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Abstract

Polymerase chain reaction (PCR) is an in vitro technology in molecular genetics that progressively amplifies minimal copies
of short DNA sequences in a fast and inexpensive manner. However, PCR performance is sensitive to suboptimal processing
conditions. Compromised PCR conditions lead to artifacts and bias that downgrade the discriminatory power and
reproducibility of the results. Promising attempts to resolve the PCR performance optimization issue have been guided by
quality improvement tactics adopted in the past for industrial trials. Thus, orthogonal arrays (OAs) have been employed to
program quick-and-easy structured experiments. Profiling of influences facilitates the quantification of effects that may
counteract the detectability of amplified DNA fragments. Nevertheless, the attractive feature of reducing greatly the
amount of work and expenditures by planning trials with saturated-unreplicated OA schemes is known to be relinquished in
the subsequent analysis phase. This is because of an inherent incompatibility of ordinary multi-factorial comparison
techniques to convert small yet dense datasets. Treating unreplicated-saturated data with either the analysis of variance
(ANOVA) or regression models destroys the information extraction process. Both of those mentioned approaches are
rendered blind to error since the examined effects absorb all available degrees of freedom. Therefore, in lack of
approximating an experimental uncertainty, any outcome interpretation is rendered subjective. We propose a profiling
method that permits the non-linear maximization of amplicon resolution by eliminating the necessity for direct error
estimation. Our approach is distribution-free, calibration-free, simulation-free and sparsity-free with well-known power
properties. It is also user-friendly by promoting rudimentary analytics. Testing our method on published amplicon count
data, we found that the preponderant effect is the concentration of MgCl2 (p,0.05) followed by the primer content (p,0.1)
whilst the effects due to either the content of the deoxynucleotide (dNTP) or DNA remained dormant (p.0.1). Comparison
of the proposed method with other stochastic approaches is also discussed. Our technique is expected to have extensive
applications in genetics and biotechnology where there is a demand for cheap, expedient, and robust information.
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Introduction

The polymerase chain reaction (PCR) process progressively

amplifies minimal copies of short DNA sequences in an economic

and expedient fashion [1–5]. PCR has become a workhorse

technique in genetic mapping, DNA sequencing and cloning [6–

12]. Maximizing the amplification efficiency of a PCR process

remains an unyielding challenge. Many PCR variants have been

proposed that exploit the enzymatic activity of polymerase in vitro

to dramatically increase the number of replicates for selected DNA

fragments (amplicons). In all versions, the basic mechanism

involves a repetitive cycling of denaturation, annealing and

elongation of amplicons with primers. PCR applications support

screening efforts in prenatal and parental testing, tissue typing,

phylogenics, forensics, and oncogenics as well as in infection

disease characterization and detection. High-quality PCR ampli-

fication performance relies on the drastic suppression of artifacts,

bias and chimeras [13–15]. Artifacts are genes that did not exist in

the start-up PCR mixture that, nevertheless, loom during the

DNA fingerprinting process. Moreover, certain PCR process

factors, if not optimally adjusted, tend to overturn the initial gene

ratio causing bias. Chimeras primarily appear due to either

template-switching in DNA formation or annealing partly-

extended primers.

PCR process dynamics are reputed to be notoriously complex

and application specific - innately interfering with the mechanism

that regulates the amplicon count performance. Therefore, the

main focus has been on maximizing amplicon count resolution

from direct yet ‘quick-and-easy’ experimentation without relin-

quishing economic efficiency [16–18]. An ideal strategy for such

an endeavor to be viable has to accomplish screening and fine-

tuning of the examined controlling factors in a single step. The

proposed technique should be harmoniously robust and assump-

tion-free enabling the harnessing of the uncertainty for the

fingerprinting process [19–22].

Cobb and Clarkson [23] and Caetano-Anolles [24] were among

the first researchers that sought to borrow cost-effective ‘screening-

and-optimization’ techniques from industrial quality control in

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108973

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0108973&domain=pdf


order to improve DAF processes. Core feature was the

implementation of Taguchi methods to design and translate small

but dense datasets utilizing orthogonal arrays (OAs) [25].

Orthogonal arrays are special tools for planning smart trials.

OAs are part of the broader area of fractional factorial designs

(FFDs). FFDs are instrumental for the data design and generation

stages in the domain of conducting scientific experiments – Design

of Experiments (DOE) [26]. OAs are routinely used for

minimizing resources and turnaround time in circumstances

where either innovative experimentation or product/process

improvement projects are in progress without meanwhile surren-

dering vital information. This tactic has also been experienced in

areas less traditional in deploying structured OA-experimentation,

such as for example in forensic science [27]. To reach to robust

decisions, equally important is the analysis procedure for the OA-

collected data in the DOE framework [28]. Implementation issues

in DOE studies as well as their diverse applications in the fields of

industry and engineering have been comprehensively researched

[29,30]. For applications in biotechnology in particular, there is

also an extensive account about the strengths and the weaknesses

of Taguchi-related DOE methods [31]. Recent studies provide a

promising glimpse about how to optimize molecular assays for

PCR processes in several circumstances that include investigations

of venous thromboembolism, identification of Staphylococcus

aureus and Clostridium perfringens alpha toxins as well as in

general genotyping [32–35].

Exemplifying the pursuit for superior discriminatory power, the

amplicon profile enhancement was treated with non-linear OAs

for the epidemiological typing of Pseudomonas aeruginosa, in an

arbitrarily-primed (AP) PCR procedure [36]. Through the

implemented AP-PCR protocol, it was attempted to adjust four

well-known controlling factors which included the concentrations

of: 1) MgCl2, 2) dNTP, 3) a primer and 4) the DNA template. It is

interesting that the researchers proceeded to completing their

study by executing concurrently the two sequentially prescribed

tasks - process screening and parameter optimization - in a single

effort. In brief, process screening filters out weak influences from

an initial group of investigated factors. Parameter optimization

gears towards finding those optimal settings of the identified strong

factors, such that the performance of the predicted response is

maximized. The strategy of running the two sequential tasks

concurrently commands agility in dealing with two intertwined

outcomes which in turn is redeemed with delivering cheaper and

faster results. As a concept it is not new to modern production

operations, since it essentially mirrors solid reengineering tactics as

recommended by stringent lean-engineering principles [48,49].

In planning the recipes for the AP-PCR procedure, the above

researchers were vigilant about the behavior for each individual

influence in case not conforming to linearity. Therefore, they

designed their trials with the provision to capture potential

curvature trends if they were present. By implementing an L9(34)

OA, the four controlling factors were optimally programmed to

saturation ensuring that each individual factor is tested at least on

three settings – to uncover possible nonlinearity. Furthermore, it

was decided that the scheduled experimental recipes not to be

replicated in order to curtail dramatically the turnaround time and

the associated costs for the study. Subsequent response (main-

effects) graphs summarized the behavior of the four controlling

factors in a practical manner [36]. In their report, the researchers

concluded that all studied factors appeared to play some role in

affecting the discriminatory power in the AP-PCR trials. The

quality of their ensuing diagnosis was dependable on magnifying

the resolution of the amplicon bands, thus allowing a greater

dispersion of the detected polymorphism. Nevertheless, the

reported profiles lacked of assigning any statistical significance

on the outcomes. This is because standard techniques, such as

analysis of variance (ANOVA) or general regression, cannot

retrieve error contributions from saturated and unreplicated OA-

planned datasets [37]. This paradox stems from the fact that all

degrees of freedom gained from the conducted trials are

exclusively distributed among the effects [38]. Consequently, no

remaining degrees of freedom are available to form a pooled error

for sizing the magnitude of the experimental uncertainty. Hence,

the data translation step is interrupted prematurely producing no

statistical significances while any computed descriptive statistics

may only be assessed subjectively.

The selection of the AP-PCR design matrix for testing our new

proposal on profiling the amplicon performance is two-fold:

1) It is the only study available in the literature inasmuch as a

three-level, four-factor (non-linear) saturated-unreplicated OA

is neatly utilized to screen and optimize amplicon resolution.

This means that the reader may access through reference [36]

the unique combination of a single series of nine executed

PCR recipes along with visual evidence of their band

distribution.

2) The AP-PCR method is technology for bacterial-strain DNA-

fingerprinting that undisputedly introduces the largest com-

plexity in the small OA-dataset when compared to its current

competitor techniques. This is because the AP-PCR method is

based on the amplification of random fragments through

arbitrary primers and thus it constitutes a ‘‘low-tech’’ solution.

The AP-PCR does not consolidate any prior knowledge of the

targeted genome sequence. This fuzzifies intensely the

profiling detectability for a collected OA-dataset. Thus, it

may be considered among the most challenging PCR types to

assess the predictive capabilities of the proposed profiler

against complex ambience.

Additional concerns are raised when attempting to describe

small-data designs, besides those that deal with the conditions of

unreplication, saturation and non-linearity. Since non-linear OA

schemes are remarkably compact by design, any source of

contamination of the dataset might cause a propagation of severe

errors across all investigated influences in a follow-up analysis [39].

Thus, an efficacious data converter should be capable of

protecting the harvested information by confronting extremities

with robust filters [40,41]. Possessing a high breakdown point is

imperative for a profiler of a small and dense dataset such that to

recognize irregularities of unknown origin and then suppress them.

The selection of the sample median features a robust location

estimator with a maximum achievable breakdown point of 50%. It

is an efficient and economical estimator because it requires merely

ordering a group of observations. The fact that a method utilizes

known reference distributions that possess superior power prop-

erties while resisting to surrender accuracy to adverse situations

are aspects highly appreciated in profiling [42]. Finally, the

method should be flexible and liberal enough to avert the

entrapment that may be elicited by the sparsity assumption, i.e.

the a priori restriction that not all of the examined effects are

permitted to be either all weak or all strong [43]. A superb non-

linear profiler should fend off variation leakage from the

uncertainty term when gauging the strength for each particular

effect. For the non-linear unreplicated-saturated OAs, this

becomes of paramount importance because the variation due to

the uncertainty retains a cryptic character in absence of any

degrees of freedom.

Robust Diagnostics for PCR
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The method we develop in this article is suitable for explaining

stochastically non-linear saturated-unreplicated OA-datasets to be

used for profiling concurrent tasks in a high-demand process, such

as featured in the improvement of the AP-PCR performance. The

technique promotes: 1) the decomposition of multi-factorials to

corresponding single-effect surrogates, 2) the subsequent one-way

contrasting for sizing the strength for each individual surrogate

effect, and 3) a built-in detector for performing an internal-error

consistency check. Using the novel surrogate response concept, the

proposed method demonstrates that does not require the creation

of new reference distributions. For the developments of the new

ideas that will be stipulated in this article, we define as profiler, the

screening (stochastic) device that allows the three-point tracing of

an examined effect. Similarly, the meaning of extraction is

congruent to the process of information harvesting [38]. Finally,

in accord with the previous two conventions, the term ‘‘quanti-

fication’’ assumes the stochastic interpretation of determining

uncertainty.

Materials and Methods

Method Outline
We outline ten steps to screen and optimize the amplicon count

in a PCR process when data have been collected according to a

non-linear unreplicated-saturated orthogonal array. The analysis

stages proceed as follows:

1) Estimate the overall (grand) median for all amplicon data

entries.

2) Estimate the setting medians for each effect separately.

3) Compute the partial (relative) effect due to each respective

setting; it is defined as the difference of the setting median

(Step 2) from the grand median (Step 1).

4) Estimate the error discrepancy for each observation by

subtracting all respective partial effects (step 3) along with

the grand median (step 1) from each measurement value.

5) Reconstruct the surrogate response entries by adding the

respective partial effect and its corresponding error term to

the grand median for each effect separately (Figure 1).

6) Form the surrogate error-vector entries by adding the

respective error term to the grand median for each of the

conducted trial runs separately (Figure 1).

7) Perform one-way non-parametric contrasting (Kruskal-Wallis

test [45]) to each of the generated surrogate responses (Step 5).

Repeat the comparison task for each effect individually using

the surrogate error vector (Step 6).

8) Determine the important effects by inspecting the significance

of their computed p-value (Step 6). Ensure that no effect is

significant for the surrogate error contrasts (Step 7).

9) Select out the setting that maximizes the amplicon count for

each of the strong effects individually.

10) Compiling the optimal partial responses for all strong factors

(Step 9) on the grand median, predict the maximum value for

the amplicon count. Form a 95% confidence interval by using

the Wilcoxon test [41,42] on the surrogate error vector.

Confirm that the error is symmetrically spread across all

observations.

Computational Method
We consider the analysis of a collected amplicon-count (CA)

dataset which has been planned by an L9(34) OA to support a

PCR screening-and-optimization study. The L9(34) OA plan

accommodates the manipulation of a maximum number of four

controlling factors. Perturbing each examined factor at three

distinct settings includes two endpoint settings that define the

selected experimental range. The placement of an extra setting in

between the two endpoints is imperative to simultaneously inquire

about non-linear trends. A single execution of the L9(34) OA

requires gathering observations from nine predefined recipes. The

nine resulting measurements comprise the unreplicated dataset

which we conveniently symbolize as Cai1,i2,i3,i4f g where each ij
(j = 1, 2, 3, or 4) identifies the setting status of the jth influence.

Thus, planning with the L9(34) OA, there are only three admissible

states appointed to each ij. In turn, each ij may be generically

coded by assigning to it values such as ‘1’, ‘2’ and ‘3’, respectively.

Usually, we reserve the indications ‘1’ and ‘3’ to denote the two

endpoint settings. For the middle setting, we allot the coded setting

‘2’. Now, we propose an effects model that allows accounting for

the experimental error. The error term, Ei1,i2,i3,i4 , encompasses a

random-error component along with any other spontaneous

unknown and unknowable intrusions (if any). We may describe

our proposed effects model as:

Cai1,i2,i3,i4
~MCz

X4

j~1
Djz"i1,i2,i3,i4

ð1Þ

We define in equation 1, the overall (grand) median, MC, of the

nine amplicon-count observations as:

MC~Med Cai1,i2,i3,i4

n o� �
ð2Þ

The distinct combination of the four subscripts (i1,i2,i3,i4), in

equation 2, exactly mirrors the respective combinations of the four

controlling factors in the nine recipes of the L9(34) OA layout.

Next, we define the median values of the amplicon-count response

at their three respective factor settings, M1
j , M2

j and M3
j with 1#

j#4. The setting measure, Mj , represents a median estimation of a

group of observations that share the same factor setting ij (1#j#4):

Mj~

M1
j ~Med Ca:::,ij ,::

n o� �
if ij?1

M2
j ~Med Ca:::,ij ,::

n o� �
if ij?2

M3
j ~Med Ca:::,ij ,::

n o� �
if ij?3

8>>>><
>>>>:

9>>>>=
>>>>;

for all ij ð3Þ

Then, we define the indexed quantity Dj (equation 1) as the

difference between Mj and MC which quantifies the ij
th partial

(relative) effect due to the jth factor with respect to the grand

median:

Dj~

D1
j ~M1

j -MC if ij?1

D2
j ~M2

j -MC if ij?2

D3
j ~M3

j -MC if ij?3

8>><
>>:

9>>=
>>; ð4Þ

After fitting equation 1, we dismantle the partial effect terms to

form a surrogate (unstacked) response (Figure 1) for each effect

separately which we denote as Ca0i1,i2,i3,i4
. We reassemble a

surrogate response by summing together: 1) the grand median,

MC, 2) the partial effect, Dj, and the corresponding error

contribution, ":::,ij ,::: for all ij. The surrogate response acquires

the following stochastic structure:

Robust Diagnostics for PCR
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Ca0:::,ij ,::~MCzDjz":::,ij ,::: for all ij and1ƒjƒ4 ð5Þ

For each controlling factor individually, we rank-order Ca0i1,i2,i3,i4

to transform it to a rank response, ri1,i2,i3,i4
:

Ca0:::,ij ,::?r
:::,ij ,::

for all ij and1ƒjƒ4 ð6Þ

We next form the mean rank sums for all three settings of the jth

effect, �RR
1

j , �RR
2

j and �RR
3

j :

R
1

j ~

X
ij

r:::,ij ,:::

3
if ij?1

R
2

j ~

X
ij

r:::,ij ,:::

3
if ij?2

R
3

j ~

X
ij

r:::,ij ,:::

3
if ij?3

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

for all i1,i2,i3,i4 ð7Þ

Since the total number of observations across all settings for a

given effect is N = 9, then, the Kruskal-Wallis test statistic, Hj

(1ƒjƒ4), is written as:

Hj~
12

90

X3

k~1

3 �RR
k

j

� �2

" #
{30 ð8Þ

To inspect the uniformity and stability of the residual error in the

preceding ranking operations, we create a surrogate error

response, Ca0 0i1,i2,i3,i4
. The surrogate error vector simply tracks

how the error discrepancy for a given observation gyrates around

the grand median value:

Ca0 0:::,ij ,:::~MCz":::,ij ,::: for all ij and1ƒjƒ4 ð9Þ

Proceeding to rank-order the Ca0 0:::,ij ,::: will yield the transformed

response, r0i1,i2,i3,i4
:

Ca0 0:::,ij ,:::?r0:::,ij ,::: for all ij and1ƒjƒ4 ð10Þ

Figure 1. The configuration of a surrogate response by un-stacking and re-assembling an amplicon-count observation generated
by the unreplicated-saturated OA scheme.
doi:10.1371/journal.pone.0108973.g001
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Forming the mean rank sums of the r0i1,i2,i3,i4
for all three settings

of the jth effect, Re
k

j , with k = 1,2 or 3, we obtain:

Re
1

j ~

X
ij

r0:::,ij ,:::

3
if ij?1

Re
2

j ~

X
ij

r0:::,ij ,:::

3
if ij?2

Re
3

j ~

X
ij

r0:::,ij ,:::

3
if ij?3

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

for all i1,i2,i3,i4 ð11Þ

The Kruskal-Wallis test statistic for the surrogate error is similarly

defined as: Hej , (1ƒjƒ4):

Hej~
12

90

X3

k~1

3 Re
k

j

� �2

" #
{30 ð12Þ

The quantity Hej decodes potential intrusions in the dataset which

could destabilize the validity of each observation. Thus, sharp

spontaneous fluctuations of the error term could cause a negation

of the significance of the screening results (equation 8). If the four

calculated contrasts (equation 12) show that there is no statistical

significant relationship between the four controlling factors and

the experimental uncertainty, then, we may proceed to estimate a

prediction for the optimized response. We identify the statistical

significant effects from equation 8.

We select the optimal settings from all active effects, m (1#m#

4), that maximize the magnitude of the amplicon-count median

value. Utilizing equation 1, we calculate an estimation of the

predicted response Cap from the respective optimal partial effects,

D0j :

Cap~MCz
Xm

j~1
D0j ð13Þ

We may compute the confidence interval for Cap in equation 13

by performing the signed-rank (Wilcoxon) test for a single sample

on the nine elements of the surrogate error vector, "i1,i2,i3,i4
. We

prepare the main effects plot with the statistical software package

MINITAB 16.2. The outcomes of the Bartlett’s and Levene’s tests

for assessing the validity of the assumption for homogeneity of

variances in an ANOVA treatment is also computed utilizing the

MINITAB 16.2 software. The exact Kruskal-Wallis test signifi-

cances are computed with the statistical software package SPSS

19.

Results

The original amplicon performance data for the AP-PCR

procedure as it was acquired by Dabrowski et al. [36] have been

tabulated in Table S1 for convenience. In Figure S1, we display a

recreated main effects graph (MINITAB 16.2). Qualitatively, the

concentrations of: 1) MgCl2, 2) the primer and 3) the DNA seem

Figure 2. Summary statistics of amplicon performance for MgCl2 concentration at 2.5 mM.
doi:10.1371/journal.pone.0108973.g002
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to perturb the amplicon response. It is the contents of MgCl2 and

DNA that favor a strong non-linear tendency. Using Bartlett’s or

Levene’s tests for checking the validity of the assumption for

homogeneity of variances across all factor settings is of no avail

because the setting samples are below the minimum requirement

for both of those two tests. In Figures 2–5, we provide indicative

graphical summaries of amplicon response for four selected factor

settings. It is evident that a kurtosis estimation of the peakedness of

the distribution within each factor setting will remain veiled in this

profiling. Thus the profiler is forced to undergo the contrasting

process while being deterred by a lack of information about the

heaviness of the data distribution tails. Particularly puzzling is the

switching of the skewness estimations from positive (Figures 2, 4, 5)

to negative (Figure 3) probably implying the inverting of long tails

for different factor settings. Skewness trends for all settings are

listed in Table 1 to provide a more detailed view of the amplicon

reaction to different controls. The most striking event is attributed

to the primer content which spurs on all three possible outcomes.

Indeed, skewness abruptly transverses from short to long tails as

the primer content increases and then at the upper endpoint

suddenly balances out to symmetry (skewness = 0). From Table 1,

we observe that only 33% (four out of twelve) of the settings may

be prone to symmetry. This may predispose to the existence of

different underlying mechanisms – with varying distributions - that

might irregularly manipulate the amplicon output. Thus, the

presence of any predominant data symmetry may be debated as it

is also supported by the median location on the 95% confidence

interval portrayed in the four respective summaries (Figures 2–5).

Depicting the central tendency of the factor settings in terms of the

median estimator is justified because it yields a 95%-confidence

interval with a tighter outlook than the mean statistics version

could offer. The above findings are exacerbated by noticing that

the Anderson-Darling test allows the rejection of the normality

hypothesis at an error rate of 0.1 for all four displays (Figures 2–5).

This translates to an observation that 33% (four out of twelve) of

the setting effects exhibit an indeterminate character that

substantially deviates from normality. Lastly, the amplicon

performance with respect to the concentration of MgCl2 set at

2.0 mM could not be analyzed at all since all related values in the

output column are identical. Therefore, it is hard to discern if

there are inherent anomalies in the evolving phenomena or it is a

manifestation of multiple superimposed mechanisms that blur the

stochastic blueprint of the amplicon response.

Un-stacking and reconfiguring the AP-PCR amplicon-count

experiments generate five surrogate vectors (Table 2). Visual

inspection reveals that from the tabulated surrogate vectors it is

CMgCl2, CPrim and CDNA that carry the largest fluctuation in the

ranked entries which numerically vary from magnitudes of 6 to 9.

The amplicon response should be maximized for better resolution.

We notice that in the CMgCl2 column the frequency of entries

scoring a rank of 9 is double with regards to the other two

surrogates. This should give MgCl2 concentration a lead over the

rest of the group. We discover that only the MgCl2 concentration

is statistically significant to a level of 0.05 (Table 3). The primer

concentration appears to be potent if we are willing to accept a

cruder refinement at a significance level of 0.1. We infer from

Figure 3. Summary statistics of amplicon performance for DNTP concentration at 3.0 mM.
doi:10.1371/journal.pone.0108973.g003
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Table 3 that the concentrations of the DNA template and dNTP

should drop out as statistically dormant influences (p.0.1). It is

also noteworthy to report that the fluctuation owing to the

uncertainty component balances evenly across all factor settings

(p.0.1). This result supports the validity of the hierarchical status

of the two active factors found above. Concluding with the

screening phase, we proceed to fine-tuning the two influencing

factors. From Table 3, we read off the optimal settings that favor

the maximization of the amplicon count. The median amplicon

count achieves a value of 10 when the concentration of MgCl2 is

2.5 mM. Similarly, the primer concentration set at 30 pM/mL

aids in sustaining the amplicon count to 9 bands. Since our

proposed model is additive, the predicted amplicon value which

includes the contributions from both active factors will be: 10

( = 8+2+1+(21)) with a 95% confidence interval of [10,11]. The

false discovery rate has been controlled in this study at a

reasonable value of q* = 0.2 [44].

Discussion

We presented a novel assumption-free technique for dealing

with dense datasets suitable for profiling effects with potentially

curvature tendencies such as in an AP-PCR procedure [36,50]. To

avoid confronting directly the pooled-error determination, we

proposed an additive non-linear model for screening saturated-

unreplicated OA-data [37]. We built our model around a pivotal

baseline (grand median) where the partial effects may be stacked

atop each other while granting an uncertainty term. Such a model

facilitates the decomposition of a densely-compacted dataset

during the information extraction phase [38]. We defined the

partial effect at a given setting to be the disparity of each effect’s

median estimation from the baseline value. By slicing each

observation to its constituent parts, we un-stacked and recon-

structed the decompressed responses. The behavior of the

surrogate effects is reflected through the engineered standalone

responses. We re-assembled each surrogate-response entry for

each of the collected observations by adding together three

quantities: 1) the baseline, 2) the partial effect contribution, and 3)

the uncertainty which is tagged to the corresponding trial run. We

reserved a separate surrogate response for uncertainty by simply

retaining the error term around the grand median. The

uncertainty surrogate is a mandatory response for checking the

uniform stability of the behavior of the error terms across all factor

settings. This last action is unavoidable because of the experi-

mental recipes not being replicated. We exchange the inability to

locate a single central tendency for the experimental error with an

assurance check which could track down any intrusion not

spreading evenly across the executed recipes. Otherwise, the effect

predictions are bound to be misleading. By decompressing the

stacked effects to individual surrogate responses, we isolate the

reconstructed datasets such that to be adapted each time for a

single-factor comparison treatment with the well-known Kruskal-

Wallis test [45]. The Kruskal-Wallis family of reference distribu-

tions has been studied extensively in the past. Moreover, the

Kruskal-Wallis test has been categorized to complement robust

comparison techniques with known power and efficiency proper-

ties [46]. Thus, contrasting outcomes have immediate impact not

Figure 4. Summary statistics of amplicon performance for primer concentration at 10 pM/ mL.
doi:10.1371/journal.pone.0108973.g004
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Figure 5. Summary statistics of amplicon performance for DNA concentration at 20 ng/ mL.
doi:10.1371/journal.pone.0108973.g005

Table 1. Skewness of the amplicon OA-data for the AP-PCR study.

Factor Setting Skewness

MgCl2 (mM)

2 0.94

2.5 21.73

3 *

DNTP (mM)

1.5 0

2 0.94

3 1.73

Prim (pM/ mL)

10 21.73

20 0.94

30 0

DNA (ng/ mL)

10 0

20 21.73

30 0

*Incalculable.
doi:10.1371/journal.pone.0108973.t001
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requiring extra calibration or simulation work [38]. Additionally,

our technique does not presume that a subgroup of the studied

effects should be necessarily weak, thus, it is not limited from the

sparsity condition [26,39].

We bypass the requirement for explicit error variance estima-

tion but still managing to assign statistical significance to each of

the studied effects. For the elucidated AP-PCR case, we only

needed to contrast separately each of the four surrogate responses

at their three respective settings while checking the behavior of the

uncertainty response across the four factors for consistency [36].

Discovering statistically significant relationships while engaging the

uncertainty (surrogate) response with respect to any of the

examined effects could negate the decision about the potency of

that effect. Such anomalous relationships could occur if specific

surrogate response entries receive favorable stochastic ordering not

because of the elicited effect but because of the size of unknown

and unknowable intrusions lurking in the measurements [38].

Therefore, the proposed method possesses internal error-checking

properties which decode the strength of the perturbing uncertain-

ty. In lack of replicated data, the proposed technique undertakes a

search for clues from recipe to recipe in order to spot

inconsistencies and extremities with respect to the size of the

uncertainty. The new approach encourages the efficient use of the

information content in each single observation appreciating the

aspect that unreplicated OA datasets are scarce and thus precious

resources for knowledge discovery.

Direct competing non-linear techniques that incorporate

screening and optimization in a single step for saturated-

unreplicated OA schemes are still in the developmental stage

[38]. To realize the usefulness of the proposed technique, we

Table 2. Rank-ordered amplicon data*.

Run # CMgCl2 CDNTP CPrim CDNA Ce

1 6 7 7 7 7

2 7 8 8 8 8

3 7 8 9 9 8

4 9 7 7 8 7

5 9 7 8 7 7

6 8 6 6 6 6

7 7 7 8 7 7

8 7 7 7 8 7

9 8 8 8 8 8

* CMgCl2: surrogate response for MgCl2 concentration.
CDNTP: surrogate response for DNTP concentration.
CPrim: surrogate response for primer concentration.
CDNA: surrogate response for DNA concentration.
Ce : surrogate response for uncertainty.
doi:10.1371/journal.pone.0108973.t002

Table 3. Nonparametric Response Table*.

Factor Setting Median CA Effect Significance Error Significance

MgCl2 (mM)

2 7

2.5 10

3 8 0.043 0.357

DNTP (mM)

1.5 8

2 8

3 8 0.679 0.679

Prim (pM/mL)

10 8

20 8

30 9 0.064 0.357

DNA (ng/mL)

10 8

20 8

30 9 0.257 1.000

*Exact Kruskal-Wallis test-statistics results.
doi:10.1371/journal.pone.0108973.t003
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tabulated the corresponding ANOVA and GLM outputs in

Tables 4 and 5, respectively. We observe that in both treatments

the data processing has been aborted hastily due to the

disappearing of any remaining degrees of freedom that could be

associated to the experimental error. The only qualitative

information we may extract from Table 4, for instance, it might

be that the MgCl2 and the primer concentrations should lead the

strength hierarchy in the examined group of effects. But the

statistical importance of such an outcome cannot be quantified

[26]. Freeing up some degrees of freedom which have been

previously awarded to the effects may permit the statistical

estimation of the experimental uncertainty. This tactic was

suggested through the error-pooling approach found in the

standard Taguchi-methods toolbox [25]. Nevertheless, a conve-

nient error-pooling maneuver merely seeks to dislodge the weakest

performing effect while disguising it instead as an entrapped

quantity posing as the residual error. This is usually accomplished

by identifying first and then removing the weakest effect from the

initial list of the contrasted factors in the ANOVA treatment. The

isolated variance of the weakest effect then enters the F-test

comparison step in ANOVA playing the role of the unexplainable

error [28]. Thus, this trick enables ANOVA to return estimations

of statistical significance for the rest of the examined effects in the

group by lifting the roadblock of the indeterminate uncertainty in

connection with the depleted degrees of freedom. Generating

ANOVA results in this fashion is still viewed as greatly subjective

because the unexplainable error is rendered: 1) quantized and 2)

framed to the size of the disturbance caused by the weakest effect

[38]. Therefore, it becomes debatable whether the contribution of

the uncertainty should be allowed to be limited to absorb only the

weakest effect. Thus, the decision still looms with regards to what

extent would be justifiable for other weaker effects to join in

forming the residual error term. Similar discussion follows from

using GLM regression to quantify the dominant effects (Table 5).

Alternatively, the non-linear gauging of the effects may be

approximated by dichotomizing each contrast first in linear and

quadratic components in order to set them up appropriately for

treating them with the Lenth test [47]. However, in such case the

effects are diluted before they are fed to the data analyzer. This is

because the effects do not participate as a single entity, but on the

contrary they appear to possess a split identity. The subsequent

inflation of the members of the tested group with virtual effects

tampers with the process of extracting reliable statistical signif-

icance. This may be observed from Figure 6 where the effects are

depicted in terms of their linear (l) and quadratic (q) components.

At an experimentwise error (EER) of 0.2, the non-linear part of the

MgCl2 content solely stands out as a viable influence which is also

recovered from an individual error rate (IER) of 0.05. This virtual

doubling of the actual number of the participating effects seems to

instigate the depression of the predicted influence of the primer

concentration. This is owing to the dependence of the number and

size of the participating effects in calculating the pseudo standard

error (PSE) in the Lenth test. The value of PSE was computed to

be 2.12 for the AP-PCR example. In Figure 6, the corrected t-

statistic quantity for each effect [47], tL, is stacked against the two

ordinary limits for goal-posting the IER; they are drawn at error

rates of 0.05 and 0.1, respectively. Clearly, only the quadratic part

of the MgCl2 content makes the cut at the refined error rate of

Table 4. ANOVA results for the PCR data of epidemiological typing of Pseudomonas aeruginosa above (MINITAB 16.2).

Source DF Seq SS Adj SS Adj MS F-ratio p-value

MgCl2 2 6.22 6.22 3.11 * *

DNTP 2 0.22 0.22 0.11 * *

Prim 2 4.22 4.22 2.11 * *

DNA 2 2.89 2.89 1.44 * *

Residual Error 0 * * *

Total 8 13.56

*Not calculable.
doi:10.1371/journal.pone.0108973.t004

Table 5. General Linear Model results for the PCR data of epidemiological typing of Pseudomonas aeruginosa above (MINITAB
16.2).

Term Coefficient SE Coefficient t-value p-value

Constant 237.000 * * *

Prim 0.150 * * *

Prim*Prim 20.002 * * *

MgCl2 34.000 * * *

MgCl2*MgCl2 26.670 * * *

DNA 20.280 * * *

DNA*DNA 0.008 * * *

DNTP 2.220 * * *

DNTP*DNTP 20.440 * * *

*Not calculable.
doi:10.1371/journal.pone.0108973.t005
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0.05. On the same figure, the EER limits have also been drawn at

error rates of 0.1 and 0.2, respectively. The only effect that makes

the cut at the error rate of 0.2, but fails at the error rate of 0.1, is

again the quadratic term of the MgCl2 content. Therefore, the

calibrated Lenth test discounts the efficacy of the primer

concentration succumbing to a type II error.

Using the non-parametric composite approach [43] to test the

validity of our results for the AP-PCR study is anticipated to

become a cumbersome task. This is because the family of reference

distributions that could accommodate two different groups of tied

observations - including one group that contains four ties at a

particular value - has not been published for the composite

screening of a saturated L9(34) OA-dataset. Thus, additional

combinatorial computations are needed to scale the ordered data.

Immediately, we recognize the crucial advantage of flexibility

instilled in the proposed method over the nonparametric

composite screening method. This feature relieves the experi-

menter from accessing specialized routines to program extra

simulations adapted each time to the specific arrangement of the

ties in the dataset column. On Table 6, we present the rank-

ordering of the original AP-PCR OA-dataset. Based on those

rankings, we prepare the nonparametric response table (Table 7)

for testing at least the existence of a single predominant effect with

the composite method. The Kruskal-Wallis H-statistic corrected

for ties is tabulated on Table 7 assorted with its corresponding

exact p-value for each effect separately. It appears that no effect

surfaces as a single standout utilizing the one-factor composite

method. This demonstrates that even in the case we filter

individually for the dominance of a single effect, the composite

screening method proves also to be substantially less sensitive than

the proposed method when we intend to control for IER at the

customary levels of 0.05 and 0.1, respectively.

Figure 6. Lenth test profiling results using the corrections of Ye and Hamada [47].
doi:10.1371/journal.pone.0108973.g006

Table 6. Rank ordering of the original AP-PCR OA-data (Table S1).

MgCl2 DNTP Prim DNA rAmpl

2 1.5 10 10 1

2 2 20 20 2

2 3 30 30 7

2.5 1.5 20 30 8.5

2.5 2 30 10 8.5

2.5 3 10 20 4.5

3 1.5 30 20 4.5

3 2 10 30 4.5

3 3 20 10 4.5

doi:10.1371/journal.pone.0108973.t006
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The potential of our approach is ostensibly unlimited for speedy

and cheap profiling in genetics and biotechnological applications

at large. This is because it demands no knowledge about the

detailed mechanism of a parametric model which often involves

hard-to-validate reference distributions. It merely requires the

establishment of a simple input-output relationship among the

effects and the examined characteristic. It is also user-friendly by

promoting rudimentary analytics.

The strong non-parametric character of our approach alienates

the solver maneuverability from antecedent knowledge of the host

reference distributions which are engrained each time by different

genotyping conditions. Consequently, this last feature renders our

methodology superbly adaptable for interpreting qPCR processes

as well as specific multiplex-PCR datasets [50]. Thereby, our

approach may be seamlessly implemented for deciphering

complex genomics-responses such as the limit of detection along

with the amplification efficiency. With regards especially to the

maximization of the amplification efficiency which is usually

anticipated to surpass in some circumstances the typical limit of

100%, the proposed approach may offer the only alternative. This

is because percentage data (p in %) are commonly converted by

the omega transformation {V(dB) = 10?Log10[p/(100-p)]}, before

they are analyzed statistically with a multi-factorial application

[25,28]. The omega function tends to infinity as percentage data

values approach either limits of 0% or 100%. Thus, for p.100%,

the omega function computations halt as the logarithm of the

resulting negative odds {p/(100-p),0} is not meaningful. On the

other hand, our approach which is based on primitive rank-

ordering statistics is not inhibited by such a dataset idiosyncrasy.

Conclusions

The performance of a polymerase chain reaction is sensitive to

suboptimal processing conditions leading to artifacts and bias that

eventually downgrade the discriminatory power and reproducibil-

ity of the results. Popular unreplicated-saturated orthogonal-array

schemes have been implemented in the past to conveniently

program and profile the non-linear amplicon response against

unharnessed background noise. A novel assumption-free analyzer

has been developed and tested on dense L9(34) OA-data to

investigate how to systematize the maximization of the amplicon

performance. The profiling process was materialized by dissecting

uncertainty and confirming its uniform manifestation across all

conducted trials by introducing the concept of surrogate responses.

Synchronously, the data conversion step retrieved the optimal

settings of the dominant effects after probing and filtering out the

negligible influences. The novelty of the method rests on its

capability to glean statistical significance through the utilization of

non-linear robust analytics directly on isolated surrogate responses.

The underlying agility to circumvent the necessity for quantifying

a residual error also upholds the resiliency to any stealth intrusions.

Subsequently, effect sizing was simplified by using the distribution-

free reference scale of Kruskal-Wallis for the inference effort.

Moreover, AP-PCR diagnostics may be interpreted without

requiring voluminous simulations or being restricted to inelastic

assumptions attributed to data normality, variance homogeneity,

effect dilution and effect sparsity. The technique is shown to

possess superior efficiency and effectiveness when compared to

alternative profiling strategies such as the composite nonpara-

metrics and the corrected Lenth method. For the illustrated

amplicon maximization problem, two controlling factors were

identified as dominant at an experimentwise error rate of 0.2 - the

Table 7. Kruskal-Wallis statistics for the orderings in Table 6.

Factor Setting SR* H (p-value)

MgCl2

2 10 3.4 (0.22)

2.5 21.5

3 13.5

SSSR** 744.5

DNTP

1.5 14 0.01 (1.0)

2 15

3 16

SSSR** 677

PRIM

10 10 2.45 (0.35)

20 15

30 20

SSSR** 725

DNA

10 14 2.06 (0.46)

20 11

30 20

SSSR** 717

*SR: Sum of Ranks.
**SSSR: Sum of Squared SRs.
doi:10.1371/journal.pone.0108973.t007
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concentrations of: 1) MgCl2 and 2) the primer. At an individual

error rate of 0.05, the only predominant factor was the

concentration of MgCl2. The predicted amplicon performance

tops a value of 10 bands when the concentration of MgCl2 and the

concentration of the primer are set at 2.5 mM and 30 pM/mL,

respectively.

Supporting Information

Figure S1 The main effects plot for the PCR data of
epidemiological typing of Pseudomonas aeruginosa
from Table S1 (MINITAB 16.2).

(TIF)

Table S1 Original non-linear amplicon-count data for
PCR profiling of epidemiological typing of Pseudomonas
aeruginosa [36].
(DOCX)
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