. 2). However, when
uncertainty about MOD was considered, ‘uncertainty
interval’ led to larger standard errors in both NMA esti-
mates, especially for moderate and large missingness, as
opposed to ‘on average MAR’ (average bias: 0.77 and
0.78, for standard error of log OR and IF, respectively)
(Fig. 2).
Overall, there was good agreement in strength and dir-

ection of log ORs, as well as in the direction of IFs, except
for the strength of IFs where the agreement was poor
overall (Supplementary Table 1, Additional file 3). The
level of agreement in the extent of τ2 could not be judged
with confidence due to few estimated τ2 s (only 29).

Simulation study
To supplement the results from Section “Results of the
empirical study”, we additionally conducted a compre-
hensive simulation study. We followed the simulation
set-up of our previous work for triangles of two arm-
trials comparing placebo, old and new intervention [44],
where we used the data generating model (DGM) as
proposed by Hartung and Knapp for a random-effects
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pairwise meta-analysis [45]. We considered new versus
old intervention to be the comparison of interest.

Simulation scenarios using empirical evidence
To determine the trial size (same in the compared arms),
the event risks for the control arms, and the extent of
the inconsistency, we used the information from the net-
works collected in the previous empirical work [33]. Fol-
lowing Veroniki et al. [46], we assumed a typical loop

with four trials for old intervention versus placebo, three
trials for new intervention versus placebo, and one trial
for new versus old intervention and we doubled the
number of trials in another scenario (Table 1). To define
the extent of τ2 in each arm, we considered smaller vari-
ability in log odds for placebo, whereas equal variability
in log odds for active arms [44]. We investigated two
scenarios for τ2; small and substantial as reflected by the
median of the predictive log-normal distributions LN(–

Fig. 1 Bland-Altman plots based on the empirical analysis of 29 networks illustrate the level of agreement between ‘on average MAR’ and other
strategies for MOD under MAR assumption in terms of estimated log odds ratios (of comparisons with the selected reference intervention of
each network), common between-trial variance (τ2), inconsistency factors, and P-scores. Use of normal distribution on log IMORs with mean 0 and
variance 1. Different colours indicate the extent and balance of MOD across 29 networks (17 networks with at least one closed loop). CCA,
complete case analysis; ICAp, imputed case analysis of observed event risks; IF, inconsistency factor; OR, odds ratio
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3.95, 1.342) for all-cause mortality and LN(–2.56, 1.742)
for a generic healthcare setting, respectively [40]. To de-
termine the ‘true’ P-score for each intervention, we ini-
tially ordered the true log ORs for the placebo
comparisons generated from the normal distribution
N(μkP, τ

2) with μNP = log (2) and μOP = log (1.5) being the
true log ORs for new and old intervention against pla-
cebo, respectively. Then, for each intervention, we calcu-
lated the probability of reaching a specific rank and,

subsequently, we applied the formula for the SUCRA
score as described in Salanti et al. [32].
To accommodate MOD in the DGM, we followed the

‘five-and-twenty rule’ proposed by Sackett et al. [34],
and we considered MOD to be low (0–4%), moderate
(5–20%) and large (> 20%) in each arm of every trial.
Furthermore, in one scenario we considered an equal
risk of MOD in the compared arms (balanced MOD)
and in another scenario, we assumed a higher risk of

Fig. 2 Bland-Altman plots based on the empirical analysis of 29 networks illustrate the level of agreement between ‘on average MAR’ and other
strategies for MOD under MAR assumption in terms of the standard error of log odds ratios (of comparisons with the selected reference
intervention of each network) and of inconsistency factors. Use of normal distribution on log IMORs with mean 0 and variance 1. Different
colours indicate the extent and balance of MOD across 29 networks (17 networks with at least one closed loop). CCA, complete case analysis;
ICAp, imputed case analysis of observed event risks; IF, inconsistency factor; OR, odds ratio

Spineli and Kalyvas BMC Medical Research Methodology           (2020) 20:48 Page 7 of 15



MOD for placebo, as well as for old intervention in trials
comparing new with old intervention. We assumed pa-
tients randomised in new or old intervention to be on
average twice more likely to leave the trial due to im-
provement as opposed to patients receiving placebo. In
another scenario, we assumed MAR for all interventions.
We used log IMOR to quantify the degree of informative
missingness and we incorporated it in a pattern-mixture
model to generate MOD (Eq. (3)). Table 1 summarises
the scenarios considered for the simulation study.

Model specification and illustration of results
For each scenario, we simulated 5000 triangles, and we ana-
lysed the generated datasets applying the strategies de-
scribed in Section “Addressing binary MOD under MAR”
to estimate the log OR, τ2, IF, and P-score for each inter-
vention. We investigated the mean bias (MB) for all NMA
estimates, as well as the 95% coverage probability and width
of the 95% confidence interval for log OR and IF. Simula-
tions and analyses were performed in the statistical software
R version 3.3.1 [37] using the R package netmeta [42] to
employ the frequentist NMA for each strategy. We used
the R package ggplot2 [38] to create a matrix of panels with
the simulation results, where each panel referred to a spe-
cific scenario. The simulation code to generate and analyse
the triangle networks can be found in Additional file 4.

Results of the simulation study
We present the results on informative MOD with a mod-
erate and large extent, as it is a more plausible scenario in
a medical setting. Results for MAR (Supplementary Fig-
ure 7–16, Additional file 5) or low MOD (Supplementary
Figure 17–26, Additional file 5) can be found in
Additional file 5.

Mean bias
Log OR between new and old intervention
When moderate MOD were balanced, and consistency reg-
ulated the network, all strategies had almost zero MB for
log OR (range: 0.02–0.03); however, for large or unbalanced
MOD, log OR was similarly overestimated across all strat-
egies –most notably for large and unbalanced MOD (Fig. 3).
In the presence of inconsistency, log OR was substantially
underestimated in all strategies. Overall, the loop size and/
or the magnitude of τ2 did not implicate the results.

Common between-trial variance
In the presence of consistency and small τ2, MB for τ2

was low in all strategies for moderate MOD, but in-
creased slightly in CCA and notably in ICAp for large
MOD (Fig. 4). However, when true τ2 was substantial, τ2

was underestimated in all strategies, though negligibly in
ICAp but markedly in ‘on average MAR’ and ‘uncer-
tainty interval’ for large MOD. In the absence of

Table 1 Scenarios considered for the simulation set-up

Number of trials per comparison

typical loopa NO = 1, NP = 3, OP = 4

double NO = 2, NP = 6, OP = 8

Trial size

placebo-controlled trials Unif(102, 187)

old-controlled trials Unif(128, 241)

Initial event rates of control arm

placebo-controlled trials Unif(0.27, 0.40)

old-controlled trials Unif(0.63, 0.76)

Balanced risk of missing outcome data

low Unif(0, 0.04)

moderate Unif(0.05, 0.20)

large Unif(0.21, 0.40)

Unbalanced risk of missing outcome data

low Unif(0, 0.04)b

moderate Unif(0.05, 0.10) for E, Unif(0.11, 0.20) for C

large Unif(0.21, 0.30) for E, Unif(0.31, 0.40) for C

Missingness mechanisms via log (IMOR)

informative TN(μ = − ln (2), σ2 = 1, a = ln (1))
for Placebo

TN(μ = ln (2), σ2 = 1, a = ln (1)) for
New and Old

missing at random N(0, 1) for all interventions

Treatment effects

basic comparisons LORNP = ln (2), LOROP = ln (1.5)

functional comparison LORNO = LORNP − LOROP + IF

Loop inconsistency

inconsistency factor (IF)c IF = absent
IF =moderate

Common between-trial variance

predictive distributiond τ2 = 0.02 (small)
τ2 = 0.08 (substantial)

Surface under cumulative ranking curve

new intervention 96 and 88% for small and
substantial τ2, respectively

old intervention 54 and 58% for small and
substantial τ2, respectively

placebo 0 and 4% for small and
substantial τ2, respectively

Note: C control arm, E experimental arm, IF consistency factor, IMOR
informative missingness odds ratio, LOR log odds ratio, N normal distribution,
NO New intervention versus Old intervention, NP New intervention versus Old
intervention, OP Old intervention versus Placebo, TN truncated-normal
distribution, Unif uniform distribution
aAs defined in Veroniki et al. [46]
bIn the presence of low missing outcome data, imbalance of missing outcome
data in the compared arms is negligible, and therefore, in both arms the risk of
missingness was generated from U(0, 0.04) irrespectively the type of intervention
cAbsent and moderate inconsistency refer to the mean of t-distributions t(μ =
0, σ2 = 0.442, df = 3) and t(μ = 1, σ2 = 0.442, df = 3), respectively
dSmall and substantial τ2 refer to the predictive log-normal distributions
LΝ(−3.95, 1.342) for all-cause mortality and LΝ(−2.56, 1.742) for generic health
setting, respectively [40]
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consistency, τ2 was substantially overestimated in CCA
and ICAp, especially for small τ2 and large, unbalanced
MOD, while ‘uncertainty interval’ slightly underesti-
mated τ2 but more notably for large MOD and substan-
tial τ2. Using ‘on average MAR’, MB for τ2 was
somewhere in-between in all scenarios. When the typical
loop was doubled, MB for τ2 decreased slightly in all
scenarios and strategies.

Inconsistency factor
Under consistency, MB for IF was slightly positive and
similar in all strategies for moderate, balanced MOD
(range: 0.01–0.03), but increased further for large, bal-
anced MOD (range: 0.05–0.07) (Supplementary Figure 1,
Additional file 5). Contrariwise, IF was underestimated
for unbalanced MOD (range: − 0.07 – -0.05). Overall,
the size of the loop and the extent of τ2 did not appear
to affect the results notably. Nevertheless, under incon-
sistency, MB for IF sunk approximately to -2 in all strat-
egies regardless of the scenario.

P-score for each intervention
Contrary to moderate MOD, P-score of the new interven-
tion (P-score-N) was markedly underestimated in all strat-
egies – but more profoundly in ‘uncertainty interval’ – for

large MOD (Supplementary Figure 2, Additional file 5).
Underestimation of P-score-N was more considerable
under consistency than inconsistency but mitigated
for substantial τ2. However, in inconsistent networks
with moderate MOD and substantial τ2, P-score-N
was overestimated.
P-score of old intervention (P-score-O) was underesti-

mated in all strategies for all scenarios, yet more pro-
foundly for large MOD and/or present inconsistency
(Supplementary Figure 3, Additional file 5). For large
MOD, ‘uncertainty interval’ exerted comparatively lower
MB for P-score-O. Overall, substantial τ2 or a larger
loop led to slightly larger negative MB for P-score-O.
On the contrary, MB for P-score for placebo was posi-
tive in all strategies for all scenarios and became particu-
larly substantial for large MOD irrespectively the
presence or absence of inconsistency (Supplementary
Figure 4, Additional file 5). The extent of τ2 and loop
size did not implicate the results overall.

95% coverage probability
As expected, the coverage probability for log OR was
below its nominal level for CCA and ICAp in all scenar-
ios (Fig. 5). In the presence of consistency and small τ2,
regardless of MOD extent, or substantial τ2 and large

Fig. 3 Mean bias for log OR (new versus old intervention) under informative MOD while accounting for the scenarios on the number of studies
(typical loop, double), the extent of MOD (moderate, large), the balance of MOD (balance, imbalance), the extent of between-trial variance (τ2;
0.02 as small, 0.08 as substantial), and extent of inconsistency (absent, moderate). AVG, on average MAR; CCA, complete case analysis; ICAp,
imputed case analysis of observed event risks; IF, inconsistency factor; MOD, missing outcome data; UI, uncertainty interval
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MOD, ‘uncertainty interval’ led to coverage probability
for log OR above its nominal level, but it decreased as
inconsistency regulated the network. Nevertheless, using
‘uncertainty interval’, coverage probability for log OR
reached its nominal level in a typical loop with
consistency, moderate MOD and substantial τ2, as well
as in a typical loop with present inconsistency, large
MOD and small τ2. In general, the coverage probability
for log OR using ‘on average MAR’ was found some-
where in-between; however, it approached its nominal
level only in a typical loop with present consistency and
small τ2. Overall, all strategies underperformed when, in
addition to inconsistency, MOD were moderate, or loop
became larger. In general, results on the coverage prob-
ability for IF were in line with those on the coverage
probability for log OR (Supplementary Figure 5,
Additional file 5).

Mean width of 95% confidence interval
In all scenarios, ‘uncertainty interval’ provided the widest
confidence interval for log OR, followed by ‘on average
MAR’, whereas CCA and ICAp had similar mean width
of the confidence interval for log OR (Fig. 6). When the
loop became larger, the mean width of the confidence
interval for log OR reduced in all strategies, but it

slightly increased in the presence of inconsistency. The
extent of τ2 did not seem to implicate the results. Over-
all, results on the mean width of the confidence interval
for IF were in line with those on the mean width of the
confidence interval for log OR (Supplementary Figure 6,
Additional file 5).

Discussion
The present study is the first to investigate the perform-
ance of core NMA estimates using four different strat-
egies to address MOD under MAR assumption within a
frequentist NMA framework. We used our previous col-
lection of networks from several health-related fields to
perform the empirical study and to define the simulation
scenarios [33]. We classified the strategies to those mod-
elling (‘on average MAR’ – the reference strategy in our
study) versus excluding (CCA and ‘uncertainty interval’)
or imputing MOD (ICAp) and to those accounting for
(‘on average MAR’ and ‘uncertainty interval’) versus ig-
noring uncertainty about MAR (CCA and ICAp).
Our empirical study indicated that ‘on average MAR’

agreed overall with CCA and ICAp in terms of log ORs,
IFs and P-scores but it led to comparatively larger stand-
ard errors of log ORs and IFs under the latter two, espe-
cially for moderate and large MOD. Agreement between

Fig. 4 Mean bias for between-trial variance (τ2) under informative MOD while accounting for the scenarios on the number of studies (typical
loop, double), the extent of MOD (moderate, large), the balance of MOD (balance, imbalance), and extent of inconsistency (absent, moderate).
AVG, on average MAR; CCA, complete case analysis; ICAp, imputed case analysis of observed event risks; IF, inconsistency factor; MOD, missing
outcome data; UI, uncertainty interval
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‘on average MAR’ and ‘uncertainty interval’ was quite poor
overall regarding the standard errors of log ORs and IFs,
as they were systematically larger under the latter. By in-
creasing the prior variance of log IMOR to 4 (the max-
imum allowed value to prevent inaccurate standard error
of within-trial log ORs according to White et al. [8]), the
agreement between ‘on average MAR’ and ‘uncertainty
interval’ improved slightly for all NMA estimates (Supple-
mentary Figure 27, Additional file 5). A good agreement
between these two strategies could be achieved for a prior
variance of log IMOR above 4, but then the statistical
properties of log OR (and IF consequently) would be com-
promised [8]. It can be, therefore, concluded that ‘uncer-
tainty interval’ leads unnecessarily to excessively large
standard errors for log OR and IF and thus, to overly con-
servative inferences.
The simulation study confirmed the agreement of ‘on

average MAR’ with CCA and ICAp in terms of log OR
and IF, regardless of the scenario; however, their per-
formance was compromised to a similar extent when
MOD was large or unbalanced and inconsistency regu-
lated the network as a consequence of underweighting
further studies with large or unbalanced MOD – the
sample size is reduced substantially and/or unbalanced

and event rate is distorted – which, in conjunction with
inconsistency in the network, affects the estimation of τ2

and by extent, NMA log OR and IF. As also revealed by
the simulation study of Gamble and Hollis [13] for
meta-analysis log OR, ‘uncertainty interval’ led to the
least precise estimation of log OR (and IF as indicated
by the large width of confidence intervals), especially in
a typical loop with large MOD. Overall, contrary to
other scenarios, a larger loop with moderate, balanced
MOD, consistent evidence and small τ2 secured good
statistical properties for the NMA estimates, since more
(and relatively homogeneous) information was available,
such as the number of studies and observed outcome
data. As expected, low MOD ensured broad agreement
among the strategies for all frequentist measures (Sup-
plementary Figure 17–26, Additional file 5).
As indicated by the empirical study and the mean width

of confidence intervals, CCA and ICAp provided more
precise estimates of log OR and IF as opposed to ‘on aver-
age MAR’ and ‘uncertainty interval’; however, the former
two yielded comparatively larger τ2. A possible explan-
ation may be that the latter strategies assign a compara-
tively lower weight to trials with MOD, and hence,
provide more imprecise within-trial log ORs [8, 10, 13]

Fig. 5 Coverage probability of 95% confidence interval for log OR (new versus old intervention) under informative MOD while accounting for the
scenarios on the number of studies (typical loop, double), the extent of MOD (moderate, large), balance of MOD (balance, imbalance), the extent
of between-trial variance (τ2; 0.02 as small, 0.08 as substantial), and extent of inconsistency (absent, moderate). AVG, on average MAR; CCA,
complete case analysis; ICAp, imputed case analysis of observed event risks; IF, inconsistency factor; MOD, missing outcome data; UI,
uncertainty interval
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which result in the reduction of τ2 [8]. In principle, the
trade-off between the precision loss in log ORs and re-
duced τ2 intensifies as MOD increase. However, since the
estimated τ2 captures the extent of both τ2 and IF, and be-
cause different strategies quantify τ2 differently – while
also considering the extent of MOD – the estimation of τ2

was substantially implicated in all strategies and for all
scenarios. Having substantial τ2 and consistent evidence,
underestimated τ2 in all strategies but more profoundly
when the uncertainty due to MOD was considered.
Since the DerSimonian and Laird estimator was used,
truly substantial heterogeneity was inevitably underesti-
mated [47] (in our empirical study, zero τ2 was esti-
mated in 17, 21, 31, and 69% of the networks using
ICAp, CCA, ‘on average MAR’, and ‘uncertainty inter-
val’, respectively), especially for strategies that account
for the uncertainty due to MOD as they mitigate statis-
tical heterogeneity in essence by inflating within-trial
standard errors. Nevertheless, having inconsistency in
conjunction with substantial τ2, overestimated τ2 under
CCA and ICAp but underestimated τ2 further using
‘uncertainty interval’. Only when evidence was consist-
ent with small τ2 and moderate MOD, had different
strategies little impact on the estimation of τ2.

When ‘uncertainty interval’ was used, netmeta gave
warnings for the multi-arm trials in four networks: within-
trial standard errors were inconsistent in some multi-arm
trials in two networks [48, 49], whereas treatment-arm
variances were negative in some multi-arm trials in an-
other two networks [50, 51]. After using a tolerance
threshold of 0.02, the problem disappeared only in one
network [49]; however, a new warning appeared, as one of
the ‘problematic’ multi-arm trials provided negative treat-
ment variances. To preserve these networks in our ana-
lyses while tackling the warnings, we decided to reduce
each ‘problematic’ multi-arm trial to a two-arm trial, while
ensuring that this amendment would not affect the con-
nectivity of the corresponding networks.
The strategies evaluated in the present work have been

proposed for aggregate binary MOD. Mavridis et al. [52]
have proposed a two-stage pattern-mixture model (similar
to the ‘on average MAR’ strategy) to handle aggregate
continuous MOD in a pairwise and network meta-
analysis. To our knowledge, we are not aware of any pub-
lished method to address time-to-event MOD and ordinal
MOD in a series of trials. Furthermore, apart from the ‘on
average MAR’ strategy (section “Modelling MOD using a
two-stage pattern-mixture model”), all other strategies can

Fig. 6 Mean width of 95% confidence interval for log OR (new versus old intervention) under informative MOD while accounting for the
scenarios on the number of studies (typical loop, double), the extent of MOD (moderate, large), the balance of MOD (balance, imbalance), the
extent of between-trial variance (τ2; 0.02 as small, 0.08 as substantial), and extent of inconsistency (absent, moderate). AVG, on average MAR; CCA,
complete case analysis; ICAp, imputed case analysis of observed event risks; IF, inconsistency factor; MOD, missing outcome data; UI,
uncertainty interval
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be applied only under the MAR assumption. To indicate
non-MAR assumptions using the two-stage pattern-
mixture model (section “Modelling MOD using a two-
stage pattern-mixture model”), we should set Δi, k ≠ 0 in
Eq. (4). Ideally, Δi, k should be informed by clinical expert
opinion tailored to the outcome and comparison type [7].
Turner et al. [7], and White et al. [9] discuss elicitation ap-
proaches that use an expert opinion on defining the de-
gree of deviation from the MAR assumption as a
sensitivity analysis in a series of trials. Nevertheless, exten-
sive elicitation studies are needed to inform the missing-
ness parameters properly in a pairwise and network meta-
analysis.
In the present study, we have applied the ‘on average

MAR’ strategy without accounting for important effect
modifiers. To account also for important effect modifiers
while avoiding ecological bias, it would require that we
have access to individual patient data and enough trials
to allow for effect-modification adjustments in a mul-
tiple imputation framework. Provided that both pre-
requisites are fulfilled, then multiple imputation that also
allows for missing not at random assumptions may offer
more flexibility and also improve the results van Buuren
et al. [53] developed a multiple imputation model that
incorporates a delta parameter like IMOR under
pattern-mixture model to investigate the degree of de-
parture from MAR in survival analysis in a clinical trial.
However, multiple imputation is currently not the norm
in pairwise and network meta-analysis.
Major shortcomings of the present study mainly stem

from the reporting quality of the collected networks and
the implementation of a two-stage approach to address
MOD. The extraction quality of the analysed networks was
overall suboptimal since the reviewers failed to provide any
information on the outcome of completers and the strategy
applied to handle MOD [3, 54]. An inaccurate extraction
may seriously compromise the validity of the NMA results,
which, by extent, may hinder the true comparative per-
formance of different strategies for MOD [54].
One limitation for using the two-stage approach to ad-

dress binary MOD is the need for applying an abstract con-
tinuity correction to address the zero-cell problem that
may arise (we faced this problem in four networks). Con-
tinuity correction has been repeatedly criticised for being a
suboptimal strategy as it may lead to biased results [28, 55].
Another limitation is the reliance on normality assumption
where, in addition, the (actually estimated) within-trial
standard errors are assumed known (hidden assumption
two in [56]); an assumption that is rather hard to defend in
a typical pairwise or network meta-analysis where large and
many studies are not the norm to justify this approximation
[21, 24]. Consequently, the inherent correlation between
within-trial standard errors and log ORs is ignored which,
furthermore, increases the risk to obtain biased pooled log

ORs [56–58]. These limitations can be tackled using
likelihood-based methods – especially, Bayesian analysis,
which remains the most popular framework in NMA [19,
20] – as the exact likelihood of the binary outcome data is
considered, and thus, both continuity correction and nor-
mality assumption are inherently avoided [56].
Lastly, while ‘on average MAR’ is the most proper strat-

egy to address MOD, it does not allow the observed data to
contribute to the estimation of log IMOR – while borrow-
ing strength across the trials – so that the model can ‘learn’
about the missingness mechanism(s) [7]. This is because
‘on average MAR’ merely fixes the log ORs and standard
errors to the assumed prior mean (equal 0) and variance
for log IMOR. Consequently, ‘on average MAR’ considers
log IMOR to be independent of observed and missing out-
comes [7, 8]. Furthermore, this strategy allows only a few
scenarios about the structure of log IMOR to be modelled,
therefore, restricting the full spectrum of modelling possi-
bilities that best align with the condition and interventions
investigated [7, 8]. These limitations can be overcome easily
through a one-stage pattern-mixture model that allows the
model to ‘learn’ about the missingness mechanism(s) while
using plausible prior structures for the missingness param-
eter (as proposed in Turner et al. [7] for a pairwise meta-
analysis and extended in NMA by Spineli [33]).

Conclusions
CCA and ICAp are simple to apply yet suboptimal strat-
egies, as they take MAR assumption at face value, and they
may result in misleading inferences, especially when MOD
are large and/or unbalanced. Accountability of uncertainty
due to MOD rendered ‘on average MAR’ and ‘uncertainty
interval’ as better alternatives – at least conceptually – to
address MOD under MAR. Nevertheless, being a refine-
ment of CCA, ‘uncertainty interval’ shares the same short-
comings and induces unnecessary imprecision in the NMA
estimates with implications for the inferences. Therefore,
modelling MOD via a pattern-mixture model while assum-
ing MAR as a starting point (i.e. ‘on average MAR’) should
be preferred to exclusion and imputation [27] as it consti-
tutes a more proper strategy to address MOD in a system-
atic review – although computationally less straightforward
– because it maintains the randomised sample in each arm
of every trial while allowing for possible assumptions to
quantify the association between MOD and outcome (and
uncertainty thereof) via log IMOR. Nevertheless, in the
presence of large MOD alone or in conjunction with sub-
stantial τ2 and inconsistent evidence, NMA estimates under
‘on average MAR’ should be interpreted with caution be-
cause their statistical performance is compromised to some
extent. In this case, a sensitivity analysis to selected plaus-
ible assumptions about log IMOR is highly recommended
to frame the limitations in the interpretation of NMA
results.

Spineli and Kalyvas BMC Medical Research Methodology           (2020) 20:48 Page 13 of 15



Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-00929-9.

Additional file 1. Analysed dataset.

Additional file 2. R scripts for (i) contrast-level long format dataset & (ii)
missing outcome data strategies.

Additional file 3. Supplementary tables for the empirical study.

Additional file 4. Code to generate triangle networks and analyse in
frequentist network meta-analysis.

Additional file 5. Supplementary figures for the empirical and
simulation study.

Abbreviations
CCA: Complete case analysis; DGM: Data generating model; ICAp: Imputed
case analysis of observed event risks; IF: Inconsistency factor;
IMOR: Informative missingness odds ratio; LoA: Limits of agreement;
MAR: Missing at random; MB: Mean bias; MOD: Missing participant outcome
data; NMA: Network meta-analysis; OR: Odds ratio; P-score-N: P-score for new
intervention; P-score-O: P-score for old intervention; SUCRA: Surface under
the cumulative ranking curve

Acknowledgements
The authors would like to thank Gerta Rücker for her assistance relating to
the statistical aspects of the present work. Chrysostomos Kalyvas (CK) is
employed by Merck Sharp & Dohme (MSD). This article reflects the views of
CK and LMS and should not be construed to represent MSD’s views or
policies. The present work has been presented in the 40th Annual
Conference of the International Society for Clinical Biostatistics in Leuven,
and in the 64th Annual Meeting of the German Association for Medical
Informatics, Biometry and Epidemiology (Deutschen Gesellschaft für
Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS)) in
Dortmund (doi: https://doi.org/10.3205/19gmds077).

Authors’ contributions
LMS conceived the idea of the study. LMS and CK designed the study. LMS
analysed the empirical data. LMS and CK performed the simulations. LMS
drafted the article. Both authors revised the article critically for important
intellectual content and approved the final version of the article.

Funding
This work was supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft under grant number SP 1664/1–1) to LMS. The
funder was not involved in the study design; in the collection, analysis and
interpretation of data; in the writing of the report; and in the decision to
submit the article for publication.

Availability of data and materials
The authors declare that all data supporting the findings of this study are
available within the article and its supplementary information files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Midwifery Research and Education Unit (OE 6410), Hannover Medical
School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany. 2Department of
Biostatistics and Research Decision Sciences, MSD Europe Inc, Clos du Lynx 5,
1200 Brussels, Belgium.

Received: 28 January 2019 Accepted: 17 February 2020

References
1. Akl EA, Carrasco-Labra A, Brignardello-Petersen R, Neumann I, Johnston BC,

Sun X, et al. Reporting, handling and assessing the risk of bias associated
with missing participant data in systematic reviews: a methodological
survey. BMJ Open. 2015;5:e009368.

2. Kahale LA, Diab B, Brignardello-Petersen R, Agarwal A, Mustafa RA, Kwong J,
et al. Systematic reviews do not adequately report or address missing
outcome data in their analyses: a methodological survey. J Clin Epidemiol.
2018;99:14–23.

3. Spineli LM, Yepes-Nuñez JJ, Schünemann HJ. A systematic survey shows
that reporting and handling of missing outcome data in networks of
interventions is poor. BMC Med Res Methodol. 2018;18:115.

4. Spineli LM, Pandis N, Salanti G. Reporting and handling missing outcome
data in mental health: a systematic review of Cochrane systematic reviews
and meta-analyses. Res Synth Methods. 2015;6:175–87.

5. Akl EA, Kahale LA, Agoritsas T, Brignardello-Petersen R, Busse JW, Carrasco-
Labra A, et al. Handling trial participants with missing outcome data when
conducting a meta-analysis: a systematic survey of proposed approaches.
Syst Rev. 2015;4:98.

6. Carpenter J, Kenward M. Missing data in randomised controlled trials: a
practical guide. Missing data in randomised controlled trials: a practical
guide. Birmingham: Health Technology Assessment Methodology
Programme; 2007. http://researchonline.lshtm.ac.uk/id/eprint/4018500.

7. Turner NL, Dias S, Ades AE, Welton NJ. A Bayesian framework to account for
uncertainty due to missing binary outcome data in pairwise meta-analysis.
Stat Med. 2015;34:2062–80.

8. White IR, Higgins JP, Wood AM. Allowing for uncertainty due to missing
data in meta-analysis--part 1: two-stage methods. Stat Med. 2008;27:711–27.

9. White IR, Welton NJ, Wood AW, Ades AE, Higgins JP. Allowing for
uncertainty due to missing data in meta-analysis--part 2: hierarchical
models. Stat Med. 2008;27:728–45.

10. Higgins JP, White IR, Wood AM. Imputation methods for missing outcome
data in meta-analysis of clinical trials. Clin Trials. 2008;5:225–39.

11. Spineli LM, Higgins JP, Cipriani A, Leucht S, Salanti G. Evaluating the impact
of imputations for missing participant outcome data in a network meta-
analysis. Clin Trials. 2013;10:378–88.

12. Akl EA, Johnston BC, Alonso-Coello P, Neumann I, Ebrahim S, Briel M, et al.
Addressing dichotomous data for participants excluded from trial analysis: a
guide for systematic reviewers. PLoS One. 2013;8:e57132.

13. Gamble C, Hollis S. Uncertainty method improved on best-worst case
analysis in a binary meta-analysis. J Clin Epidemiol. 2005;58:579–88.

14. Guyatt GH, Ebrahim S, Alonso-Coello P, Johnston BC, Mathioudakis AG, Briel
M, et al. GRADE guidelines 17: assessing the risk of bias associated with
missing participant outcome data in a body of evidence. J Clin Epidemiol.
2017;87:14–22.

15. White IR, Carpenter J, Horton NJ. Including all individuals is not enough:
lessons for intention-to-treat analysis. Clin Trials. 2012;9:396–407.

16. Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: assessing
risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J,
Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane handbook for
systematic reviews of interventions version 6.0 (updated July 2019).
Cochrane; 2019. Available from www.training.cochrane.org/handbook.
Accessed 3 Feb 2020.

17. Spineli LM. Modeling missing binary outcome data while preserving
transitivity assumption yielded more credible network meta-analysis results.
J Clin Epidemiol. 2019;105:19–26.

18. Hasselblad V. Meta-analysis of multitreatment studies. Med Decis Mak. 1998;
18:37–43.

19. Petropoulou M, Nikolakopoulou A, Veroniki AA, Rios P, Vafaei A, Zarin W,
et al. Bibliographic study showed improving statistical methodology of
network meta-analyses published between 1999 and 2015. J Clin Epidemiol.
2017;82:20–8.

20. Efthimiou O, Debray TP, van Valkenhoef G, Trelle S, Panayidou K, Moons KG,
et al. GetReal in network meta-analysis: a review of the methodology. Res
Synth Methods. 2016;7:236–63.

21. Nikolakopoulou A, Chaimani A, Veroniki AA, Vasiliadis HS, Schmid CH, Salanti
G. Characteristics of networks of interventions: a description of a database
of 186 published networks. PLoS One. 2014;9:e86754.

Spineli and Kalyvas BMC Medical Research Methodology           (2020) 20:48 Page 14 of 15

https://doi.org/10.1186/s12874-020-00929-9
https://doi.org/10.1186/s12874-020-00929-9
https://doi.org/10.3205/19gmds077
http://researchonline.lshtm.ac.uk/id/eprint/4018500
http://www.training.cochrane.org/handbook


22. Rücker G, Schwarzer G. Reduce dimension or reduce weights? Comparing
two approaches to multi-arm studies in network meta-analysis. Stat Med.
2014;33:4353–69.

23. Rücker G. Network meta-analysis, electrical networks and graph theory. Res
Synth Methods. 2012;3:312–24.

24. Davey J, Turner RM, Clarke MJ, Higgins JP. Characteristics of meta-analyses
and their component studies in the Cochrane database of systematic
reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol.
2011;11:160.

25. White IR, Carpenter J, Evans S, Schroter S. Eliciting and using expert
opinions about dropout bias in randomised controlled trials. Clin Trials.
2007;4:125–39.

26. Akl EA, Briel M, You JJ, Lamontagne F, Gangji A, Cukierman-Yaffe T, et al.
LOST to follow-up information in trials (LOST-IT): a protocol on the potential
impact. Trials. 2009;10:40.

27. Wood AM, White IR, Hillsdon M, Carpenter J. Comparison of imputation and
modelling methods in the analysis of a physical activity trial with missing
outcomes. Int J Epidemiol. 2005;34:89–99.

28. Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and
avoidance of continuity corrections in meta-analysis of sparse data. Stat
Med. 2004;23:1351–75.

29. Little RJA, Rubin DB. Statistical analysis with missing data. 2nd ed. Hoboken:
Wiley; 2002.

30. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed
treatment comparison meta-analysis. Stat Med. 2010;29:932–44.

31. Rücker G, Schwarzer G. Ranking treatments in frequentist network meta-analysis
works without resampling methods. BMC Med Res Methodol. 2015;15:58.

32. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical
summaries for presenting results from multiple-treatment meta-analysis: an
overview and tutorial. J Clin Epidemiol. 2011;64:163–71.

33. Spineli LM. An empirical comparison of Bayesian modelling strategies for
missing binary outcome data in network meta-analysis. BMC Med Res
Methodol. 2019;19:86.

34. Sackett DL, Richardson WS, Rosenberg W, Haynes RB. Evidence based medicine:
how to practice and teach EBM. New York: Churchill Livingstone; 1997.

35. Bland JM, Altman DG. Measuring agreement in method comparison studies.
Stat Methods Med Res. 1999;8:135–60.

36. Bland MJ, Altman DG. Statistical methods for assessing agreement between
two methods of clinical measurement. Lancet. 1986;1:307–10.

37. R Core Team. R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2016. https://www.R-project.
org/.

38. Chang W. R graphics cookbook: practical recipes for visualizing data. 1st ed.
California: O’Reilly Media; 2013.

39. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas.
1960;20:37–46.

40. Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP. Predictive
distributions for between-study heterogeneity and simple methods for their
application in Bayesian meta-analysis. Stat Med. 2015;34:984–98.

41. Landis JR, Koch GG. The measurement of observer agreement for
categorical data. Biometrics. 1977;33:159–74.

42. Rücker G, Krahn U, König J, Efthimiou O, Schwarzer G. netmeta: network
meta-analysis using frequentist methods. R package, version 1.1–0. 2019.
https://github.com/guido-s/netmeta http://meta-analysis-with-r.org.

43. Jackson D, White IR, Riley RD. Quantifying the impact of between-study
heterogeneity in multivariate meta-analyses. Stat Med. 2012;31:3805–20.

44. Spineli LM, Kalyvas C, Pateras K. Participants’ outcomes gone missing within
a network of interventions: Bayesian modeling strategies. Stat Med. 2019;38:
3861–79.

45. Hartung J, Knapp G. A refined method for the meta-analysis of controlled
clinical trials with binary outcome. Stat Med. 2001;20:3875–89.

46. Veroniki AA, Mavridis D, Higgins JP, Salanti G. Characteristics of a loop of
evidence that affect detection and estimation of inconsistency: a simulation
study. BMC Med Res Methodol. 2014;14:106.

47. Langan D, Higgins JPT, Simmonds M. Comparative performance of
heterogeneity variance estimators in meta-analysis: a review of simulation
studies. Res Synth Methods. 2017;8:181–98.

48. Bottomley JM, Taylor RS, Ryttov J. The effectiveness of two-compound
formulation calcipotriol and betamethasone dipropionate gel in the
treatment of moderately severe scalp psoriasis: a systematic review of direct
and indirect evidence. Curr Med Res Opin. 2011;27:251–68.

49. Baker WL, Baker EL, Coleman CI. Pharmacologic treatments for chronic
obstructive pulmonary disease: a mixed-treatment comparison meta-
analysis. Pharmacotherapy. 2009;29:891–905.

50. Linde K, Kriston L, Rücker G, Jamil S, Schumann I, Meissner K, et al. Efficacy
and acceptability of pharmacological treatments for depressive disorders in
primary care: systematic review and network meta-analysis. Ann Fam Med.
2015;13:69–79.

51. Wu MS, Tan SC, Xiong T. Indirect comparison of randomised controlled
trials: comparative efficacy of dexlansoprazole vs. esomeprazole in the
treatment of gastro-oesophageal reflux disease. Aliment Pharmacol Ther.
2013;38:190–201.

52. Mavridis D, White IR, Higgins JP, Cipriani A, Salanti G. Allowing for
uncertainty due to missing continuous outcome data in pairwise and
network meta-analysis. Stat Med. 2015;34:721–41.

53. van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing
blood pressure covariates in survival analysis. Stat Med. 1999;18:681–94.

54. Spineli LM. Missing binary data extraction challenges from Cochrane
reviews in mental health and Campbell reviews with implications for
empirical research. Res Synth Methods. 2017;8:514–25.

55. Bradburn MJ, Deeks JJ, Berlin JA, Russell LA. Much ado about nothing: a
comparison of the performance of meta-analytical methods with rare
events. Stat Med. 2007;26:53–77.

56. Jackson D, White IR. When should meta-analysis avoid making hidden
normality assumptions? Biom J. 2018;60:1040–58.

57. Rücker G, Schwarzer G. Contribution to the discussion of “when should
meta-analysis avoid making hidden normality assumptions?”. Biom J. 2018;
60:1071–2.

58. Hoaglin DC. Misunderstandings about Q and ‘Cochran’s Q test’ in meta-
analysis. Stat Med. 2016;35:485–95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Spineli and Kalyvas BMC Medical Research Methodology           (2020) 20:48 Page 15 of 15

https://www.R-project.org/
https://www.R-project.org/
https://github.com/guido-s/netmeta
http://meta-analysis-with-r.org

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Addressing binary MOD under MAR
	Exclusion of MOD and ignorance of uncertainty due to MOD
	Exclusion of MOD but accountability of uncertainty due to MOD
	Modelling MOD using a two-stage pattern-mixture model
	Imputing the same risk as observed and ignoring uncertainty due to MOD

	An empirical investigation of the strategies
	Analysed dataset of systematic reviews with NMA
	Bland-Altman plots to investigate the agreement
	Cohen’s kappa statistic to measure agreement
	Model specification


	Results of the empirical study
	Simulation study
	Simulation scenarios using empirical evidence
	Model specification and illustration of results

	Results of the simulation study
	Mean bias
	Log OR between new and old intervention
	Common between-trial variance
	Inconsistency factor
	P-score for each intervention

	95% coverage probability
	Mean width of 95% confidence interval

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

