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ABSTRACT
Cancer cells undergo alterations in lipid metabolism to support their high energy 

needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty 
acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, 
ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian 
cancer (OC) is a common gynecological malignancy with a high rate of aggressive 
carcinoma progression and drug resistance. The accumulation of unsaturated fatty 
acids in ovarian cancer supports cell growth, increased cancer cell migration, and 
worse patient outcomes. Ovarian cancer cells also expand their lipid stores via 
increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, 
and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid 
uptake promote chemotherapy resistance and dampen the adaptive immune response 
needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and 
metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring 
poor prognosis and outcomes in patients. We also cover some aspects of how lipids 
fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular 
lipid content could potentially serve as biomarkers of ovarian cancer.

INTRODUCTION

Ovarian cancer is a lethal and common 
gynecological malignancy, with 80% of patients being 
diagnosed at an advanced stage of disease [1]. Fewer than 
half of patients survive beyond five years after diagnosis 
due to the prevalence of aggressive high-grade serous 
carcinomas and lack of accurate early detection methods. 
As with many other cancers, much of what we know 
about ovarian cancer relates to genetic abnormalities 
that give cell growth or survival advantages. Mutations 
in genes such as TP53, PTEN, KRAS, and Rb1 are 
considered major driver mutations in many cancers and 
are in part responsible for establishing ovarian tumors 
[2–4]. However, some of these mutations, such as KRAS, 
are conspicuously absent in the most lethal form of OC, 
high grade serous ovarian cancer (HGSOC). A possible 
explanation for this observation is the presence of other 
cancer-specific adaptations that are independent of DNA 
mutation. 

Research has shown that increased lipid uptake 
supports the high energy needs of growing malignant cells, 
with alterations in lipid metabolic genes often already 
present in early stages of ovarian cancer and becoming 
more prevalent with disease progression [5]. Lipid 
metabolism is critical to the growth and proliferation of all 
eukaryotic cells. Lipid metabolism refers to the synthesis, 
catabolism, and uptake of lipids from the surrounding 
environment. The metabolism of lipid molecules is 
important for normal cell biology and is critical to the 
development of pathological conditions, such as cancer. 

Lipids have a dynamic role in the context of 
tumorigenesis in the ovaries, and they are involved 
in supporting cancer cell growth and suppressing the 
immune response. Lipid intermediates in ascites and 
fat-containing cells of the omentum have been shown to 
negatively affect the function of T-lymphocytes, which 
could inhibit the anti-tumor activity of the immune system 
[6–9]. Additionally, cancer cell survival and spread has 
been linked to increased levels of lipogenic enzymes. For 
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instance, fatty acid synthase (FASN) and stearoyl-CoA 
desaturase (SCD1) are elevated in high-grade, metastatic 
ovarian tumors and lead to elevated levels of unsaturated 
fatty acids [5, 10, 11]. This increase in lipogenic enzymes, 
and their products (e.g., unsaturated fatty acid) often 
correlates with poor patient outcomes. Therefore, it is 
of interest to examine the impact of alterations in lipid 
metabolism to gain a better understanding of ways to 
subvert the molecular pathogenesis seen in ovarian 
cancer. The current review presents a logical argument 
for developing more approaches to therapeutically target 
the lipogenic pathways in cancer cells to improve patient 
outcomes. 

LIPID DYSREGULATION IN CANCER

As stated earlier, lipids play important roles in 
biological processes in eukaryotic cells. Abnormal lipid 
homeostasis is pathognomonic with several diseases 
such as metabolic syndrome, obesity, diabetes, liver 
steatosis, cardiovascular disease, and cancer. Rapidly 
dividing cancer cells produce significantly more fatty 
acids and sterols (for energy and increased membrane 
synthesis) compared to non-transformed cells. In 
addition, cancer cells derive nearly 95% of their saturated 
and mono-unsaturated fatty acids de novo, even in 
the presence of adequate dietary lipids. Furthermore, 
studies have suggested that cancer cells also utilize 
lipolysis (the breakdown of fatty acid) to provide 
additional raw materials for cellular energetic demands 
[12–14]. This combination of metabolic alterations has 
led some researchers to suggest that tumorigenesis is 
the consequence of epithelial cells capitalizing on an 
overabundance of lipids in the environment (Figure 1) 
[15, 16].

In transformed cells, lipid metabolism, along 
with several other biosynthetic pathways, is increased 
to keep pace with the energetic demands of the rapidly 
proliferating cancer cells. For many years, researchers 
focused almost exclusively on glucose metabolism, but 
more recently other aspects of metabolism have come 
into the spotlight as well, including amino acid and lipid 
metabolism [17, 18]. Cells with high metabolic demands 
often experience alterations in key genes leading to 
increased expression of genes related to lipid synthesis 
[14, 19–21]. Interestingly, genes related to lipogenesis 
are not often mutated in cancer, leading many to believe 
that lipid alterations in cancer are a compensatory effect 
in response to other driver mutations. In support of this 
idea, many cancers, including OC, are known to possess 
“driver mutations” in genes that regulate the expression 
and activity of many lipogenic genes to the benefit of 
growing cells [22]. For instance, major driver mutations 
associated with ovarian carcinoma development are in 
genes encoding for PTEN, TP53, and Rb1, [4]. Mutations 
in these genes lie upstream of several highly regulated 

enzymes involved in various pathways that converge on 
lipid metabolism. 

MUTATIONS IN GENES THAT AFFECT 
LIPOGENIC ENZYMES INVOLVED IN 
OVARIAN CANCER

As therapeutic interests in lipid metabolism of 
cancer have increased, an increasing number of studies 
have highlighted how some of these enzymes are involved 
in affecting the characteristics of ovarian tumors. As 
mentioned earlier, alterations in lipid metabolism appear 
to stem from effects of mutations in genes upstream of the 
lipogenic pathway. However, these mutations substantially 
impact the overall metabolic conditions within the cell 
and provide a boost to lipid production and turnover. 
What begins to come clear is that the presence of excess 
lipids provides growth advantages to transformed cells 
that should be considered when developing therapeutic 
approaches.

PTEN

Phosphatase and tensin (PTEN) homolog is a multi-
functional tumor suppressor found in nearly every cell of 
the body. Its deletion on Chromosome 10 is associated 
with oncogenesis. As a tumor suppressor, PTEN functions 
as a negative regulator of another enzyme associated with 
oncogenesis, PI3KCA [23]. PI3KCA is rarely mutated 
in serous OC, but the PI3KCA gene is often amplified 
leading to increased activation of Akt and mTORC1 
signaling (a major control center for cellular metabolism) 
and activation of sterol response element binding proteins 
(SREBP1 and SREBP2) [24–27]. SREBP1 is the master 
regulator of lipid biosynthesis and controls the expression 
levels of many biosynthetic genes such as fatty acid 
synthase (FASN), SREBP2, acetyl CoA carboxylase 
(ACC), ATP citrate lyase (ACLY), HMG-CoA carboxylase 
(HMGC), HMG-CoA reductase (HMGCR), low density 
lipoprotein receptor (LDLR), and many others [24]. Taken 
together, loss of PTEN via gene deletion in cancer cells 
can explain a fair amount of increased lipogenesis.

TP53

In addition to the tumor suppressor PTEN, Tumor 
protein 53 (TP53) is often downregulated in several 
models of cancer [2, 28, 29]. TP53 mutations are almost 
ubiquitous in HGSOC, and yet deletion of TP53 alone 
does not lead to the transformation of ovarian surface 
epithelial cells. This strongly suggests that p53 is not 
a unique driver of tumorigenesis but instead works in 
concert with other mutations [4]. This idea is supported 
by evidence in HGSOC tumors with TP53 mutations, 
roughly 67% of which also contain mutations in the Rb1 
gene. In models of ovarian cancer, it has been estimated 
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that 5–8 genetic mutations are needed to establish 
oncogenic growth. This suggests that loss of functional 
TP53 and Rb1 synergize in HGSOC to promote 
tumorigenesis.

RB1

Retinoblastoma protein (Rb1) is a cell cycle 
checkpoint regulator that controls the cell’s transition from 
G1 to S-phase. In cancer development Rb1 is considered 
a tumor suppressor and therefore its deletion is closely 
correlated with the development of several malignancies, 
in particular retinoblastoma [30–32]. Rb1 is involved 
in several metabolic pathways including autophagy, 
glycolysis, oxidative phosphorylation, and mitochondrial 
biogenesis [31]. Studies investigating the cellular role of 
Rb1 show that Rb1 deletion leads to increased production 
of lipids, especially fatty acids, as cells enter the cell cycle. 
This lipogenic effect is mediated by increased binding 
of the E2F transcription factor to the promoter of target 

genes like SREBP1. Increased expression and activity of 
SREBP1 leads to increased expression of stearoyl-CoA 
desaturase (SCD1) and fatty acid elongase 6 (ELOVL6). 
The activity of SCD1, and to a lesser extent ELOVL6 are 
responsible for the increased levels of unsaturated fatty 
acids present in cancer cells [30].

LIPOGENIC ENZYMES DYSREGULATED 
IN OVARIAN CANCER

Stearoyl CoA desaturase (SCD1)

It is important to understand that increased 
lipogenesis and uptake can be potentially toxic to 
cells. When cellular lipid stores decline, they signal 
the activation of the transcription factor SREBP1. This 
leads to corresponding increases in the expression of 
fatty acid synthetic genes including FASN, ACC, ACLY, 
and LDLR. The production of fatty acids potentiates 
the transformation of acetyl-CoA into saturated fatty 

Figure 1: Fatty acid metabolism in cancer. Gene alterations: Several gene alterations (mutations, amplifications, deletions) contribute 
to increased production of lipogenic genes either directly via transcription regulation, or indirectly by loss of repressors. Lipid uptake: Fatty 
acids (FAs) are obtained via de novo lipogenesis and exogenous uptake. FA translocase CD36 is responsible for the exogenous uptake of 
FAs from the surrounding microenvironment. These FAs can be converted to triacylglycerols (DGAT1) and stored in lipid droplets or used 
in generation of acetyl-CoA through β-oxidation. Lipid Synthesis: Glucose is a major carbon source for de novo lipogenesis. Pyruvate 
derived from glucose contributes the substrate for several lipogenic enzymes (ACLY, ACC, FASN, SCD-1) leading to an increased lipid 
pool. Lipid breakdown: Lipid droplets are mobilized by lipase enzymes (MAGL) to provide energy for cancer cell growth and secondary 
bioactive lipids that modify the tumor microenvironment. Several promising lipid-targeting anti-cancer therapies are based on disrupting 
the lipid metabolic pathways (enzymes, receptors, and bioactive lipids) that are shown in this figure. Created with https://biorender.com.

https://biorender.com


Oncotarget771www.oncotarget.com

acids, palmitate, and stearate. However, high levels of 
saturated fat are detrimental to membrane integrity and 
are therefore toxic to cells This is called lipotoxicity 
[33, 34]. Lipotoxicity occurs when fatty acid or sterol 
accumulation exceeds the ability of the cell to package 
them into triacylglycerols and sterol esters [35]. In 
cancer cells, as fatty acid synthesis increases, the 
conversion of saturated fat to unsaturated fatty acids also 
increases due to the activity of stearoyl-CoA desaturase 
(SCD1) [36].

SCD1 is a delta-9 desaturase that introduces a single 
double bond into the 9th position of stearic and palmitic 
acid (making oleic and palmitoyl oleic acid, respectively) 
[37]. SCD1-mediated production of unsaturated fatty acids 
is essential to produce cell membranes and phospholipids 
as unsaturated lipids are required for proper membrane 
function [38, 39]. Many studies have demonstrated that 
SCD1 levels are elevated in cancer compared to normal 
cells [40–42]. Accordingly, SCD1 has been proposed 
as a therapeutic target [11, 38, 43–47]. In preclinical 
studies, pharmacological inhibition of SCD1 blocks cell 
proliferation when exogenous lipids are limited [48]. This 
suggests that cancer cell dependence on lipids needs to be 
thwarted both at the synthesis and uptake stages to have an 
integrative anti-cancer effect. Although clinical data in this 
regard is still limited, there is evidence that populations 
of ovarian cancer stem cells are heavily reliant on SCD1 
activity [11].

Cancer stem cells are regarded as being responsible 
for much of the proliferative capacity in tumors as well 
as resistance to therapy. In single cell analysis, lipid 
desaturation markers were elevated in cancer stem 
cells when compared to non-stem cancer cells [11]. 
Furthermore, analyses of cell proliferation and migratory 
capacity were shown to be largely supported by the 
presence of unsaturated fatty acids. Taken together, it 
appears that the presence of unsaturated fatty acid 
contributes significantly to the functions of cancer cells 
that are associated with poor disease outcomes.

ATP-Citrate lyase (ACLY)

It is not only the latter steps in fatty acid generation 
that are altered in OC. Key initiating enzymes are also 
altered to some extent as well. ATP-Citrate Lyase 
(ACLY), an upstream regulator of fatty acid synthesis, is 
responsible for converting 6-carbon molecules (glucose 
and glutamine) into molecules of oxaloacetate and 
acetyl-CoA. ACLY links sugar- or glycol-metabolism to 
lipid metabolism, illustrating the important relationship 
between elevated glucose uptake and lipid metabolism in 
cancer cells [49]. Increased ACLY levels are beneficial 
to OC cell fitness [2]. Correspondingly, targeting ACLY 
with interfering RNAs decreases the proliferative capacity 
of ovarian cancer cells, demonstrating its critical role in 
supporting cancer cell growth [50].

Acetyl CoA carboxylase (ACC)

Continuing along the fatty acid synthetic pathway, 
Acetyl-CoA is similarly elevated in OC. Acetyl-CoA 
Carboxylase is the enzyme responsible for the first 
committed step in fatty acid synthesis, catalyzing the 
carboxylation of cytosolic acetyl-CoA to form malonyl-
CoA. ACC activity is regulated during post-translational 
phosphorylation by adenosine monophosphate kinase 
(AMPK). In ovarian cancer, inhibition of ACC with the 
allosteric inhibitor TOFA induces G0/G1 cell cycle arrest 
and apoptosis [51]. AMPK-ACC pathways in cancer cells 
are regulated by lysophosphatidic acid (LPA), a bioactive 
lipid-like growth factor mediator, which is found in 
ascites of ovarian cancer patients at high levels. Increased 
activity of ACC, along with fatty acid synthase, drives de 
novo lipid production. Studies examining LPA-mediated 
mechanisms in ovarian cancer reveal the role of LPA in 
activating AMPK-ACC cascades, resulting in an increase 
of de novo lipogenesis [52]. There is even evidence that 
increased ACC activity in response to upstream metabolic 
signals (increased AMPK activity) is partly responsible 
for the resistance of ovarian cancer cells to chemotherapy 
[53].

Fatty acid synthase (FASN)

In support of the central role lipid production plays 
in cancer cell survival, inhibition of SREBP1 has been 
demonstrated to prevent the growth of ovarian cancer 
in xenograft models [26]. In a more focused analysis, 
targeting the final enzyme of the canonical fatty acid 
biosynthetic pathway, fatty acid synthase (FASN), showed 
very similar results. FASN is essential for lipid synthesis 
and uses acetyl CoA derived from glucose to synthesize 
palmitate and other fatty acids used in lipid signaling, cell 
proliferation, and triglyceride storage [54]. Early studies 
that monitored FASN expression in primary prostate 
cancers showed that FASN expression was detected in 
57% of 99 primary prostate cancers, which corresponded 
to decreased disease-free survival in patients [55]. This 
is corroborated by another study that showed FASN 
functions as an oncogene when expressed in excessive 
amounts [56]. Increased levels of FASN have been 
linked with decreased patient survival, increased disease 
recurrence, and increased invasive capacity of cancer in 
patients [19, 57].

More recent work suggests that FASN expression 
is associated with worse outcomes in cancers, including 
ovarian cancer. [55, 56, 58, 59]. This observation is 
likely linked to the association of increased FASN 
with resistance to cytotoxic stress induced by chemo- 
radiotherapy, leading to poorer patient outcomes. Several 
studies have demonstrated that inhibition of FASN 
prevents the growth of the immunosuppressive phenotype 
associated with a variety of cancers including ovarian 
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cancer, further implicating its critical role in tumorigenesis 
[10, 17, 60–62]. Inhibitors of FASN have demonstrated 
efficacy as anticancer therapies based on the results of 
studies using cell lines and ovarian tumor mouse xenograft 
preclinical models [50, 51, 63].

Mitochondrial elongation factor 2 (MIEF2)

Even outside of the canonical lipogenic/ fatty acid 
biosynthetic pathway there are enzymes whose activities 
affect lipogenic properties of cancer cells. One such 
molecule is Mitochondrial elongation factor (MIEF2), 
a regulator of mitochondrial fission. In the context of 
ovarian cancer, high expression of this protein is predictive 
of a poor prognosis. It has been shown that knockdown of 
MIEF2 decreases levels of free fatty acid, triglycerides, and 
cholesterol in ovarian cancer cell lines; the converse has 
also been observed [64]. The increase in lipogenic genes 
caused by increased expression of MIEF2 appears to be 
the result of increased activation of the ROS/Akt/mTOR 
pathway, which results in increased SREBP1 and SREBP2 
mRNA levels. As discussed earlier, increased expression of 
SREBP1 ultimately results in increased levels of lipids and 
preferred growth conditions in the affected cells.

Diacylglycerol O-Acyltransferase 1 (DGAT1)

As cells generate increasing levels of lipid molecules 
even as they are converted to less problematic unsaturated 
species, they still must be exported or stored. Storage 
comes in the form of di- and triacylglycerols. Along with 
SCD1, the protein Diacylglycerol O-Acyltransferase 1 
(DGAT1) helps with the toxification of lipid. DGAT1 is 
responsible for catalyzing the conversion of diacylglycerol 
and fatty acyl-CoA to triacylglycerol. DGAT1 is 
overexpressed in ovarian cancer and correlates with poor 
survival of patients. In fact, the levels of DGAT1 are 
positively associated with ovarian tumor growth [65]; 
the larger the tumor, the more DGAT1 will be produced, 
likely supporting the storage of ever-increasing amounts 
of lipid. Due to its role in aiding lipid storage, DGAT1 
activity is regulated in part by the availability of glucose 
or glycolytic activity of the cell, as glycolysis provides the 
raw material that will eventually become new acyl-CoA 
molecules.

ENZYMES INVOLVED IN LIPID 
DEGRADATION IN OVARIAN CANCER

Not only is the ability to generate large amounts of 
lipid a benefit to cancer cells, breakdown and conversion 
of lipid is also critical to tumor development and growth. 
Several studies have shown that enzymes involved in lipid 
degradation are elevated in cancer cells when compared 
to non-transformed cells [22, 64, 66, 67]. In some cases, 

enzymes can be involved in both the biosynthesis and 
degeneration of lipids such as ACSL1 [67]. 

Acyl-CoA synthetase long chain family member 
1 (ACSL1)

Acyl-CoA Synthetase Long Chain family member 
1 is an isozyme of the long chain fatty acid coenzyme 
A ligase family. ACSL1 converts free long chain fatty 
acids into fatty acyl CoA esters and plays a key role in 
lipid biosynthesis and fatty acid degradation during beta-
oxidation. Highly metastatic ovarian cancer cells have 
a distinct lipid profile as compared to less metastatic 
cells [66]. There is a notable increase in phospholipids, 
in particular phosphatidylcholine in these cells. ACSL1 
overexpression in non-metastatic ovarian cancer cells 
increases their metastatic dissemination in xenograft 
models, indicating that ACSL1 activity can drive 
metastasis.

Arachidonate 5-Lipoxygenase (5-LOX)

Arachidonate 5-Lipoxygenase (5-LOX) is an 
enzyme responsible for catalyzing the synthesis of 
bioactive, proinflammatory lipids known as leukotrienes 
from the polyunsaturated fatty acid arachidonic acid. 
5-LOX is highly expressed in ovarian cancer cells and 
correlates with poor prognosis in patients [5]. 5-LOX-
derived leukotrienes are associated with increased cell 
migration and metalloproteinase expression, leading 
to increased metastasis [68]. 5-LOX also promotes 
recruitment of pro-inflammatory tumor associated 
macrophages (TAMs) into hypoxic regions of the tumor. 
Increased TAMs density within the tumor is associated 
with metastasis and tumor stage. Furthermore, it was 
determined that metabolites of 5-LOX helped promote a 
positive feedback loop in which the hypoxic environment 
helped recruit more TAMs, which in turn promoted 5-LOX 
activity. Similarly, expression of leukotriene receptors 
(Leukotriene B4 receptor B2) has also been demonstrated 
to correlate with poor clinical outcomes in ovarian cancer 
patients [69]. The presence of inflammatory leukotrienes 
driven by the expression of 5-LOX and its receptors may 
be a treatment target worth further investigation in ovarian 
cancer patients.

Cyclooxygenase-2 (COX-2)

Cyclooxygenase-2 is another rate-limiting enzyme 
involved in the metabolism of the polyunsaturated fatty 
acid, arachidonic acid, into bioactive prostaglandins. In 
ovarian cancer, COX-2 expression is increased leading 
to increased presence of its product, the Prostaglandin E2 
(PGE2) [5, 70]. The synergistic presence of COX2 and 
PGE2 has been implicated in promoting the expression of 
the pro-angiogenic cytokine vascular endothelial growth 
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factor (VEGF) [5, 68]. Several studies have demonstrated 
that COX2 expression also promotes metastasis by 
increasing the expression of metalloproteinase enzymes 
that degrade the extracellular matrix surrounding tumor 
cells [71]. There is evidence that celecoxib, a selective 
inhibitor of COX-2, successfully inhibits growth and 
induces apoptosis in ovarian cancer cells [72].

Carnitine palmitoyl transferase

Carnitine Palmitoyl Transferase (CPT) is 
responsible for helping cells adapt to low glucose 
conditions by switching to beta oxidation [73, 74]. CPT 
helps convert long chain fatty acids in the cell into acyl 
chains that are then subjected to beta oxidation in the 
mitochondria. CPT expression is high in ovarian cancer, 
which facilitates the use of the beta oxidation pathway in 
these cells, simultaneously with glycolysis [75]. This gives 
ovarian cancer cells a significant growth and proliferation 
advantage. The effect of the genetic ablation of CPT1 
dramatically alters beta oxidation and induces cell cycle 
arrest and p21-mediated apoptosis, demonstrating the 
importance of CPT1 to cancer survival [75].

Monoacylglycerol lipase (MAGL)

Monoacylglycerol lipase (MAGL) is responsible for 
catalyzing the decomposition of monoacylglycerol into 
free fatty acids and glycerol. This effectively increases 
the level of fatty acid within the cell. The expression of 
MAGL is elevated in ovarian cancer [5]. Elevated MAGL 
is associated with increased epithelial-mesenchymal-
transition (EMT) potential in cancer cells [76].

LIPID UPTAKE IN CANCER

CD36

The uptake of lipids from the circulation is a 
complementary means by which cells maintain internal stores 
of fatty acids and sterols. An essential protein involved in the 
uptake of lipids in cells is the scavenger receptor, or CD36, a 
fatty acid translocase [77]. CD36 is an 88-kDa transmembrane 
glycoprotein expressed in numerous cell types including 
macrophages, endothelial cells, and adipocytes. CD36 
translocates from the cytoplasm to the plasma membrane, 
where it binds to low density lipoproteins and transports them 
across the membrane, which is the functional mechanism 
whereby CD36 contributes to the total lipid content of cells. 
Recent studies have shown that CD36 expression is increased 
in solid tumors of the breast, stomach, and ovary [7, 78, 79]. 
Increased CD36 expression levels likely occur in response 
to the increased energy demands on the cell, similar to what 
occurs in other metabolic pathways. 

CD36 plays a role in the initiation of cancer and is 
correlated with poor prognosis in melanoma and breast 

cancer [77]. Inhibition and knockdown of CD36 have 
deleterious effects on cellular proliferation in many 
cancers, rendering CD36 a diagnostic biomarker and a 
potential target for therapy. The reason for this potent anti-
cancer effect in CD36 inhibition is linked to inactivation 
of Wnt/Beta-catenin, a major driver of oncogenic cell 
growth in cancer cells [80]. If CD36 levels are reduced, 
then the growth signals provided by the Wnt pathway are 
substantially inhibited as well.

Fatty acid binding protein 4

Fatty acid binding protein 4 (FABP4) helps to 
promote the uptake of long chain fatty acids into cells 
[5, 81]. FABP4 overexpression has been reported in 
many cancers including ovarian cancer. FABP4 has the 
potential to predict the presence of residual disease in 
ovarian cancer [2]. Immunohistochemical-based FABP4 
expression appears to be enriched in areas along the 
carcinoma cell/adipocyte junction, likely owing to its 
role in transporting lipids into cells that require additional 
forms of energy [82]. Cancer cell dependence on readily 
accessible sources of fatty acids is associated with FABP4 
becoming an attractive therapeutic target. Studies targeting 
FABP4 have shown that FABP4-inhibited cancer cells 
have decreased aggressiveness (less metastasis) and have 
an increased sensitivity to carboplatin therapy [8, 81].

Low density lipoprotein receptor (LDLR)

Low density lipoprotein receptor (LDLR) is a 
membrane protein that transports cholesterol into cells in 
the periphery, away from the liver [83]. LDLR is an SREBP 
responsive-gene, and its expression is increased along with 
many of the lipogenic genes. SREBP2 and LDLR expression 
is often elevated in chemoresistant cells in ovarian cancer 
[84]. Accordingly, elevated LDLR expression in ovarian 
cancer is correlated with a poor response to platinum-
based drugs. Conversely, knockdown of LDLR increases 
sensitivity to platinum-based therapies [85]. 

LIPID METABOLISM IN OVARIAN 
CANCER STEM CELLS

Tumor relapse and resistance to conventional chemo- 
and radiotherapies leading to fatal metastatic disease has 
been associated with the development of cancer stem 
cells (CSCs) [86]. CSCs play a role in treatment failures 
and cancer progression through their interaction with 
other cells and molecules in the tumor microenvironment 
[87]. The importance of the microenvironment can be 
seen in the interaction between ovarian cancer cells 
and their stroma through the regulation of ascitic fluid 
contents in stromal cells and growth processes. Within the 
microenvironment, cancer-associated fibroblasts, a major 
cell population in the stroma, have been found to enhance 



Oncotarget774www.oncotarget.com

the generation of ovarian CSCs and cause angiogenesis 
by inducing the secretion of vascular endothelial growth 
factors (VEGF) [11, 88].

CSCs also accumulate excess lipids and cholesterol 
inside lipid droplets [11]. Cancer cells, like adipocytes, 
store excess energy in lipid droplets that can be broken 
down into free fatty acids. This formation occurs by 
lipogenic enzymes which are highly expressed in cancer 
cells and include acetyl-CoA carboxylase, fatty acid 
synthase, and ATP citrate lyase. 

Tumor growth is dependent on active angiogenesis, 
therefore, vascular reduction results in tumor inhibition 
in non-adipose tissues [89]. Analysis of Raman scattered 
imaging and mass spectrometry of lipids shows significant 
increases in unsaturated lipid levels within ovarian cancer 
stem cells compared to non-stem cells [11]. Therefore, this 
provides evidence that metabolic alterations in lipogenesis 
with the use of increased unsaturated lipids could be a 
metabolic marker for ovarian cancer stem cells. These 
alterations in intracellular lipid content develop from the 
utilization of extracellular lipids or by de novo synthesis. 

Ovarian cancer stem cells also can differentiate into 
other cell types which can further contribute to angiogenesis, 
progression, and metastasis [84]. De novo adipocytes in 
adipose and tumor tissue differentiate from mesenchymal 
stem cells and can be influenced by external factors from the 
tumor microenvironment to enable the storage of excessive 
levels of lipid content. The formation of remodeled 
adipocytes, due to cancer cell invasion, results in tumor 
tissue growth by engulfment of adipocyte clusters [89]. 

ROLE OF LIPID METABOLISM IN ANTI-
CANCER DRUG RESISTANCE

Ovarian cancer is among the diseases wherein excess 
adiposity has a causal role [90, 91]. Results from a recent 
large-scale study conducted by Si et al. to identify the 
risk factors associated with ovarian cancer indicated that 
body mass index (BMI), body fat percentage, body fat 
mass, and basal metabolic rate are significantly associated 
with ovarian cancer [92]. Based on data from a cohort of 
13,222 women diagnosed with ovarian cancer in the United 
Kingdom with >20 years’ follow-up for ovarian cancer 
incidence and cause-specific mortality, BMI was identified 
as a modifiable means of improving survival [93]. 

One way that BMI can be modified is by adhering to 
a ketogenic diet consisting of low levels of carbohydrates 
and high levels of fat to create a metabolic state of ketosis. 
With ketogenic diets, by increasing insulin sensitivity 
and restricting carbohydrate intake, adipose tissue is 
selectively decreased while maintaining lean mass [94]. 
A study of 30 women with polycystic ovary syndrome 
demonstrated that adherence to a ketogenic diet resulted 
in reduced central obesity [95]. Consumption of low levels 
of carbohydrates resulted in preferential loss of fat mass 
from metabolically harmful adipose deposits, whereas 

a diet with high levels of carbohydrates resulted in a 
re-partitioning of lean mass to fat mass. Supporting the 
effectiveness of diet modification strategies in improving 
outcomes for women with ovarian cancer, results from 
the Women’s Health Initiative Randomized Controlled 
Dietary Modification Trial indicated that a low-fat diet 
may be associated with beneficial health outcomes [96].

Obesity has a causal role in the anti-cancer drug 
response of patients with ovarian cancer. More specifically, 
adipocytes and lipid metabolism play complex roles in 
modulating anti-cancer drug resistance, which is one 
of the most significant challenges to successful ovarian 
cancer treatment. Although the dependence of cancer 
cells on glycolysis for energy production has been studied 
extensively [97], less is known about the roles of adipocytes 
and alterations in lipid metabolic programming in the 
context of the growth, metastasis, and drug responses of 
cancer cells. Adipocytes promote ovarian cancer metastasis 
and provide energy for rapid tumor growth [98]. Adipocyte-
rich environments support tumor growth via several 
mechanisms. In ovarian cancer, metastatic cells are home to 
omental adipose tissue which contain high concentrations 
of triglycerides. Free fatty acids are generated from the 
hydrolysis of these free fatty acids which metastatic ovarian 
cancer cells uptake and utilize as energy sources. Adipocytes 
secrete factors that increase ovarian cancer cell resistance 
against chemotherapeutic drugs by Akt pathway activation, 
and the Akt pathway has been demonstrated to mediate 
the anti-apoptotic activity of adipocytes [53]. Additionally, 
arachidonic acid, a polyunsaturated fatty acid present in cell 
membrane phospholipids, is capable of activating Akt and 
inhibiting cisplatin-induced apoptosis [89]. The level of Akt 
activation is positively correlated with the chemo-protective 
effect of arachidonic acid.

Among the potential mechanisms that underlie 
poor anti-cancer drug response in obese cancer patients 
are adipose hypoxia, altered pharmacokinetics, increased 
ATP production, altered microbiota, the production of 
tumor-promoting growth factors and cytokines, and the 
generation of drug-resistant cancer stem cells [89, 99]. 
The low-grade hypoxia which occurs in adipose tissues 
stimulates angiogenesis, inhibits macrophage migration 
and pre-adipocyte differentiation, increases fibrosis, and 
suppresses immune cell recruitment [100]. Based on 
the results from studies using pancreatic cancer cells, 
Harbuzariu et al. proposed that elevated levels of leptin in 
obese individuals could protect cells from chemotherapy-
induced apoptosis [101]. Obesity could enhance fibrosis 
in tumors by facilitating interactions between pro-
inflammatory and fibrotic pathways, consequently 
impeding tumor drug delivery [102]. 

Lipids and cholesterol have critical roles in the 
proliferation of cancer cells. In these highly proliferative 
cells, lipid catabolism occurs via the fatty acid ß-oxidation 
(FAO) pathway, which involves exogenous and 
endogenous fatty acids [22]. In nutrient- and oxygen-



Oncotarget775www.oncotarget.com

depleted environmental conditions, cancer cells exhibit an 
increased dependence on FAO [103]. It therefore follows 
that therapeutic strategies intended to modulate lipid-
associated metabolism in cancer cells must be designed 
to avoid adverse effects on normal metabolic functions.

Ovarian cancer cells utilize lipid metabolism in the 
ascites or omental microenvironment during metastatic 
progression through AMPK/ACC/FASN-mediated 
lipogenesis and AMPK/TAK1/NF-κB signaling pathways. 
Chen et al. demonstrated that targeting lipid metabolism 
and/or suppressing TAK1/NF-κB signaling is an effective 
therapeutic strategy to prevent and treat peritoneal 
metastases in ovarian cancer cells [104, 105]. Cholesterol-
lowering drugs such as statins target lipid metabolism. 
Statins have been shown to induce the apoptosis of ovarian 
cancer cells [106]. Lovastatin was utilized in a clinical trial 
in combination with the chemotherapeutic agent Paclitaxel 
to improve the standard-of-care for patients with refractory 
or relapsed ovarian cancer [107]. Another targeted strategy 
for altering lipid metabolism in ovarian cancer is the 
knockdown of ceramide transport protein (CERT) [108]. 
Knockdown of CERT causes the accumulation of ceramide 
in the ER, increasing ER stress, and sensitizing ovarian 
cancer cells to Paclitaxel treatment [105].

LIPIDS AS DIAGNOSTIC OR PROGNOSTIC 
BIOMARKERS

Analytical methods including imaging techniques 
and mass spectrometry have enabled the determination 

of fatty acid composition and intra-tumor lipid class 
spatial distribution toward the development of lipid and 
lipid metabolism-associated biomarkers [109, 110]. 
For example, breast tumors and epithelial ovarian 
cancer cells have been shown to exhibit increased 
levels of membrane-associated phosphatidylcholine and 
phosphatidylethanolamine [111–113]. These phospholipids 
have potential roles in improving clinical diagnosis as well 
as the identification of new therapeutic targets.

Promising lipid-targeting anti-cancer therapies are 
based on disrupting lipid metabolic pathways by targeting 
enzymes, receptors, or bioactive lipids to consequently 
stimulate tumor regression and prevent metastasis. 
Components of altered metabolic lipid pathways that 
could function as potential prognostic biomarkers or 
therapeutic targets to prevent the growth of cancer 
cells or to overcome chemotherapy resistance include 
cholesterol [106], fatty acid synthase [114–117], autotaxin 
[96] ceramide [118], and CERT [108]. These and other 
lipids and lipid metabolism-associated biomarkers are 
summarized in Table 1.

The phospholipid composition of cancer cells 
as determined by lipidomic profiling could aid the 
differentiation between low- and high-grade tumors and 
malignant vs. benign cells [119]. Potential lipid ovarian 
cancer diagnostic markers include lysophosphatidic acid 
[117, 118], sulfatides [122], phospholipase A2 [113, 123], 
and lysophospholipids [124]. The results from a nested 
case-control study within the Prostate, Lung, Colorectal, 
and Ovarian (PLCO) Cancer Screening Trial using 

Table 1: Classification of lipid and lipid metabolism-associated biomarkers
Biomarker Classification Biomarker 

Class
References

Cholesterol Bioactive lipid mediator Prognostic [106]

Fatty acid synthase Key metabolic enzyme Prognostic [114–116]

Autotaxin LPA-producing enzyme Prognostic [117]

Ceramide Bioactive lipid
(metastasis-suppressor lipid) Prognostic [118]

Ceramide transport protein Lipid-transfer protein Prognostic [108]

PI3, RGS, ADORA3, CH25H, CCDC80, 
PTGER3, MATK, KLRB1, CCL19, 
CXCL9, and CXCL10

Lipid metabolism related 
genes Prognostic

[131]

Lysophosphatidic acid Bioactive lipid mediator Diagnostic [120, 121]

Sulfatides Sulfoglycolipid Diagnostic [122]

Phospholipase A2 Phospholipid cleaving 
enzyme Diagnostic [113, 123]

Lysophospholipids Bioactive lipid molecule Diagnostic [124]

CD36 Fatty acid receptor Diagnostic [7]
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tandem mass spectrometry analysis of serum indicated 
that five arachidonic acid/linoleic acid/alpha-linoleic acid 
metabolites were positively associated with ovarian cancer 
risk: 8-HETE, 12,13-DHOME, 13-HODE, 9-HODE, and 
9,12,13-THOME [125].

Ovarian cancer cells co-cultured with primary 
human omental adipocytes have a high expression level 
of the fatty acid receptor CD36 in the plasma membrane, 
which facilitates exogenous fatty acid uptake [7]. Thus, 
it has been proposed that inhibiting CD36 could be 
an effective treatment strategy against ovarian cancer 
metastasis.

Using Raman scattering imaging of single living 
cells and mass spectrometry analysis of extracted lipids, Li 
et al. observed significantly increased levels of unsaturated 
lipids in ovarian cancer stem cells compared to non-cancer 
stem cells [11]. The results of their study demonstrated 
that since enhanced lipid unsaturation is a metabolic 
marker for ovarian cancer stem cells, it can function as a 
target for cancer stem cell-specific therapy.

Tebbe et al. demonstrated that Metformin limits 
the adipocyte tumor-promoting effect on ovarian cancer 
by inhibiting adipocyte-mediated ovarian cancer cell 
proliferation, migration, expression of cancer-associated 
genes and bio-energetic changes [126]. Acetyl-CoA 
carboxylase is the target of the drug 5-tetradecyloxy-2-
furoic acid (TOFA), which was found to be cytotoxic 
to COC1 and COC1/DDP ovarian cancer cell lines 
and inhibit COC1/DDP cell growth in ovarian tumor 
xenografts [126]. However, Pouyafar et al. demonstrated 
that TOFA-induced lipolysis inhibition is not as effective 
as glycolysis inhibition in preventing ovarian cancer stem 
cell differentiation into endothelial-like cells [13].

Anti-cancer drugs that perturb the cholesterol 
content of cell membranes can be employed to hinder 
lipid raft-dependent cell survival or cell death pathways. 
Methyl-ß-cyclodextrin (MCD) is an example of one 
such drug that depletes the cholesterol content of cell 
membranes and inhibits ovarian cancer growth while 
avoiding acute systemic cytotoxicity [127]. MCD has been 
shown to increase the efficacy of the estrogen-modulating 
anti-cancer drug, tamoxifen [128].

As an example of taking advantage of cancer cells’ 
increased dependence on saturated fatty acids, the delivery 
of drugs to tumors has been enhanced by loading drugs 
into liposomes enriched in saturated phosphatidylcholine 
[129]. Among the pharmaceutical benefits of liposomes 
are their low toxicity and ability to improve the 
biopharmaceutical features and therapeutic index of drugs, 
consequently increasing efficacy and reducing side effects 
[130]. 

Lipids also have roles as prognostic ovarian 
cancer biomarkers. Zheng et al. recently developed and 
validated an 11-gene prognostic model for serous ovarian 
carcinomas based on a lipid metabolism expression profile 
[131]. Using RNA-seq data from The Cancer Genome 

Atlas and Gene Expression Omnibus databases, a multi-
gene prognosis model was established which consists of 
the following lipid metabolism-related genes: PI3, RGS, 
ADORA3, CH25H, CCDC80, PTGER3, MATK, KLRB1, 
CCL19, CXCL9, and CXCL10. This model could be 
utilized as a novel approach for a molecular diagnostic 
test to assess the prognosis and potential risk factors for 
patients with ovarian cancer.

FUTURE DIRECTIONS

Ovarian cancer and its predominant subtype, high 
grade serous ovarian cancer, present a significant cancer 
burden globally. As with many other types of cancer, 
patients with ovarian cancer have a lower likelihood of 
disease-free survival if they are diagnosed with advanced 
disease. Although the survival rates for several forms 
of solid tumors have improved over the last 30 years, 
survival rates for patients with ovarian cancer have not 
changed substantially in this period. Therefore, it is of 
critical importance to identify new ways to diagnose and 
treat ovarian cancer to improve outcomes. 

Like many other malignancies, ovarian cancer 
proliferation appears to benefit from increased levels of 
lipids not only in the tumor microenvironment but also in 
the transformed cells themselves, making lipid metabolism 
an attractive target for therapy. Understanding how lipid 
accumulation benefits the initiation and growth of ovarian 
cancer cells will help in determining new molecular 
pathways critical to tumorigenesis. 

In this review, we presented evidence from the 
literature supporting the case that lipid metabolism in 
ovarian cancer cells is a crucial metabolic process that 
should be further investigated to improve treatment 
efficacy for patients with ovarian cancer. Interestingly, 
several lines of evidence have demonstrated that lipids 
(fatty acids, sterols, sphingolipids) are important mediators 
of classical oncogenic signaling, yet it remains unclear the 
extent to which the function of lipids in non-cancerous 
cells differs from non-transformed cells. Indeed, several 
novel drugs targeting various aspects of lipid metabolism 
pathways are being developed, which can provide new 
strategies for ovarian cancer treatment.
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