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The development of complement inhibitors represented one of the major breakthroughs in clinical

nephrology in the last decade. Complement inhibition has dramatically transformed the outcome of one of

the most severe kidney diseases, the atypical hemolytic uremic syndrome (aHUS), a prototypic

complement-mediated disorder. The availability of complement inhibitors has also opened new promising

perspectives for the management of several other kidney diseases in which complement activation is

involved to a variable extent. With the rapidly growing number of complement inhibitors tested in a

rapidly increasing number of indications, a rational use of this innovative and expensive new therapeutic

class has become crucial. The present review aims to summarize what we know, and what we still ignore,

regarding complement activation and therapeutic inhibition in kidney diseases. It also provides some clues

and elements of thoughts for a rational approach of complement modulation in kidney diseases.
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T
he introduction in clinical practice of complement
inhibitors was one of the most significant thera-

peutic achievements during the last decade. The tam-
ing of the old and powerful complement system has
opened new clinical perspectives that materialized with
the dramatic impact of the first C5 blocker, eculizumab,
on the prognosis of 2 severe diseases—aHUS1,2 and
paroxysmal nocturnal hemoglobinuria (PNH).3

This breakthrough has fueled among clinicians and
patients a renewed interest in complement and high ex-
pectations regarding the potential benefit of complement
modulation in various kidney diseases, but also in the
setting of kidney transplantation and of disorders affecting
other organs. More than 10 years after the introduction of
eculizumab, andwith the growing number of complement
inhibitors in development, it is time to reflect on the
rational use of this innovative therapeutic class.
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cascade (Figure 1). It was a turning point in the man-
agement of 2 rare but severe complement-mediated
diseases, aHUS and PNH. C5 blockade provided a tar-
geted, efficacious treatment, with a reasonable safety
profile, for patients affected with these disorders.

In patients with PNH, eculizumab significantly
reduced, if not halted, complement-induced hemolysis,
alleviated or decreased the need for repeated trans-
fusions, reduced thrombosis-related morbidity, but
proved inefficacious for treating bone marrow failure
associated to PNH.4,5 In aHUS, C5 blockade not only
induced rapid and sustained hematological remission
but also led to a significant improvement in kidney
function of affected patients, and the risk of end-stage
kidney disease decreased from w50% to 60% to
w10% to 15%2,6 with the use of eculizumab.

The effect of C5 blockade on the natural history of
PNH and aHUS was undoubtedly spectacular. How-
ever, this led to a misunderstanding and some level of
confusion about what one may expect from comple-
ment blockade in other diseases.

Even though PNH and aHUS are 2 prototypic
complement-mediated diseases, they diverge in various
aspects related to complement involvement, a first
illustration of the complex approach to therapeutic
complement inhibition (Supplementary Figure S1). C5-
induced cellular damage, on red blood cells in one case,
and on endothelial cells in the other, is a hallmark of
1165
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Figure 1. Representation of the 3 activation pathways of the complement cascade and complement-associated kidney involvement. Main
targets of complement inhibitors are shown in full symbols. Complement biomarkers are shown in dashed symbols. C5aR1, C5a receptor 1; FB,
factor B; FD, factor D; FH, factor H; FI, factor I; MAC, membrane attack complex; MBL, mannose-binding lectin.
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PNH and aHUS. However, in PNH, all affected patients
carry an acquired, clonal dysregulation of the com-
plement system, owing to the loss of anchoring at the
surface of red blood cells of 2 complement inhibitors,
CD55 and CD59. Furthermore, PNH can be diagnosed
using rather simple tests.7

In contrast, aHUS is associated to a constitutional
complement alternative pathway dysregulation in a
subset of patients (30%–60%),8,9 and this dysregula-
tion is only a risk factor for the disease. More impor-
tantly, there is to date no definite, fully reliable
diagnostic test for aHUS in particular, and for
complement-mediated thrombotic microangiopathies
(TMAs) in general. The rational use of complement
inhibitors should take into account the variable aspects
of complement involvement in distinct diseases.

Furthermore, one should keep in mind that, in both
PNH and aHUS, C5 blockade does not reverse the initial
1166
driver of the disease (mainly loss of the control of the
alternative C3 convertase), but targets its downstream
consequences (C5 activation).

Complement Inhibition in Kidney Diseases

Beyond aHUS

The list of potential indications for complement in-
hibitors in kidney diseases is rapidly growing (Tables 1
and 2). It includes mostly glomerular diseases, in
which one cannot easily transpose the approach of
complement inhibition used in aHUS. For instance, aHUS
is a rather homogeneous disorder (at least in its primary
forms), usually acute and in which most, if not all,
complement toxicity is mediated by C5 activation,10,11

particularly C5b.12 The effect of complement blockade
on hematological features of aHUS can be expected
within days and on the improvement of kidney function
within days to weeks6,13 (Supplementary Figure S1).
Kidney International Reports (2022) 7, 1165–1178
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In contrast, glomerular diseases have, most
frequently, subacute/chronic presentation, carry a
significant clinical and pathologic heterogeneity, and
the role of complement in these nephropathies is
polymorph (Figure 2a and Table 1). In this context, one
may expect that the effect of the complement blockade
on urinary parameters, notably proteinuria, occurs
within months and its impact on kidney function
preservation within years.

Furthermore, complement activation accounts for
variables degrees and aspects in the pathogenesis of
kidney diseases in general and of glomerular diseases in
particular. In respect of the role of the complement,
glomerular diseases can be broadly classified into 4,
potentially intersecting, categories (Figure 2a and
Table 1).

In the first category of kidney diseases, the com-
plement is assumed to be a major, if not the sole, driver
of the glomerular disease, acute postinfectious
glomerulonephritis, and C3 glomerulopathy being the
most illustrative examples of this category.14 In this
setting, the simple deposition of complement degrada-
tion products (mainly C3c and C3d) is supposed to
initiate glomerular injury. However, one cannot
exclude that the deposition of complement degradation
products simply reflects other yet not characterized
drivers of the disease. Nevertheless, in this category of
kidney diseases, the restoration of a normal control of
the complement key enzymes, notably the alternative
C3 convertase, is a potential curative option.

The second category encompasses autoantibody and
immune complex-mediated glomerular diseases. In this
setting, it is assumed that complement activation,
notably of the classical pathway and to some extent of
the lectin pathway, amplifies the initial insult due to
autoantibodies or immune complexes. For these kidney
diseases, the curative approach should aim, when
feasible, to halt the deposition of autoantibodies and
immune complexes within the glomeruli. Complement
inhibition may only help attenuate kidney damage,
while awaiting for the effect of immunosuppressive
drugs on the production of pathogenic autoantibodies
and immune complexes to occur. Complement inhibi-
tion should be considered as a complementary and
transient therapeutic approach, and maintained only
when the production of pathogenic autoantibodies is
not or cannot be efficiently halted. This category in-
cludes among others, lupus nephritis, IgA nephropa-
thy, membranous nephropathy, antiglomerular
basement membrane antibody disease and potentially
primary Ig-mediated membranoproliferative glomeru-
lonephritis, and humoral rejection of the kidney
graft.15–17 The respective role of Ig and complement
deposition in Ig-mediated membranoproliferative
Kidney International Reports (2022) 7, 1165–1178
glomerulonephritis is however still a matter of debate
(reviewed in Fakhouri et al.14).

The third category represents inflammatory forms of
any acute or subacute/chronic glomerular disease with
or without immune deposits. Inflammatory changes may
refer to mesangial, endo or extracapillary proliferation,
glomerular capillary wall necrosis, arteritis, and/or per-
itubular capillaritis. These inflammatory changes are
predominantly dependent on C5 activation and the
subsequent release of C5a (recruitment of inflammatory
cells) and C5b (membrane attack complex-induced
tissular necrosis).18–21 In this setting, C5 activation is a
nonspecific inflammatory insult and complement
blockade a nonspecific anti-inflammatory treatment.
Nevertheless, C5 blockade may provide an alternative to
corticosteroids for the management of acute inflamma-
tory changes in most of the glomerular diseases, with 2
main potential advantages: a more acceptable safety
profile and potentially an improved rate of complete
short- and long-term renal remission, as compared with
corticosteroids. This category includes antineutrophil
cytoplasm antibody-associated vasculitis and exacerba-
tion of several glomerular diseases (e.g., crescentic IgA
nephropathy or C3 glomerulopathy).

The fourth category refers to complement-mediated
kidney TMA. Complement-induced damage on the
endothelial cells during kidney TMA may seem
nonspecific (as in the previous category). However, the
marked predominance, if not the exclusiveness, of
kidney involvement during this disorder, combined
with the absence of pathologic kidney inflammatory
changes, is unique to complement-mediated TMA. This
category includes obviously aHUS, but the exact
spectrum of complement-mediated TMA is still a mat-
ter of debate, particularly in regard to TMA associated
to coexistent disorders (malignancy, autoimmune dis-
eases, drugs, and infections).22

These categories may overlap, and the role of the
complement may vary in a single patient with a well-
characterized type of a kidney disorder, over the
course of the disease. For example, the glomerular
deposition of C3 degradation products plays the pre-
dominant role during the chronic/subacute phase of a
C3 glomerulopathy, whereas superimposed C5 activa-
tion may contribute to disease exacerbation, following
infection for example.23,24 This also applies for chronic/
subacute (amplifying role of the complement classical
and lectin pathways) or rapidly progressive (C5-
triggered inflammation) forms of IgA nephropathy.

Integration of the variable patterns of complement
activation between kidney diseases, and between
distinct phases of a kidney disease, will help select one
or several concomitant therapeutic targets within the
complement system.
1167



Table 1. The rationale for the use of therapeutic complement inhibition in various glomerular diseases is summarized
Type of glomerular
diseases Rationale for therapeutic complement blockade

Registered or completed trials with complement inhibitors.
Retrospective series and case reports

Nephropathies with exclusive or predominant C3 deposits

Acute postinfectious
glomerulonephritis

Low C3 plasma levels and dominant C3 staining in kidney biopsy (with the
absence of C1q and C4 deposits) are cardinal features of acute postinfectious
glomerulonephritis. Acquired (C3 nephritic factor, anti-factor B antibodies) and
more rarely constitutional dysregulation of the CAP has been reported in patients
with acute postinfectious glomerulonephritis.46,72,73

Clinical and pathologic features of acute postinfectious glomerulonephritis may
overlap with those of C3 glomerulopathy.

No trials registered
C5 inhibition used in case reports74,75

C3 glomerulopathy Predominant or exclusive C3 deposits are pathologic hallmarks of C3
glomerulopathy.
Acquired (autoantibodies) or constitutional (genetic variants) dysregulation of
the CAP has been reported in patients with C3 glomerulopathy.76

Animal models have linked C3 glomerulopathy to alternative C3 convertase
dysregulation.77

Clinical trials registered for: anti-C5 (eculizumab), anti-C3
(AMY-101, ARO-C3, pegcetacopan), anti-C5a receptor
(avacopan), anti-factor D (danicopan, BCX9930), anti-
factor B (iptacopan), MAPS2 inhibitor (narsolimab)
Use of eculizumab reported in retrospective series42 and a
small prospective open-label trial.78

Nephropathies with Igs, immune complexes, and complement deposits

Immunoglobulin A
nephropathy

Co-dominant IgA and C3 glomerular deposits (90%), along with properdin,
C4d, MBL, and C5b-9 deposits are characteristic pathologic features of IgA
nephropathy.
Markers of glomerular activation of the lectin pathway (MBL, L-ficolin, MASP2,
MASP1/3, and C4d) have been associated with a worse outcome of IgA
nephropathy.79,80

Variations in complement genes have been associated with better (CFHR3,1
deletion)81 or worse outcome (CFH, CFHR5)82-84 of IgA nephropathy.
Plasma levels of FHR-1 and FHR-1/FH ratio are associated with a progressive
course of IgA nephropathy.85

C3a receptor/C5a receptor deficiency in mice alleviates IgA nephropathy in
mice.86

Clinical trials registered: anti-C5 (eculizumab, ravulizumab,
cemdisiran), anti-C5a receptor (avacopan), anti-C3 (ARO-
C3, pegcetacopan), anti-factor B (iptacopan, IONIS-FB-LRx),
anti-factor D (vemircopan, BCX9930, ALXN2050), MAPS-2
inhibitor (narsoplimab).
Salvage treatment with eculizumab in case reports.87

Immunoglobulin-
mediated
membranoproliferative
glomerulonephritis

Co-deposition in glomeruli of Igs and complement components characterize the
disease. Features of CAP (and to much lesser extent of the CP) activation
reported in up to 39%–59% of patients.88 Acquired CAP dysregulation detected
in 45%–86% of patients89

Clinical trials registered: anti-C3 (pegcetacopan), anti-factor
D (danicopan)

Lupus nephritis Glomerular co-localization of IgG, IgA, and IgM with C1q, C4 and C3, and C5b-
9 (“full house” pattern) is characteristic of proliferative lupus nephritis.
Decreased systemic levels of C3 and C4 reflect disease activity.
The role of complement in lupus is dual:
1. Altered clearance of immune complexes by complement. Deficiency of C1q,
C2, and C4 is associated with a high risk of systemic lupus erythematous.
2. Complement activation by immune complexes deposition contributes to
glomerular inflammation through C3a and C5-dependent inflammatory cell
recruitment and C5b-9-induced tissular damage.
Earlier onset of lupus nephritis has been observed in patients with variants in
CFH or CD46 (MCP) genes89

Animal models have underlined the role of CAP in the pathogenesis of lupus
nephritis90,91

Clinical trials registered: anti-C5 (ravulizumab), anti-C3
(pegcetacopan), anti-factor D (vemircopan, ALXN2050),
MAPS-2 inhibitor (narsoplimab).

Membranous nephropathy C3 fragments and C5b-9 colocalize with IgG in subepithelial glomerular
deposits (even though IgG4, the predominant IgG subclass in membranous
nephropathy, do not activate complement).
In experimental models of membranous nephropathy, C3 depletion prevents the
development of proteinuria92 and C5b-9 is a key mediator of podocyte injury.93

CP,94 lectin95 and alternative96,97 pathways are likely to play a role in podocyte
injury in the setting of membranous nephropathy.

Registered trials: anti-C3 (pegcetacopan), anti-factor B
(iptacopan), anti-factor D (BCX9930), MAPS2 inhibitor
(narsoplimab).

Cryoglobulinemic
glomerulopathy

Glomerular Igs and C3 deposits are characteristic of the cryoglobulinemic
glomerulopathy.
Severely decreased serum levels of C4 and low levels of C3 correlate with
disease activity.
In animal models, C5, C1q, C3, and factor B deficiency protect against or
attenuate the severity of cryoglobulinemic glomerulopathy (reviewed in
Trendelenburg et al.98).

Eculizumab use reported in a single case.99

Antiglomerular basement
membrane antibody
disease

Co-deposition of C1q and C3 and linear IgG along the glomerular basement
membrane are characteristic of the disease.
Presence of MBL, C4d, factor B, properdin, and C5b-9 deposits along the
glomerular basement membrane suggest lectin and alternative pathway
involvement.21 Murine models demonstrated that C3 and C4 deficiency
prevented full manifestation of renal disease.100

No trials registered.
Salvage treatment with eculizumab in case reports.101,102

Nephropathies with nonspecific complement-induced inflammation

(Continued on following page)
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Table 1. (Continued) The rationale for the use of therapeutic complement inhibition in various glomerular diseases is summarized
Type of glomerular
diseases Rationale for therapeutic complement blockade

Registered or completed trials with complement inhibitors.
Retrospective series and case reports

ANCA-renal vasculitis Despite the absence of significant complement deposits in the kidney, high
levels of circulating C3a, C5a, sC5b-9, and Bb have been reported in patients
with active ANCA vasculitis.103 Low C3 levels are associated with worse
prognosis.104

ANCA can induce NETosis by neutrophils that activate CAP. C5a activates
neutrophils through C5a receptor (positive feedback loop)105

Murine models of antimyeloperoxidase antibody-associated vasculitis confirm
the crucial role of C5a, C3 and factor B in the pathogenesis of the disease.106

Published clinical phase II and III trials: anti-C5a receptor
(avacopan)40,107

Ongoing trials: anti-C5a receptor (vilobelimab)

Complement-mediated TMA

Atypical hemolytic uremic
syndrome

Alternative pathway dysregulation (inherited or acquired) reported in up to 60%
of pateints.2,44

Animal models confirm the central role of alternative C3 convertase
dysregulation in the disease.108

Ongoing clinical trials: anti-C5 (eculizumab, ravulizumab,
crovalimab), anti-C5a receptor (avacopan), anti-factor B
(iptacopan), MAPS-2 inhibitor (narsolimab)
Efficacy of eculizumab reported in prospective noncontrolled
trials1,6,109 and in retrospective series.13 Data on
ravulizumab use have been recently reported.110

ANCA, anti-neutrophil cytoplasmic autoantibody; CAP, complement alternative pathway; CP, complement classical pathway; FH, factor H; FHR-1, factor H-related protein 1; MBL,
mannose-binding lectin; TMA, thrombotic microangiopathy.
A list of published, ongoing trials, retrospective series, and case reports regarding the use of complement inhibitors in glomerular diseases is provided.
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Complement Activation in Kidney Diseases

Beyond the Glomerulus

Complement activation is a ubiquitous phenomenon and is,
obviously, not restricted to the glomeruliwithin the kidney.
A body of experimental and clinical data indicates that
complement activationmay contribute to tubular cell injury
in various situations (Figure 2b). For instance, kidney hyp-
oxia and ischemia/reperfusion trigger complement activa-
tion at the surface of the (proximal) tubular cells via the
induction of an abnormal fucosylation of these cells, with
ensuing activation of the lectin pathway.25,26 Similarly,
albuminuria impairs factor H binding to the proximal
tubular cells and thus facilitates C3 convertase assembly and
docking toproperdin at the surface of these cells.27,28 Inboth
situations, complement activation depends on locally syn-
thetized and on filtered (increased glomerular perme-
ability)29 complement components.30,31 It leads to the release
of anaphylatoxins, C3a andC5a, that contribute directly32 or
indirectly (recruitment of inflammatory cells) to interstitial
fibrosis.33 Furthermore, complement activation is a main
contributor tomyoglobinuria- andhemoglobinuria-induced
tubular damage, as heme can directly activate C3.34

In animal models, complement depletion or inhibition
attenuates myoglobin,34 proteinuria,29 and ischemia/
reperfusion35–38-induced tubular damage and interstitial
fibrosis. However, clinical data are particularly scarce
and limited to trials assessing C5 blockade in renal
transplantation associated-ischemia/reperfusion, and
that has yielded disappointing results.39
The Rational Selection of a Therapeutic Target

Within the Complement System

Several drugs targeting distinct components of the 3 com-
plement pathways are under development (Figure 1 and
Table 2). Inhibitors of C5 activation or of C5a receptor are
already in clinical use for diseases driven mainly by
Kidney International Reports (2022) 7, 1165–1178
C5-induced cellular injury (PNH, aHUS), or as nonspecific
anti-inflammatory drugs in others (anti-neutrophil cyto-
plasmic autoantibody kidney vasculitis40). The alternative
pathway, notably the C3 alternative convertase, is
currently attracting most of the efforts for the design and
development of specific modulators. The majority of these
drugs inhibit central components or activators of the C3
alternative convertase. Recombinant ormodified inhibitors
(factor H41 or factor I) with enhanced potency are also po-
tential therapeutic tools. Alternative pathway modulators
are optimal tools for the treatment of glomerular diseases
driven mainly or partially by the deposition of C3 activa-
tion products. Inhibitors of the initiation phases of the
classical and lectin pathways are also available or ongoing
development. They are optimal tools for the treatment of
antibody and immune complex-mediated kidney diseases.

Ultimately, these drugs could be used as mono-
therapies but also in combination strategies aiming to
the simultaneous inhibition of >1 level of the com-
plement cascade. One such association may combine an
inhibitor of the alternative C3 convertase and short-
term C5 blockade in the management of an exacerba-
tion of C3 glomerulopathy for example or an inhibitor
of the classical pathway and a C5 blocker for anti-
glomerular basement membrane antibody disease or
acute humoral rejection of a kidney allograft.

The selection of a target within the complement
system is based on the assumption, corroborated by
experimental and clinical data, of a direct or indirect
pathogenic role of one or several complement compo-
nents in a kidney disease.
Is It Complement Mediated? The New

Conundrum in Kidney Diseases

The implication of complement activation in a kidney
disease, and hence the potential benefit of complement
1169



Nephropathies with exclusive or predominant complement deposits

Nephropathies with immunoglobulins or immune complexes and complement deposits

Nephropathies with non specific complement-induced inflammation

Complement-mediated TMA

1 Acute post infectious glomerulonephritis

2 C3 glomerulopathy

3 IgA nephropathy

4 Immunoglobulin-mediated membranoproliferative glomerulonephritis

5 Lupus proliferative nephropathy

6 Membranous nephropathy

7 Cryoglobulinemic glomerulopathy

8 Anti-glomerular basement membrane antibody disease
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Figure 2. (a) Complement involvement in glomerular diseases is multiform: (i) deposition of complement (mainly C3) degradation products in
glomeruli; (ii) activation by Igs and immune complexes deposited in glomeruli of the classical and/or the lectin pathway; (iii) C5-driven
glomerular inflammatory changes; and (iv) complement-induced noninflammatory endothelial cell damage in complement-mediated renal
thrombotic microangiopathy. The extent and weight of complement involvement are variable among distinct glomerular diseases (inset). (b)
Complement activation also potentially contributes to kidney tubular and interstitial damage. This activation involves: (i) filtered (increased
permeability of the glomerular basement membrane)29 or leaked (increased permeability of the peritubular capillaries) circulating complement
components or (ii) locally synthetized ones. Hypoxia and ischemia/reperfusion in the kidney triggers complement activation through the in-
duction of Fut2, the ensuing abnormal fucosylation of (mainly proximal) tubular cells, which activates MASP2 (lectin pathway) via CL-11.25,34,68

Hypoxia and ischemia/reperfusion also induces the synthesis of factor B (FB) and C3 by tubular cells, while potentially decreasing the
expression of the inhibitory FH and MCP.69,70 After C3 activation, properdin provides a docking platform for tC3b and the C3 convertase assembly
at the surface of the tubular cells,71 promoting the formation of the MAC. C3a binds to its receptor at the surface of the tubular cells, activates
AKT and b-catenin pathway, and increases the secretion of versican that promotes the epithelial-mesenchymal transition and (continued)
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Table 2. Main complement inhibitors undergoing development in kidney diseases
Target in the
complement cascade Mechanism of action Drug

Pharmaceutical
company

Type of
inhibitor

Mode of
administration

Phases of drug
development

Potential indications in
kidney diseases

C5 Inhibition of the release of C5a and C5b, and
ultimately of the formation of C5b9

Eculizumab Alexion Pharma/
AstraZeneca

mAb i.v. Commercialized aHUS

Ravulizumab Alexion Pharma/
AstraZeneca

mAb i.v. Commercialized,
phase III

aHUS

Crovalimab Roche mAb s.c. Phases II–III aHUS

C3 Inhibition of the binding of C3 to the C3bBb and thus
of the cleavage of C3

Pegcetacoplan Apellis Pharma/
SOBI

Pegylated
peptide

s.c. Phase III C3G, IgAN, MN

Factor B Inhibition of the serine protease FB and thus of the
cleavage of C3 and C5

Iptacopan Novartis Small
molecule

Oral Phases II–III aHUS, C3G, MN, IgAN

Factor D Inhibition of the cleavage of FB Danicopan A Alexion Pharma/
AstraZeneca

Small
molecule

Oral Phases II–III C3G

MASP2 Inhibition of the serine protease MASP2 Narsoplimab Omeros mAb i.v. Phase II IgAN

C5a receptor Inhibition of the binding of C5a to its receptor Avacopan Chemocentrix Small
molecule

Oral Phase III ANCA-associated
vasculitis aHUS

aHUS, atypical hemolytic uremic syndrome; ANCA, anti-neutrophil cytoplasmic autoantibody; C3G, C3 glomerulopathy; IgAN, IgA nephropathy; mAb, monoclonal antibody; MN,
membranous nephropathy; s.c., subcutaneously.
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blockade, can be inferred using a combination of
clinical, pathologic, genetic, and experimental
arguments.

The first set of argument is based on the detection of
markers of complement activation in the circulation (in
case of systemic diseases affecting the kidneys) and/or
in the urine, or within the kidney tissue (isolated or
predominant complement product deposits or in com-
bination with antibody or immune complexes). These
biomarkers include serum levels of C3, C4, sC5b-9, Bb,
and Ba, urinary levels of Bb, and sC5b-9, and staining
for C3c, C3d, C4d, C5b-9, and C1q in kidney biopsies.
Nevertheless, a clear demonstration of the clinical
impact of these complement biomarkers on the severity
and outcome of the kidney disease is required; it is still
lacking for a significant number of kidney diseases,
including sC5b-9 in C3 glomerulopathy42 or in lupus
nephritis.43 The selection of a complement inhibitor
based on yet not validated biomarkers is one of the
most significant potential biases in the clinical devel-
opment of complement inhibitors (Table 3).

The second set of arguments relates to the demon-
stration of a constitutional or acquired complement
dysregulation in patients with a kidney disease.
Constitutional complement dysregulation arises from
loss-of-function variants in inhibitors mostly of the
complement alternative pathway (complement factor H,
complement factor I, MCP), or gain-of-function vari-
ants in the 2 genes encoding for the main components
Figure 2. (continued) interstitial fibrosis.32 Similarly, C3a and C5a recru
development of interstitial fibrosis. Heme, which is released in the cir
glomeruli and can directly activate C3 in the tubular lumen. Besides, pro
FH at the surface of the tubular cells, hence amplifying local compleme
are cleared via the activation of the classical complement pathway. CL-
2; MAC, membrane attack complex; TMA, thrombotic microangiopathy.
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of the alternative C3 convertase, C3 and factor B. The
weight of genetic complement dysregulation in the
pathogenesis of a kidney disease depends first on the
extent of the enrichment (increase in frequency) of the
complement gene rare variants in the studied popula-
tion, as compared with healthy individuals (3%–5%).
To date, aHUS is the only kidney disease in which an
enrichment of complement gene variants is clearly
significant (30%–60%).44 Second, the assessment of the
pathogenicity of a complement variant is paramount for
the interpretation of complement genetics, and only
variants with demonstrated or likely pathogenic effect
on the function of the encoded proteins are to be taken
into account for clinical decision, including the use of
complement inhibitors.44 Finally, constitutional com-
plement dysregulation is only a risk factor for some
kidney diseases.

Acquired complement dysregulation refers to the
occurrence of several autoantibodies directed against
several components of the complement cascade: anti-
factor H antibodies,45 C3 and C5 nephritic factors,
anti-factor B,46 and anti-C3b and anti-C1q antibodies
(reviewed in Fakhouri et al.14). However, except for
high-titer anti-factor H antibodies in the context of
aHUS, it remains, to date, unclear whether these au-
toantibodies are markers (bystanders) or significantly
contribute to the pathogenesis of kidney diseases.

The third set of arguments derives from animal ex-
periments in which the inhibition or the modulation of
it inflammatory cells in the interstitium, which contributes to the
culation during hemolysis and rhabdomyolysis, is filtered by the
teinuria, a hallmark of glomerular diseases, inhibits the fixation of
nt activation.27 Finally, tubular apoptotic cells (notably after injury)
11, collectin-11; FB, factor B; FH, factor H; Fut2, fucosyl-transferase
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Table 3. Some elements for the rational use of complement
inhibitors in kidney diseases

Inhibition of the complement alternative pathway is a potential treatment for kidney
diseases primarily driven by C3 degradation production deposition.

Complement alternative pathway inhibitors (factor H, factor I) with enhanced potency may
represent potential therapeutic agents in complement-driven diseases.

Inhibition of the initial phases of the classical and lectin pathways is a potential treatment
in Ig and immune complex-mediated kidney diseases.

C5 and C5a blockers may represent an alternative to corticosteroids as more optimal anti-
inflammatory drugs (improved quality of renal remission/decreased side effects).

Constitutional complement alternative pathway dysregulation is only a risk factor for
complement-mediated kidney diseases, and not synonymous of continuous
complement activation in all carriers.

In Ig- and immune complex-driven kidney diseases, the primary therapeutic target is Ig or
immune complexes production and not complement inhibition.

For complement-mediated kidney diseases, distinct complement modulators may be
required during the acute and chronic phases.

The potential clinical benefit should clearly outweigh the infectious risk resulting from the
inhibition of complement cascade components.

The clinical relevance of anticomplement autoantibodies for the use of complement
blockers is not established, except for high-titer anti-factor H antibodies in patients with
aHUS.

No currently available biomarker can predict response to complement blockade in kidney
diseases. The design of clinical trials based, even partially, on not yet validated
biomarkers may prove, at least, misleading.

Complement genetics may help individualize the optimal duration of anticomplement
therapy in a given patient with a kidney disease (e.g., aHUS).

The selection of the optimal target for complement inhibition should be individualized and
integrates the patient’s specific clinical characteristics, complement biological and
genetic profile and kidney pathologic features.

aHUS, atypical hemolytic uremic syndrome.
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the complement system prevents, cure, or improves a
model of kidney disease. This set of arguments carries
all the caveats of the relevance of animal models for
human clinical practice. They however provide a per-
fect illustration of the complexity of complement in-
hibition. In an animal model of C3 glomerulopathy
(factor H-deficient mice), the inhibition of properdin,
the unique positive regulator of the alternative C3
convertase, proved unexpectedly to be detrimental.47

In the same model, the deletion of complement factor
I, a main inhibitor of the C3 alternative convertase,
surprisingly prevented the development of C3
glomerulopathy.48

The last set of arguments is the reversibility or the
marked clinical improvement of a kidney disease with
the use of complement inhibitors. The analysis of these
data, the most relevant clinically, is hindered by
several factors, such as the following: the potential
spontaneous improvement of a kidney disease, the
concomitant use of other drugs, the absence of
controlled studies in the context of (ultra)rare diseases,
and the bulk of evidence, if any, being derived from
retrospective small series or case reports. However, the
beneficial effect of the inhibition of a complement
cascade component provides hard evidence for the
implication of a given complement pathway in the
pathogenesis of a kidney disease.
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All these sets of arguments may help clinicians not
only to assess whether complement activation is
involved in the pathogenesis of a kidney disease but
also to select the optimal therapeutic target within the
complement cascade.

Nevertheless, the untangling of complement
involvement in a kidney disease is not straightforward.
Indeed, aHUS, the prototypic complement-mediated
kidney disease, is not characterized by complement
deposition in the kidney, or at least its diagnosis does
not rely on the detection of such deposits. Markers of
complement activation in the circulation are detected in
only a subset of patients (30%–50%).8,9 Currently, no
fully reliable biomarker in the circulation or in the
urine can help predict whether a TMA is predomi-
nantly complement mediated8,9,49—this applies to the
recently developed in vitro tests (Ham modified test50 or
complement deposition on endothelial cells
in vitro51,52). Finally, the impact of eculizumab on the
natural course of aHUS has been assessed only in pro-
spective nonrandomized trials and in retrospective
studies. However, the magnitude of the clinical
improvement was highly significant as compared with
historical controls and thus proved sufficient for the
approval of this innovative drug for an ultrarare dis-
ease. The expected clinical benefit of complement
blockade in other kidney diseases will not be as
impressive and its demonstration will require ran-
domized, controlled trials.

Finally, complement activation is only 1 feature of
the presentation of a patient with a kidney disease. A
more holistic approach combining clinical, biological,
genetic, and pathologic features (a “cluster approach”
previously used in C3 glomerulopathy and Ig-mediated
membranoproliferative glomerulonephritis53) is a more
appropriate guide for the decision to use or not com-
plement inhibition and for the selection of the most
relevant inhibitor.

Different Complement Therapeutic Targets for

One Kidney Disease?

This question extends beyond the already discussed
potential combination of multiple complement in-
hibitors for the treatment of acute inflammatory
changes superimposed on a chronic/subacute kidney
disease. It relates to distinct pathologic approaches of a
single complement-mediated kidney disease, including
diseases in which C5 blockade had already proven
efficacious. Among patients with PNH treated with
eculizumab, the quality of hemolysis remission is het-
erogeneous, and only one-third of the patients expe-
rience a complete normalization of hemoglobin and
hemolysis parameters.54 This suboptimal control of
complement-induced hemolysis results in part from
Kidney International Reports (2022) 7, 1165–1178
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C3d-mediated extravascular hemolysis and eryth-
rophagocytosis by mononuclear cells.55 Inhibition of
red blood cell opsonization with anticomplement
therapies targeting C356 or factor B,57 alone or in
combination with C5 blockade, has proved more effi-
cacious in the control of hemolysis than sole anti-C5
therapies.

Would such approach be applicable to aHUS?
Response to C5 blockade in aHUS is already very sig-
nificant; the residual risk of end-stage disease being
estimated around 10% to 15%. An additional effect of
another complement inhibitor will be hard to detect.
Nevertheless, the initial driver of aHUS is not C5 acti-
vation but the dysregulation of the alternative C3
convertase. Restoring a normal control of this key
enzyme of the complement alternative pathway may
represent a potential therapeutic strategy in patients
with aHUS, most particularly as a maintenance therapy
in the remission phase of the disease.

Different Inhibitors for One Complement Target

Several types of drugs targeting 1 component of the
complement cascade are already available or under
development, C5 being the complement protein that
has attracted the highest level of interest. These drugs
differ in terms of type (antibody, peptide, small
interfering RNA), half-life (short- or long-acting
drugs), and way of administration (i.v. or subcutane-
ous). The choice of a drug depends on the patient’s
preference and on the setting or phase of the disease
(short-acting drugs in the acute phase vs. long-acting
drugs in the maintenance phase). Small interfering
RNAs are not typically used in acute, rapidly pro-
gressive kidney disease, owing to their delayed thera-
peutic effect, but may prove cost-effective in long-term
strategies. The treatment cost is also to be taken into
consideration. The availability of cheaper anti-C5 bio-
similars may increase the use of these therapies in low-
income but also in some high-income countries.

The Delicate Equilibrium Between Complement

Inhibition and Infectious Risk

As for any treatment, the benefit-to-risk ratio is central
for the development and clinical use of anticomplement
therapies. Complement inhibition increases the risk of
infections, notably invasive meningococcal and, to a
lesser extent, gonococcal infections.58 Anti-infectious
complement properties derive from a direct mem-
brane attack complex-mediated bactericidal activity,
from C3-dependent germ opsonization and the activa-
tion of the C5a-C5a receptor axis.59 Thus, the inhibition
of the complement final common pathway recapitulates
the clinical pattern of patients with genetic deficiency
in this pathway, mostly C5, and carries a 2000-fold
Kidney International Reports (2022) 7, 1165–1178
increased risk of invasive meningococcal infections.60

The inhibition of the alternative C3 convertase also
carries an infectious risk through a decrease in the
opsonization of encapsulated and unencapsulated
germs.61 It remains unknown whether a partial
blockade of the alternative C3 convertase mitigates this
infectious risk.

The decision to start an anticomplement therapy
should be based on weighting on one hand the prog-
nosis of a disease left untreated and on the other hand
the potential infectious risk. The balance tips toward
benefit when dealing with a severe, life-threatening
condition, such as PNH and aHUS. The benefit/risk
ratio may be more mitigated for a kidney disease that
progresses toward end-stage kidney disease over
several years, if not decades.

What Is the Optimal Duration of

Anticomplement Therapies?

The duration of anticomplement therapies should be
individualized based on the type of the disease
requiring treatment and patient’s specificities and
preferences. The risk of disease relapse or worsening
after treatment cessation on one hand and treatment-
related infectious risk and costs on the other hand
provide the main arguments for or against the discon-
tinuation of anticomplement treatments. The answer to
the question of treatment duration is rather simple in
some situations. In patients with PNH, discontinuation
of anti-C5 treatment is invariably followed by a—
potentially dramatic—relapse of hemolysis and an in-
crease in the risk of thrombosis, and thus lifelong
treatment is warranted. However, in the vast majority
of diseases, notably kidney diseases, the optimal
duration of complement inhibition is not clearly
settled.

In patients with aHUS, lifelong anti-C5 treatment has
been initially advocated with the assumption that pa-
tients with aHUS have a continuous systemic comple-
ment activation and hence a high risk of relapse in case
of treatment discontinuation. However, there is no
definite evidence sustaining this assumption. Not all
carriers of complement gene variants have features of
systemic complement activation. Besides, 40% to 60%
of patients with aHUS do not carry a constitutional
complement dysregulation. This has led some clinicians
to consider the discontinuation of anti-C5 therapy in
patients with aHUS.

Several retrospective series62–65 and one more recent
prospective trial66 indicate that the presence or absence
of complement gene pathogenic variants is the main
factor associated with aHUS relapse after C5 blockade
cessation. One study66 suggested that increased serum
levels of sC5b-9 may help refine the risk of aHUS
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relapse in carriers of complement gene variants. Over-
all, available data indicate that the risk of aHUS relapse
after anti-C5 treatment cessation is <5%, in patients
with no documented complement gene rare pathogenic
variants. Hence, treatment cessation in these patients,
who account for 40% to 60% of all aHUS patients, is
safe. A strategy of anti-C5 treatment discontinuation in
patients with aHUS based on complement genetics is
thus rational and cost effective.

The case of aHUS illustrates the fact that complement
genetics is a potential tool for an individualized use of
complement inhibitors in some settings. However, the
clinical relevance of complement genetics findings
should be carefully assessed. For instance, not all
detected variants in complement genes are pathogenic
and consequently clinical decision based on comple-
ment gene variants of unknown significance is at least
hazardous. The classification of complement gene var-
iants as pathogenic, likely pathogenic, or of unknown
significance has become central for the management of
patients with aHUS in the maintenance phase.44 This
classification requires an intimate knowledge of com-
plement genetics and biology, mastered in few
specialized centers. Only a rigorous characterization of
complement variants allows a rational use of comple-
ment inhibitors.
The Revolution of Therapeutic Complement

Inhibition: Time to Pause and Reflect

The therapeutic revolution because of the introduction
of complement inhibitors in clinical practice has,
rightly, ignited a great enthusiasm in the community of
nephrologists and patients. This enthusiasm has been
reinforced by the successful translational research in
aHUS that materialized with the design of an efficacious
treatment for a devastating disease. Enthusiasm should
not however preclude caution and reflection. The
activation of the complement system is not necessarily
harmful in all settings, and hence complement inhibi-
tion is not necessarily beneficial in all conditions.
Beyond its obvious anti-infectious properties, the
complement cascade is central for the clearance of
necrotic, apoptotic, and malignant cells. Inhibition of
this beneficial effect of the complement may lead to the
persistence of necrotic cells and inflammation, as
recently illustrated by the deleterious effect of pro-
perdin deficiency in an experimental model of kidney
ischemia/reperfusion.67 Furthermore, complement
activation is a ubiquitous phenomenon that is usually
self-limited and spontaneously resolving. Finally, the
old and preserved complement cascade is complex and
intuitive approaches to its inhibition may yield sur-
prising and disappointing results. The rational use of
1174
the new complement inhibitors should also acknowl-
edge our uncertainties.
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