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Abstract
As a critical component of the tumor microenvironment (TME), cancer-
associated fibroblasts (CAFs) play important roles in cancer initiation and
progression.Well-known signaling pathways, including the transforming growth
factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B
(NF-κB), Janus kinase (JAK)/signal transducer and activator of transcrip-
tion (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide
3-kinase (PI3K)/AKT pathways, as well as transcription factors, including
hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53,
Snail, andTwist, constitute complex regulatory networks in theTME tomodulate
the formation, activation, heterogeneity, metabolic characteristics and malig-
nant phenotype of CAFs. Activated CAFs remodel the TME and influence the
malignant biological processes of cancer cells by altering the transcriptional and
secretory characteristics, and this modulation partially depends on the regula-
tion of signaling cascades. The results of preclinical and clinical trials indicated
that therapies targeting signaling pathways in CAFs demonstrated promising
efficacy but were also accompanied by some failures (e.g., NCT01130142 and
NCT01064622). Hence, a comprehensive understanding of the signaling cascades
in CAFs might help us better understand the roles of CAFs and the TME in can-
cer progression and may facilitate the development of more efficient and safer
stroma-targeted cancer therapies. Here, we review recent advances in studies of
signaling pathways in CAFs and briefly discuss some future perspectives on CAF
research.

KEYWORDS
Signaling pathways, Cancer-associated fibroblasts, Cell-cell interaction, Tumor microenviron-
ment, Therapeutic targets

1 BACKGROUND

Malignant tumors are composed of cancer cells with
uncontrolled proliferation and a multiple-component
tumor microenvironment (TME), the complexity of which
is similar to that of normal healthy tissues [1]. Precisely
because of the increased and accurate understanding of the
complexity and heterogeneity of tumors, researchers have
gradually realized that cancer progression depends not
only on the malignant biological characteristics of cancer
cells but also on the TME, which is an indispensable can-
cer promoter [2]. As an important component of the TME,
cancer-associated fibroblasts (CAFs) are formed by the
activation or transformation of precursor cells in tumor tis-
sues [3]. According to their phenotypic features, CAFs are
generally classified into two categories: CAFswith amyofi-
broblastic phenotype (myCAFs), which express α-smooth
muscle actin (α-SMA) and fibroblast activation protein
(FAP) at high levels, and inflammatory CAFs (iCAFs),

which show secretory characteristics and functions regu-
lating inflammation [4, 5]. Activated CAFs perform crucial
regulatory functions in extracellular matrix (ECM) remod-
eling, cancer cell proliferation, metabolic reprogramming,
invasion, stemness and other malignant behaviors, as
well as in tumor angiogenesis, metastasis, immunosup-
pression and therapeutic resistance [6, 7]. Additionally,
researchers believe that multiple groups of heterogeneous
CAF subpopulations play diverse roles in promoting or
suppressing cancer progression in distinct cancers [8]
or in different stages of a specific cancer [9]. Signal-
ing pathways are one of the cruical participants in the
aforementioned processes, including CAF formation and
activation, the acquisition and maintenance of cancer-
promoting or cancer-suppressing functions of CAFs, and
the mechanism by which CAFs influence cancer cells and
the TME.
The dysregulation and mutation of key node molecules

in signaling pathways are driving forces of cancer initiation
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and progression [10, 11]. Cancer cells can undergo inde-
pendent and uncontrolled proliferation by deregulating
growth-promoting signaling, which is mediated by sig-
naling cascades, for which CAFs are pivotal sources of
upstream signals [12, 13]. The role of CAFs in regulating
signaling pathways in cancer cells is based on alterations
in their transcriptional and secretory characteristics medi-
ated by the internal activation or suppression of signaling
activation states, which is partially regulated by cancer
cells [14, 15]. Therefore, signaling cascades are communi-
cation bridges in the interactions between cancer cells and
CAFs, and the regulatory network composed of multiple
pathways combines the robustness of cancer cells and the
TME to contribute to cancer progression.
In this review, we provide an overview of the defi-

nition, origins and heterogeneity of CAFs; summarize
the well-known signaling pathways and transcription fac-
tors (TFs) that are crucial in cancers, including the
transforming growth factor-β (TGF-β), Hedgehog (Hh),
Notch,Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus
kinase (JAK)/signal transducer and activator of transcrip-
tion (STAT), mitogen-activated protein kinase (MAPK),
and phosphoinositide 3-kinase (PI3K)/AKT pathways,
hypoxia-inducible factor (HIF), heat shock transcription
factor 1 (HSF1), P53, epithelial-to-mesenchymal transition
(EMT)-related TFs Snail, Twist and Zinc finger E-box
binding homeobox (ZEB), and their vital roles in CAF
formation and functional acquisition, as well as the con-
tributions of these signaling cascades in CAFs to cancer
progression. Moreover, we discuss the potential therapeu-
tic targets of the signaling pathways in CAFs and describe
anticipated future research directions.

2 AN OVERVIEWOF CAFS

2.1 Definition of CAFs

Spindle-shaped cells with the ability to synthesize col-
lagen in connective tissues are named fibroblasts, and
they can be activated to play important roles in the pro-
cess of wound healing, tissue fibrosis and inflammation,
such as promoting tissue repair and regeneration. The
initiation and progression of cancer are known to inflict
irreversible injuries to the body, during which fibroblasts
are activated to influence tumor inflammation, fibrosis
and numerous biological behaviors during cancer progres-
sion [7, 12, 16]. Activated fibroblasts associated with cancer
are defined as CAFs [17]. α-SMA, FAP, fibroblast-specific
protein 1 (FSP1), platelet-derived growth factor receptor
α/β (PDGFRα/β) and vimentin are considered represen-
tative CAF markers (Table 1). Nevertheless, none of these
markers is sufficient for the specific recognition of CAFs

because these molecules are also expressed in other cell
types [18]. Compared with normal fibroblasts (NFs), acti-
vated CAFs exhibit greater proliferation and migration
abilities and higher metabolic levels [19]. These differ-
ences allow CAFs to be better adapted to the TME, which
supports their corresponding roles in cancer progression.
According to most studies, CAFs mainly play a tumor-
promoting role. However, some studies have shown that
CAFs also exhibit tumor-suppressive functions in specific
circumstances [6, 20]. For instance, in a pancreatic cancer
mouse model, the depletion of α-SMA+ CAFs acceler-
ated cancer progression, which was characterized by an
increase in the numbers of invasive and undifferentiated
cancer cells with enhanced hypoxia and stemness, result-
ing in increasedmortality [21]. This evidence indicates that
CAFs play a variety of important functions in cancer pro-
gression and that they have a dual nature, as indicated by
their roles in tumor promotion and inhibition. Elucidating
and targeting the functional mechanism of CAFs, such as
the initiation of essential signaling pathways, will promote
the development of cancer treatments.

2.2 Origins of CAFs

CAFs constitute a population of highly heterogeneous cells
that may be closely related to their wide range of origins
(Figure 1). NFs residing in tissues are the main source
of CAFs. They are transformed into CAFs when stimu-
lated by cancer cells or other components in the TME [22,
23]. Various growth factors, cytokines, chemokines and
key molecules involved in cell signal transduction, such as
TGF-β, fibroblast growth factor (FGF), PDGF, Sonic hedge-
hog (Shh) and interleukin-6 (IL-6), induce the transition of
NFs into CAFs by activating the related signaling pathways
[24]. Stellate cells are special tissue-resident fibroblasts
similar to NFs that may be activated and transformed into
CAFs under certain conditions. Based on accumulating
evidence, quiescent pancreatic stellate cells (PSCs) and
hepatic stellate cells acquire a CAF phenotype and exert
their corresponding functions in response to the actions of
TGF-β, IL-1, PDGF, and other stimuli [25–27].
Other irreplaceable sources of CAFs are bone marrow-

derivedmesenchymal stem cells (BM-MSCs). Quante et al.
[28] have reported that in gastric cancer, at least 20% of
CAFs were derived from BM-MSCs and were recruited in
tumors in a TGF-β- and stromal-derived factor 1 (SDF1)-
dependent manner. In breast cancer, MSCs obtained the
CAF phenotype by activating the myeloid zinc finger
1/TGF-β1 pathway [29]. Homeobox A9 in ovarian cancer
cells stimulated BM-MSCs to differentiate into CAFs by
activating TGF-β2 transcription [30]. Clearly, the TGF-β
signaling pathway plays a vital role in the transformation
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F IGURE 1 The origins of CAFs. CAFs are formed from a wide range of cell precursors through specific mechanisms. Upon the
stimulation of growth factors, cytokines and chemokines such as TGF-β, FGF, PDGF, and IL-6, as well as epigenetic modification mediated by
non-coding RNAs and DNA methylation, multiple signaling pathways in tissue-resident NFs are activated, leading to CAF formation [24, 51,
139, 158]. Metabolic reprogramming caused by cancer cell-derived ROS and other metabolites, senescent fibroblasts, inflammatory cells and
mechanotransduction in ECM also mediated the transformation of NFs into CAFs [231, 335]. In addition, endothelial cells can be transformed
into CAFs via the EndoMT, while epithelial cells can be transformed into CAFs via the EMT [33, 36]. BM-MSCs and quiescent stellate cells are
recruited and activated to become CAFs by growth factors, cytokines and chemokines such as TGF-β, PDGF, IL-1, CXCL12, CXCL16, CCL2,
and CCL5 [285, 336]. Evidence suggests that adipocytes, pericytes and smooth muscle cells can also be transformed into CAFs [37, 41, 42].
Abbreviations: CAFs, cancer-associated fibroblasts; TGF-β, transforming growth factor-β; FGF, fibroblast growth factor; PDGF,
platelet-derived growth factor; IL, interleukin; NFs, normal fibroblasts; ROS, reactive oxygen species; ECM, extracellular matrix; EndoMT,
endothelial-to-mesenchymal transition; EMT, epithelial-to-mesenchymal transition; BM-MSCs, Bone marrow-derived mesenchymal stem
cells; CXCL, C-X-C chemokine ligand; CCL, C-C motif chemokine ligand

of MSCs into CAFs [31], and a TGF-β inhibitor has been
shown to inhibit the tumor-promoting effect of BM-MSCs
and CAF marker expression [32]. The original sources of
CAFs also include a series of mature and differentiated
cells. Epithelial cells transdifferentiate into CAFs through
the EMT [33, 34], while endothelial cells transdifferenti-
ate via the endothelial-to-mesenchymal transition [35, 36].
Other evidence suggests that adipocytes [37–39], pericytes
[40, 41] and smooth muscle cells [42] can also be trans-
formed into CAFs. However, due to the common pedigree
of certain cell types and few specific markers, the exact ori-
gins of CAFs have not been fully clarified [7]. Although

the application of genetic lineage traces [43], fluorescence
tags [44] and other technologies has made the study of the
transformation of cell phenotypes and types more conve-
nient and the results more credible, the exact biological
sources of CAFs still needs to be vigorously explored.

2.3 Heterogeneity and subpopulations
of CAFs

CAF heterogeneity is characterized by significant differ-
ences in phenotype and function (Figure 2) related to the
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F IGURE 2 The heterogeneity and functions of CAFs. Due to the wide range of cellular precursors and the differences in activation
mechanisms, CAFs show a high degree of heterogeneity and are generally classified into rCAFs, myCAFs, iCAFs and apCAFs [4, 51]. Among
these CAFs, rCAFs play a role in cancer suppression; myCAFs mediate ECM remodeling by synthesizing collagen and regulating
mechanotransduction; iCAFs perform immunomodulation by changing secretory characteristics; and apCAFs activate CD4+ T cells in an
antigen-specific manner [6, 51]. myCAFs and iCAFs contribute to tumor metabolic reprogramming and angiogenesis through various
mechanisms. The joint actions of myCAFs, iCAFs and apCAFs ultimately promote the proliferation, migration, invasion, metastasis and
therapeutic resistance of cancer cells, thus facilitating cancer progression. Abbreviations: CAFs, cancer-associated fibroblasts; rCAFs,
restraining CAFs; myCAFs, myofibroblasts; iCAFs, inflammatory CAFs; apCAFs, antigen-presenting CAFs; ECM, extracellular matrix

tumor type, tumor stage, and other properties [45, 46]. The
numerous potential origins of CAFs may partially explain
their heterogeneity. In addition, the plasticity of CAFs and
the activation of different signaling pathways lead to the
transformation of CAF phenotypes and functions, which
may be another important reason for CAF heterogene-
ity [47]. Although CAF plasticity is not fully investigated,
some studies have confirmed that CAFs can undergo phe-
notypic and functional alterations [48]. For example, while
performing a whole transcriptome analysis, Elwakeel et al.
[49] conducted a dynamic analysis of CAF subpopula-
tions from early to late stages of breast cancer. They found

that the CAF transcriptome and phenotype changed dur-
ing cancer initiation and progression. The heterogeneity of
CAFs indicates that the CAF population is composed of
various cellular subsets with distinct phenotypes and func-
tions. Distinguishing and defining these subpopulations
will help us to further understand CAFs [50].
Pancreatic cancer is known for its abundant stromal

components; therefore, researchers prefer to explore the
heterogeneity of CAFs in pancreatic cancer. In 2017,
Öhlund et al. [4] defined two CAF subpopulations,
myCAFs and iCAFs, in pancreatic cancer. myCAFs, which
resided closer to cancer cells, had an α-SMA+ phenotype
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and synthesized matrix components, while iCAFs, which
resided farther from the tumor core, had a secretory
phenotype and secreted a series of tumor-promoting
cytokines and chemokines [4]. In 2019, this same team
revealed that myCAFs and iCAFs were interchangeable
under certain circumstances [48]. Through single-cell
RNA sequencing, this team confirmed the existence of
myCAFs and iCAFs [51]. In addition, a class of CAF
subsets expressing major histocompatibility complex class
II (MHC-II) and CD74 and activating CD4+ T cells in
an antigen-specific manner were identified and named
“antigen-presenting CAFs” (apCAFs) [51]. Huang et al.
[52] further confirmed that apCAFs directly ligated and
induced the differentiation of naive CD4+ T cells into
regulatory T cells (Tregs) in an antigen-specific manner.
The discovery of apCAFs suggests that the immunomod-
ulatory effect of CAFs may be mediated by specific
subgroups.
CAF subpopulations have been studied most frequently

in breast cancer. In estrogen receptor-positive (ER+) breast
cancer, CD146+ CAFs helped to maintain ER expression
and hormone-dependent cell proliferation, while CD146-
CAFs exerted the opposite effects [53]. As a result of
this distinction, differences were observed in the sensi-
tivity of ER+ breast cancer to tamoxifen therapy. Similar
to a study of pancreatic cancer [51], a study of breast
cancer also identified myCAFs, iCAFs, and apCAFs that
expressed MHC-II [54]. Costa et al. [55] grouped CAFs
into four subgroups, in which CAF-subset 1 (CAF-S1)-
overexpressing FAP promoted the immunosuppressive
environment through multistep mechanisms. The team
further typed CAF-S1 using single-cell RNA sequencing to
better understand the effect of CAF-S1 on immunother-
apy response [56]. In these CAF groups, myofibroblasts
in clusters 0 and 3, characterized by ECM proteins and
TGF-β signaling, respectively, showed primary resistance
to immunotherapy. Mechanistically, myCAFs in cluster 0
induced increased expression of programmed cell death-
1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA4) in Tregs and increased the proportion of TGF-
β-myCAFs in cluster 3 [56]. This positive feedback loop
eventually led to the formation of an immunosuppressive
environment.
According to the phenotypic, functional and spatial

heterogeneity of CAFs, the precise targeting of subpop-
ulations that exert a major effect on accelerating cancer
progression may be a potentially effective and promising
approach for targeted cancer therapy. Moreover, different
CAF subsets express distinct markers and exhibit differ-
ent signaling pathway activation states, which contribute
to the development of specific drugs and the effective use
of precision therapy.

3 SIGNIFICANCE OF TFS IN CAFS

3.1 HIF

HIF is a heterodimeric TF that leads to increased glycolysis
and decreased mitochondrial function, reducing oxygen
consumption and ultimately enabling the cell to adapt to
a hypoxic microenvironment [57, 58]. Many studies have
shown that HIF plays an important role in CAF metabolic
reprogramming and mediates the protumorigenic effect of
CAFs (Figure 3A).
CAFs show enhanced glycolysis compared with NFs,

and cancer cells can meet their metabolic needs by
ingesting and processing metabolites secreted by CAFs.
Becker et al. [59] found that in breast cancer, hypoxia
induced epigenetic reprogramming of HIF-1α and related
glycolytic enzymes, maintaining themetabolic reprogram-
ming phenotype of CAFs. HIF-1α promoted glycolysis
by enhancing glucose uptake, increasing the expression
of glycolytic enzymes, and upregulating NDUFA4 mito-
chondrial complex-associated like 2 to inhibit oxidative
phosphorylation [60]. In addition to providing metabolic
fuel for cancer cells, activatedHIF-1α inCAFsmight utilize
reactive oxygen species (ROSs) to promote the migra-
tion and invasion of prostate cancer cells [61]. A recent
study revealed that stromal HIF-1α also affected cancer
progression in a hypoxia-independent manner [62]. The
deletion of HIF-1α in myeloid cells reduced the expres-
sion of fibroblast-activating factors in tumor-associated
macrophages, decreasing the abundance of CAFs and
suppressing tumor formation [62].
Interestingly, some recent studies have revealed the reg-

ulatory effect of stromal HIF on cancer immunity. In
cutaneous squamous cell carcinoma, IL-17-inducedHIF-1α
transcriptional activation in CAFs driven collagen deposi-
tion resistance to anti-programmed death ligand-1 (PD-L1)
therapy [63]. In pancreatic cancer, the deletion of CAFs-
HIF-2α, but notHIF-1α,moderately reduced tumor fibrosis
and significantly reduced intratumoral recruitment of
immunosuppressive M2 macrophages and Tregs, thereby
improving the tumor response to immunotherapy [64].

3.2 HSF1

HSFs constitute an evolutionarily conserved family of
DNA-binding proteins that regulate gene expression at
the transcriptional level to maintain protein stability and
reduce cell stress [65, 66]. Various cancers show upregu-
lated levels of activated HSF1, which enables cancer cells
to counter imbalances in protein and stress levels in the
TME caused by rapid proliferation [67]. However, stud-



10 FANG et al.

F IGURE 3 HIF, HSF1, P53, and the EMT-related TFs Snail, Twist and ZEB in CAFs. (A) HIF in CAFs is activated by the TGF-β- or
PDGF-mediated IDH3α/α-KG axis [60], MAOA/mTOR axis [61] and LPA [337]. Activated HIF increases the expression of key metabolic
enzymes, such as PKM2, LDHA, and HK2 [59], at the transcriptional level to mediate the metabolic reprogramming of CAFs, thus providing
the metabolites required for fast-growing cancer cells and secreting ROS to promote cancer cell migration and invasion [61]. In addition,
VEGF is a downstream target of HIF, suggesting that HIF is a key TF regulating tumor angiogenesis. (B) HSF1 activation in CAFs exerts
paracrine effects through TGF-β, SDF1, INHBA and THBS2 and activates related signaling pathways in cancer cells, thus promoting cancer
progression [68, 338]. In addition, DKK3, an HSF1 effector, enhances canonical Wnt signaling, resulting in a decrease in YAP/TAZ
degradation to subsequently increase ECM remodeling and promote cancer cell growth and invasion [70]. (C) P53 in CAFs are activated by
the activin A/mDia2 axis, MDM2 inhibitor Nutlin-3a, cancer cell-derived miRNAs, and so on [77, 339]. Activated P53 suppresses the
production of a series of growth factors, cytokines and chemokines, resulting in a decrease in the expression of CAF markers and hindering
CAF formation. TSPAN12 is highly expressed after P53 activation, and it activates β-catenin signaling in cancer cells and leads to the secretion
of CXCL6, thus promoting tumor invasion [74]. (D) Snail in CAFs is activated by the TGF-β1/USP27X axis [87], PDGF [86] or ECM
stiffness-mediated FAK/ERK2 axis [85]. Activated Snail feedback regulates ECM stiffness through the RhoA/α-SMA axis, thus promoting
cancer progression [84]. Additionally, Snail+ CAFs can promote the chemoresistance of cancer cells to 5-fluorouracil and paclitaxel by
secreting CCL1 [88]. Twist and ZEB in CAFs are activated under specific conditions and contribute to the regulation of malignant tumor
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ies have found that stromal HSF1 plays a broader role
in tumor biology, in addition to responding to the afore-
mentioned series of stresses (Figure 3B). Scherz-Shouval
et al. [68] revealed that HSF1 activation in CAFs drove a
transcriptional program that promoted malignant pheno-
types in cancer cells and a transcriptional process within
CAFs that supported malignant cells in mediating cancer
progression. In this process, the two central signaling path-
ways regulated by HSF1, TGF-β and SDF1, were crucial. In
addition, Scherz-Shouval et al. [68] revealed that the high
HSF1 activity in CAFs was associated with a poor prog-
nosis for patients with early-stage breast or lung cancer.
A recent study of oral squamous cell carcinoma (OSCC)
confirmed the prognostic role of HSF1 overexpression in
CAFs and revealed a series of tumor-promoting functions
mediated by HSF1, such as the induction of the EMT and
promotion of cell proliferation, migration and invasion
[69]. Dickkopf-3 (DKK3) is anHSF1 effector thatmaintains
the protumorigenic activity of CAFs through interactions
with components of typical signaling pathways. In one
mechanistic example, HSF1-dependent DKK3 upregula-
tion enhanced canonical Wnt signaling, resulting in a
decrease in Yes-associated protein (YAP)/transcriptional
coactivator with PDZ-binding motif (TAZ) degradation
and subsequently promoting ECM remodeling and cancer
cell growth and invasion [70]. However, the specific mech-
anisms underlying HSF1 upregulation in CAFs require
further study.

3.3 P53

P53 is a TF that is activated by a series of stresses and
promotes cell cycle arrest, apoptosis and senescence, thus
exerting an antiproliferative effect [71, 72]. P53 is a power-
ful tumor suppressor, but p53 is also the most frequently
mutated gene in cancers. Unsurprisingly, P53 is crucial
for the formation and functional maintenance of CAFs
(Figure 3C).
Specifically, functional deletion of P53 promotes CAF

activation. In prostate cancer, the P53 mutant P53-N236S
significantly increased collagen contraction in fibroblasts

by activating STAT3 and led to the overexpression of CAF-
related markers such as α-SMA [73]. Otomo et al. [74]
observed a similar relationship between P53 and α-SMA;
that is, when P53 was knocked down in lung fibroblasts,
the expression of α-SMA increased accordingly. In col-
orectal cancer (CRC), ROSs produced from P53-deficient
cancer cells induced vascular endothelial growth factor
(VEGF) secretion by fibroblasts to regulate angiogenesis
and ultimately promote tumor growth [75]. In contrast,
a study of pancreatic cancer showed that the activation
of P53 induced a series of transcriptional changes that
reprogram activated PSCs, driving them into a static state,
thereby reducing stromal fibrosis [76]. Exosomal microR-
NAs (miRNAs) derived from cancer cells can contribute to
CAFactivation bymodulating P53 expression; for example,
exosomal miR-375 from Merkel cell carcinoma cells [77]
and exosomal miR-1249-5p, miR-6737-5p and miR-6819-5p
fromCRC cells exerted this effect [78]. These findings indi-
cate that P53 in CAFs can be regulated by cancer cells,
which has been confirmed bymany studies [79]. Generally,
P53 in CAFs alters transcriptional processes to modulate
a series of effects, such as promoting cell migration and
invasion [80]. However, a recent study in pancreatic cancer
revealed that P53 induced α-SMA expression through ROS
production without functioning as a TF [81]. Therefore,
the powerful functions and extensive action mechanisms
of P53 in CAFs need to be further explored.

3.4 Snail, Twist and ZEB

The TFs Snail, Twist and ZEB promote the EMT by directly
repressing E-cadherin expression; therefore, these TFs are
also known as EMT-related TFs and are markers for EMT
detection [82, 83]. In addition to modulating the EMT,
Snail and Twist have been shown to be indispensable in
the formation and activation of CAFs, thus promoting
tumor development through a wide range of mechanisms
(Figure 3D).
Induction by TGF-β is pivotal for CAFs to activate and

obtain the myofibroblast phenotype, and CAFs in which
Snail1 has been deleted lack responsiveness to TGF-β

biological behaviors, such as proliferation, invasion, and EMT. Abbreviations: HIF, hypoxia-inducible factor; HSF1, heat shock transcription
factor 1; EMT, epithelial-to-mesenchymal transition; TFs, transcription factors; ZEB, Zinc finger E-box binding homeobox; CAFs,
cancer-associated fibroblasts; TGF-β, transforming growth factor-β; PDGF, platelet-derived growth factor; IDH3α, isocitrate dehydrogenase
3α; α-KG, α-ketoglutarate; MAOA, monoamine oxidase A; mTOR, mammalian target of rapamycin; LPA, lysophosphatidic acid; PKM2,
pyruvate kinase M2; LDHA, lactate dehydrogenase A; HK2, hexokinase 2; ROS, reactive oxygen species; VEGF, vascular endothelial growth
factor; SDF1, stromal-derived factor 1; INHBA, inhibin subunit beta A; THBS2, thrombospondin-2; DKK3, Dickkopf-3; YAP, Yes-associated
protein; TAZ, transcriptional coactivator with PDZ-binding motif; ECM, extracellular matrix; TSPAN12, Tetraspanin 12; CXCL, C-X-C
chemokine ligand; USP27X, ubiquitin specific peptidase 27 X-linked; ERK, extracellular signal regulated kinase; RhoA, Ras homolog family
member A; α-SMA, α-smooth muscle actin; CCL, C-C motif chemokine ligand; IL, interleukin; FGF, fibroblast growth factor; IGF, insulin
growth factor; STAT, signal transducer and activator of transcription; HGF, hepatocyte growth factor
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[84]. Through the Snail1/Ras homolog family member A
(RhoA)/α-SMA axis, CAFs expressing Snail1 modulated
ECM remodeling, increased ECM hardness and promoted
anisotropic fiber orientation to create a TME that sup-
ported the directional migration and invasion of cancer
cells [84]. In addition, ECM stiffness increased the activ-
ity of Rho-associated coiled-coil containing protein kinase
and indirectly stabilized the Snail1 protein by increasing
intracellular tension, integrin aggregation and extracellu-
lar signal regulated kinase (ERK) 2 signal transduction
[85]. CAFs may be activated continuously by the stably
expressed Snail1 protein, maintaining cancer fibrosis and
promoting tumor metastasis. Through their ECM remod-
eling ability, CAFs expressing Snail1 also facilitated tumor
angiogenesis in conjunction with PDGFR signaling [86].
In summary, it is obvious that CAFs expressing Snail1
play important roles in the migration and invasion of
cancer cells. Interestingly, because of ubiquitin specific
peptidase 27 X-linked (USP27X) deubiquitination, Snail1
was more stable in CAFs and cancer cells than in normal
epithelial cells [87]. The abrogation of USP27X repressed
Snail1-dependent CAF activation, reduced cancer metas-
tasis and promoted cellular sensitivity to cisplatin. Li et al.
[88] also revealed the role of fibroblasts overexpressing
Snail in inducing chemoresistance. In CRC, Snail overex-
pression induced 3T3 fibroblasts to differentiate into CAFs
and reduced tumor sensitivity to 5-fluorouracil or pacli-
taxel, which may have been caused by CAF-derived C-C
motif chemokine ligand (CCL) 1-induced activation of the
TGF-β/NF-κB pathway [88].
Twist also activates CAFs and remodels the ECM. NFs

stably transfected with Twist1 acquired the characteristics
of activated CAFs and increased ECM stiffness. Palladin
and collagen α1 were two main mediators of the effect of
Twist1 on CAFs: the effect of palladin was closely related
to the biomechanical properties and polarity of CAFs,
whereas collagen α1 contributed to enhanced migration
and invasion [89]. Another study reported that the pres-
ence of IL-6 induced the expression of Twist1 in NFs
and drived their transdifferentiation into CAFs by acti-
vating STAT3, while C-X-C chemokine ligand (CXCL) 12
might be a downstream target of Twist1 [90]. In contrast,
in esophageal cancer cells, CXCL12/C-X-C chemokine
receptor (CXCR) 4 signaling promoted the EMT process
through the ERK/AKT-Twist1-matrix metallopeptidase
(MMP) 1/E-cadherin axis [91]. Some crosstalk between
cancer cells and CAFs inwhich Twist1 functionsmay exist.
In contrast to Snail and Twist, ZEB may or may not

play a unique role in CAF activation. Chang et al. [92]
showed that in the presence of arecoline, the bind-
ing between ZEB1 and the α-SMA promoter increased,
which induced myofibroblast transdifferentiation of buc-
cal mucosal fibroblasts. Lobe et al. [93] reported that

in vitro, conditioned media from ZEB1-overexpressing
cholangiocarcinoma cells induced myofibroblast prolifer-
ation; in vivo, ZEB1-overexpressing tumor cells formed
larger tumors with more abundant stroma. However, the
importance and universality of ZEB in CAF activation and
maintenance remain to be further explored.

4 SIGNIFICANCE OF SIGNALING
PATHWAYS IN CAFS

4.1 Growth factor-related signaling
pathways

4.1.1 TGF-β

The mature TGF-β protein is secreted as a latent complex
with two copies of latency-associated polypeptide, which
prevents TGF-β from binding to its receptors [94]. The
secretion and deposition of TGF-β from the latent com-
plex is triggered by an activation mechanism that locally
releases activated TGF-β [95]. After activation, TGF-β
forms a tetramer by interacting with two types of trans-
membrane kinases (TβRI and TβRII), which phosphory-
late serine, threonine and tyrosine residues [96]. In the
canonical TGF-β/Sma-and Mad-related protein (SMAD)
signaling pathway, TβRI kinase induces the phosphory-
lation of SMAD2 and 3, while the bone morphogenetic
protein (BMP) receptor mediates the phosphorylation of
a distinct set of receptor SMADs (R-SMADs), namely,
SMAD1, 5 and 8 [97]. The common SMAD (Co-SMAD),
namely, SMAD4, binds to phosphorylated R-SMADs to
form heteromeric complexes, which are translocated into
the nucleus and interact with TFs and co-regulators to con-
trol the expression of target genes [98, 99]. Another group
of SMADs, inhibitory SMADs (I-SMADs), include SMAD6
and 7. I-SMADs antagonize signal transduction through a
variety of mechanisms [100, 101]. In addition to canoni-
cal SMAD signaling, TGF-β activates non-SMAD signaling
pathways, including the PI3K/AKT, ERK and p38/MAPK
pathways [102].
TGF-β plays a vital role in CAF activation and formation

and contributes to the maintenance of CAF morpholog-
ical characteristics and functional phenotypes [103, 104].
In recent years, work has been devoted to elucidating the
mechanism by which TGF-β promotes CAF formation,
and a series of interesting results have been presented
(Figure 4). During cancer progression, tissue-resident NFs
are gradually transformed into CAFs, and the activation
of autocrine signaling pathways mediated by TGF-β and
SDF1 is initiated, which promotes CAF formation via self-
stimulation and cross-communication [104]. In studies of
upstream signaling, the increase in ROS levels induced
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F IGURE 4 The TGF-β signaling pathway is involved in the crosstalk between CAFs and cancer cells. TGF-β signals are transduced in
CAFs through canonical and non-canonical pathways; the former is a SMAD-dependent pathway mediated by TGF-β receptors or BMP
receptors, while the latter does not require the participation of SMADs. Numerous factors are involved in the activation of TGF-β signaling in
CAFs, including paracrine signaling by the TGF-β protein in the TME, hypoxic conditions, tumor-derived exosomes or non-coding RNAs,
increased ROS levels induced by long-term fractionated radiation, and the dysregulation of molecules such as DIAPH1 and LXRα [104–107].
Activated TGF-β signaling in CAFs exerts corresponding biological effects by directly or indirectly modulating the expression of target
molecules. For example, TGF-β signaling upregulates the expression of CAF markers such as α-SMA and FAP, promoting the activation of
CAFs; alters the secretion of proinflammatory factors, driving the acquisition of cell chemoresistance; and modulates a series of other target
proteins, mediating ECM remodeling and immunomodulation. Ultimately, TGF-β signaling in CAFs regulates cancer progression.
Furthermore, activated CAFs are among the most important sources of the TGF-β protein in the TME, and TGF-β derived from CAFs exerts a
pivotal function in initiating TGF-β signal transduction in cancer cells, which contributes to cancer cell proliferation, stemness maintenance,
migration, invasion, tumor angiogenesis, metastasis and the acquisition of chemoresistance. In addition, TGF-β-activated CAF-derived
factors, including various cytokines, chemokines, and specific proteins, such as VCAN, regulate cancer progression through various
mechanisms. Abbreviations: TGF-β, transforming growth factor-β; CAFs, cancer-associated fibroblasts; SMAD, Sma-and Mad-related protein;
BMP, bone morphogenetic protein; TME, tumor microenvironment; ROS, reactive oxygen species; DIAPH1, diaphanous homolog 1; LXRα,
liver X receptor α; α-SMA, α-smooth muscle actin; FAP, fibroblast activation protein; ECM, extracellular matrix; VCAN, versican; LAP:
latency-associated polypeptide; PI3K, phosphoinositide 3-kinase; HIF, hypoxia-inducible factor; NF-κB, nuclear factor kappa-B

by long-term fractionated radiation [105], the loss of glu-
tamine [106], hypoxic conditions [107], exosomes [108],
role-specific miRNAs [109] or integrin [110], or the dysreg-
ulation of some molecules, such as diaphanous homolog 1
(DIAPH1) [111], Zinc finger protein 37A (ZNF37A) [112], or
liver X receptors α (LXRα) [113], were all shown to lead to
the activation of TGF-β signaling in CAFs from different
types of cancers. In addition, non-coding RNAs (ncR-
NAs) modulate the signaling crosstalk between CAFs and
cancer cells, making a significant contribution to cancer
progression (Table 2).
TGF-β not only plays an important role in CAF forma-

tion but also affects a series of malignant biological behav-

iors of cancer cells, including proliferation, metabolism,
invasion, metastasis, and stemness, bymediating the inter-
play between CAFs and cancer cells (Figure 4). In stroma-
rich pancreatic cancer, the catabolism induced by the
metabolic reprogramming of CAFs and pancreatic cancer
cells significantly depended on branched chain α-ketoacid
(BCKA) [114]. The internalization of ECM components
caused by the TGF-β/SMAD5 axis targeting of branched
chain amino acid transaminase 1 in CAFs provided the
amino acid precursors in CAFs that enable the secretion of
BCKA, which exacerbated the cellular demand for BCKA
production [114]. In lung cancer, the co-culture of can-
cer cells and CAFs induced metabolic reprogramming, in
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TABLE 2 ncRNAs involved in signaling crosstalk between CAFs and cancer cells

ncRNA
Expression
level Cancer type Biological effects Signaling cascades Ref

The TGF-β signaling pathway
miR-17-5p Upregulated Colorectal cancer Metastasis miR-17-5p/RUNX3/Myc/TGF-β1 [109]
miR-141 Downregulated Breast cancer Proliferation TGF-β1/DNMT3B/miR-141/TCF12/

CXCL12/c-Myc/Cyclin D1
[360]

miR-182-5p Upregulated Breast cancer Metastasis TGF-β/miR-182-5p/FOXF2 [361]
miR-192/215 Upregulated Head and neck

cancer
Metabolism reprogramming miR-192/215/Caveolin-1/TGF-

β/SMAD
[107]

miR-423-5p Upregulated Prostate cancer Chemoresistance miR-423-5p/TGF-β/Gremlin 2 [362]
lncRNA CASC9 Upregulated Cervical cancer Metastasis and proliferation TGF-β/CASC9/miR-215/Twist2 [363]
The Hedgehog signaling pathway
miR-10a-5p Upregulated Cervical cancer Angiogenesis miR-10a-5p/TBX5/Hedgehog [364]
The Notch signaling pathway
miR-200 Downregulated Lung cancer Metastasis N/A [204]
miR-221 Upregulated Breast cancer Metastasis and hormone

therapy resistance
N/A [211]

The Wnt signaling pathway
miR-34a-5p Downregulated Oral cancer EMT, proliferation and

metastasis
miR-34a-5p/AXL/β-catenin/Snail [365]

miR-92a-3p Upregulated Colorectal cancer Stemness, EMT, metastasis
and chemoresistance

miR-92a-3p/Wnt/β-catenin/FBXW7
&MOAP1

[366]

miR-146a Upregulated Breast cancer Invasion and metastasis miR-146a/TXNIP/Wnt [217]
miR-148a Downregulated Endometrial

cancer
Proliferation and migration N/A [367]

miR-148b-3p Downregulated Bladder cancer Proliferation, metastasis
and chemoresistance

miR-148b-3p/Wnt/β-catenin/PTEN [368]

lncRNA CCAL Upregulated Colorectal cancer Chemoresistance CCAL/HuR/β-catenin [369]
lncRNA H19 Upregulated Colorectal cancer Stemness and

chemoresistance
H19/miR-141/β-catenin [370]

The Hippo signaling pathway
miR-92 Upregulated Breast cancer Proliferation, migration and

immune suppression
miR-92/LATS2/YAP1 [371]

The NF-κB signaling pathway
miR-200b, c Downregulated Breast cancer Proliferation, EMT and

invasion
miR-200b, c/IKKβ/NF-κB/PAI-1 [246]

miR-370-3p Upregulated Breast cancer Stemness, migration,
invasion and EMT

miR-370-3p/CYLD/NF-κB [372]

miR-630 Upregulated Ovarian cancer Invasion and metastasis miR-630/KLF6/NF-κB [373]
miR-1247-3p Upregulated Hepatocellular

carcinoma
Metastasis miR-1247-3p/B4GALT3/integrin

β1/NF-κB
[249]

miR-6780b Upregulated Ovarian cancer Invasion and metastasis NF-κB/miR-6780b/Dicer [374]
lncRNA TIRY Upregulated Oral cancer Proliferation, invasion and

metastasis
TIRY/miR-14/Wnt/β-catenin [375]

lncRNA TLR8-AS1 Upregulated Ovarian cancer Metastasis and
chemoresistance

TLR8-AS1/TLR8/NF-κB [376]

The JAK/STAT signaling pathway
miR-21 Upregulated Hepatocellular

carcinoma
CAFs formation miR-21/PTEN/PDK1/AKT [304]

miR-155 Upregulated Melanoma Angiogenesis miR-155/SOCS1/JAK2/STAT3 [377]
(Continues)
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TABLE 2 (Continued)

ncRNA
Expression
level Cancer type Biological effects Signaling cascades Ref

miR-210 Upregulated Lung cancer Angiogenesis N/A [276]
lncRNA NEAT1 Upregulated Endometrial

cancer
Proliferation and metastasis NEAT1/miR-26a/b-5p/STAT3/

YKL-40
[378]

circ_0088300 Upregulate Gastric cancer Proliferation, migration and
invasion

circ_0088300/miR-1305/JAK/STAT [379]

The PI3K/AKT signaling pathway
miR-21 Upregulated Hepatocellular

carcinoma
CAFs formation N/A [304]

miR-210 Upregulated Lung cancer EMT, migration and
invasion

miR-210/UPF1/PTEN/PI3K/AKT [380]

miR-590-3p Upregulated Colorectal cancer Radioresistance miR-590-3p/CLCA4/PI3K/AKT [381]
lncRNAMALAT1 Upregulated Gastric cancer CAFs formation MALAT1/ELAVL1/PTEN/AKT/

mTOR
[382]

The MAPK signaling pathway
miR-146a-5p Downregulated Prostate cancer EMT and metastasis N/A [383]
miR-211 Upregulated Melanoma Proliferation and migration miR-211/IGF2R/MAPK [282]
miR-320a Downregulated Hepatocellular

carcinoma
EMT, proliferation and
metastasis

miR-320a/PBX3/MAPK [384]

miR-369 Upregulated Lung cancer Migration and invasion miR-369/NF1/MAPK [385]

Abbreviations: CAFs, cancer-associated fibroblasts; ncRNAs, non-coding RNAs; TGF-β, transforming growth factor-β; DNMT3B, DNA methyltransferase 3β;
TCF12, transcription factor 12; CXCL, C-X-C chemokine ligand; FOXF2, Forkhead box F2; SMAD, Sma-and Mad-related protein; CASC9, cancer susceptibility
9; TBX5, T-box transcription factor 5; EMT, epithelial-to-mesenchymal transition; FBXW7, F-box and WD repeat domain containing 7; MOAP1, modulator of
apoptosis 1; TXNIP, Thioredoxin interacting protein; PTEN, phosphatase and tensin homolog; LATS2, large tumor suppressor kinase 2; YAP1, Yes-associated
protein 1; NF-κB, nuclear factor kappa-B; IKKβ, IκB kinase complex β; PAI-1, plasminogen activator inhibitor type 1; B4GALT3, beta-1,4-galactosyltransferase 3;
TLR8, Toll like receptor 8; JAK, Janus kinase; STAT, signal transducer and activator of transcription; PDK1, pyruvate dehydrogenase kinase 1; SOCS1, suppressor of
cytokine signaling 1; PI3K, phosphoinositide 3-kinase; CLCA4, chloride channel accessory 4; ELAVL1, ELAV like RNAbinding protein 1;MAPK,mitogen-activated
protein kinase; IGF2R, Insulin like growth factor 2 receptor; NF1, Neurofibromin 1; N/A, not applicable

which the glycolytic ability of CAFs was increased and the
mitochondrial function of cancer cells was enhanced, and
these changeswere closely related to changes in TGF-β sig-
nal transduction and ROS levels [115]. In ovarian cancer,
TGF-β upregulated versican expression in CAFs, which
activated NF-κB and accelerated the motility and invasion
of cancer cells [116]. Yang et al. [117] showed that in hepato-
cellular carcinoma (HCC), CAFs promoted the formation
of vascular mimicry, which was significantly weakened
when TGF-β or SDF1 signals were abolished. In gastric
cancer, more studies have reported the effect of TGF-β on
cancer stemness. According to a recent study, Helicobac-
ter pylori-activated fibroblasts drove gastric epithelial cells
into the differentiation process related to cancer stem cells
(CSCs) in a manner partially dependent on TGF-β sig-
naling, thus promoting tumorigenesis [118]. Co-culture of
gastric cancer cells with CAFs significantly increased the
number of spheroid colonies and the expression of CSC
markers, and the use of TGF-β inhibitors reduced these
effects, further revealing the role of TGF-β signaling in
the formation and maintenance of stemness mediated by
CAFs [119]. Most of the previous evidence showed the

tumor-promoting effect of excessive activation of TGF-β
signaling in CAFs. However, impaired TGF-β signaling in
CAFs has recently been shown to be a possibly impor-
tant cause of tumor invasion and metastasis, especially in
breast cancer and colon cancer. Cancer cells expressing E-
cadherin, MCF-7 (a breast cancer cell line) and DLD-1 (a
colon cancer cell line) invaded upon integrin α5β1 adhe-
sion to fibronectin fibrils on CAFs, and TGF-β inhibitors
promoted this process by stimulating CAF outgrowth
[120]. In breast cancer, TGF-β signaling in fibroblasts was
downregulated by adenosine, which accelerated tumor
progression and metastasis via ECM remodeling [121].
In CRC, CAFs secreted collagen and calcium-binding
EGF domain 1 (CCBE1) to promote lymphangiogenesis
and VEGFC maturation in cancer cells thus contribut-
ing to tumor metastasis, while TGF-β inhibited CCBE1
transcription [122].
Importantly, TGF-β signaling in CAFs is also involved

in the acquisition of resistance to cancer therapy, includ-
ing changes in sensitivity to chemotherapeutics,molecular
targeting, and immunotherapeutic drugs. These effects
have most widely been reported on lung cancer. In
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non-small cell lung cancer, treatment with nintedanib sig-
nificantly repressed adenocarcinoma fibrosis and the its
tumor-promoting effect, but no obvious clinical benefit
of nintedanib was observed in squamous cell carcinoma
[123]. Further studies revealed that this difference in
responsiveness was mediated by differential SMAD3 pro-
moter methylation in CAFs [123]. Li et al. [124] observed
that in lung cancer and esophageal cancer, the upregu-
lation of laminin gamma 2 (Ln-γ2) indicated weakened
efficacy of the anti-PD-1 antibody, which blocked T cell
infiltration by changing the expression of T cell recep-
tors. TGF-β derived from CAFs activated Ln-γ2 through
a transcriptional mechanism, and the combination of the
TGF-β receptor inhibitor galunisertib and chemotherapeu-
tic drugs enhanced the antitumor activity of anti-PD-1
therapy [124]. In addition to lung cancer, a pancancer anal-
ysis of ECM gene disorders led to the identification of
a group of specific ECM genes, named cancer-associated
ECM (C-ECM) genes, that are upregulated in cancers, and
disruption of the transcriptional program of these genes
is associated with TGF-β signal transduction in CAFs and
immunosuppression in other immunoactive cancers, sug-
gesting that C-ECM genes might predict PD-1-blocking
failure [125]. A recent study found that TGF-β suppres-
sion induced the remodeling of CAF dynamics and the
formation of a new fibroblast population, accompanied
by enhanced immune regulation and responsiveness to
interferon, which was related to more efficacious PD-1
immunotherapy [126]. In head and neck cancer, a study
found that TGF-β signaling was activated in cetuximab-
treated CAFs, limiting the efficacy of cetuximab in vitro
and in vivo [127]. After blocking the TGF-β pathway with
the SMAD3 inhibitor SIS3, the efficacy of cetuximab was
rescued [127]. Bortezomib is an essential drug in multi-
ple myeloma treatment. The presence of CAFs protected
plasma cells from bortezomib-induced apoptosis, which
was mediated by TGF-β [128].
TGF-β pathway inhibitors have consistently been shown

to play a role in limiting cancer progression in most
cases, and many attempts to treat cancers have been
directed toward TGF-β pathway activity. In pancreatic can-
cer, after treatment with the experimental anticancer drug
minnelide, TGF-β signaling in CAFs was dysregulated,
which led to a significant reversal of the CAF activa-
tion state to a static non-proliferative state and ultimately
resulted in tumor regression [129]. Pei et al. [130] pro-
posed a sequential targeting strategy for the treatment
of pancreatic cancer, which first targeted stromal TGF-
β signaling, reversed CAF activation, and weakened the
dense matrix barrier to facilitate subsequent drug delivery.
Human relaxin-2 inhibited TGF-β-induced PSC differenti-
ation by targeting pSMAD2, thus delaying tumor growth
andmetastasis [131]. Furthermore, treatment with relaxin-

2 enhanced the effect of gemcitabine after subcutaneous
co-injection (with Panc1 cells and PSCs) on tumor mod-
els [131]. In CRC, IL-1β/TGF-β1 activated CAF secretion of
proinflammatory factors, which changed the chemosen-
sitivity of cancer cells [132]. When neutralizing IL-1β
antibodies were administered with TβRI inhibitors, the
non-canonical TGF-β pathway mediated by TGF-β acti-
vated kinase 1 (TAK1) was activated, which continued to
maintain the tumor-promoting effect of CAFs.WhenTAK1
and TβRI inhibitors were applied in combination, the acti-
vation of CAFs induced by IL-1β/TGF-β1 was blocked, and
the chemosensitivity of cancer cells was rescued [132].
Leucine-rich repeat containing 15 (LRRC15) expression on
the stromal fibroblasts of many solid tumors is induced
by TGF-β and has been regarded as a promising target
for anti-stromal therapy [133]. ABBV-085, a drug target-
ing LRRC15, is an antibody-drug conjugate containing
monomethyl auristatin E (MMAE), and this conjugate
kills cancer cells through MMAE action and increases
immune infiltration in the TME [133]. By performing a
single-cell transcriptome analysis, Dominguez et al. [134]
clarified that LRRC15+ CAF subsets activated by TGF-β
were associated with adverse reactions to anti-PD-L1 ther-
apy, which further implied that LRRC15+ CAFs affected
cancer immunity.
In summary, TGF-β signaling is an essential trigger of

CAF activation and formation. TGF-β signaling in CAFs
plays a key role in regulating the malignant biological
behavior of cancer cells, thus affecting cancer progression.
Furthermore, these effects are bidirectional, which seems
to confirm the known dual role of TGF-β in cancers. Obvi-
ously, treatments correctly and efficiently targeting the
TGF-β pathway in CAFs are promising cancer therapies,
and increasing efforts are underway to achieve this goal.

4.1.2 FGF

FGFs produce signals by binding to FGF receptors
(FGFRs), which exert crucial functions in many diseases
[135]. FGFRs are receptor tyrosine kinases (RTKs) that
are composed of an extracellular ligand-binding domain
and an intracellular tyrosine kinase domain [136]. In
the presence of FGFs, FGFRs activate downstream sig-
naling cascades, such as the PI3K/AKT and Ras/MAPK
signaling pathways, to exert their biological effects [137].
Convincing evidence reveals that abnormal FGF signal-
ing contributes to the pathogenesis of many malignancies,
and CAFs have been found to be involved in these pro-
cesses [138]. In gastric cancer, HtrA serine peptidase 1
increased FGF2 expression in cancer cells by activating
NF-κB signaling, which induced the transformation of NFs
to CAFs, and α-SMA was upregulated. However, Akatsu
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et al. [139] showed that, on the one hand, FGF signal-
ing suppressed the endothelial-to-myofibroblast transition
induced by TGF-β, thus attenuating contractile myCAF
formation; on the other hand, FGF signaling cooperated
with TGF-β to facilitate CAF formationwithmigratory and
proliferative properties. Bordignon et al. [140] also reported
that the function of CAFs was regulated by both FGF and
TGF-β signaling. The activation of FGF signaling medi-
ated by CAFs promoted the proliferation, migration and
invasion of cancer cells [141]. For example, in breast can-
cer, the activation of FGF2/FGFR1 signaling mediated by
CAFs under the action of estrogen induced the expression
of connective tissue growth factor, leading to themigration
and invasion of cancer cells [142]. In addition, FGF signal-
ing has also been reported to be involved in CAF-mediated
cancer therapy resistance. In breast cancer, FGF5 secreted
byCAFs activated FGFR2 in cancer cells, eventually result-
ing in drug resistance to targeted human epidermal growth
factor receptor 2 (HER2) therapy through the activation
of HER2 by c-Src [143]. Hormone therapy is an important
method of breast cancer treatment; however, the signal-
ing induced by FGF7/FGFR2 has been found to be the
basis of CAF-dependent resistance to tamoxifen [144].
Interestingly, although FGF signaling can result in can-
cer treatment resistance, it has been shown to enhance
the effect of oncolytic virus therapy [145]. CAFs produced
FGF2 to initiate signaling cascades in cancer cells, and
these cascades reduced the expression of retinoic acid-
inducible gene I and hindered the ability of cancer cells to
detect and respond to viruses, enhancing the efficiency of
oncolytic viruses [145].

4.1.3 HGF

Met signaling plays crucial roles in tumor survival, growth,
angiogenesis and metastasis [146]. As the main cells
secreting hepatocyte growth factor (HGF), a vital factor
activating Met, CAFs make an important contribution
to the activation of Met signaling in cancer cells [147,
148]. As shown by Zhang et al. [149], HGF expression
in CAFs was 10-fold higher than that in NFs, and HGF
upregulated CD44 expression through the HGF/Met sig-
naling pathway to promote the adhesion of CRC cells
to endothelial cells, thus facilitating tumor metastasis.
Another study showed that CAF-derived HGF potentiated
the proliferation, migration and invasion of gastric cancer
cells by activating the HGF/Met/STAT3/Twist1 pathway
[150]. In addition, the CAF-mediated HGF signaling path-
way plays a major role in cancer treatment resistance.
In HCC, HGF secreted by CAFs activated the Met and
MEK/ERK1/2 pathways and elevated CD73 expression in

cancer cells, inducing resistance to sorafenib and cisplatin
[151]. In lung cancer, by secreting HGF and insulin-like
growth factor-1 (IGF-1) to activate their corresponding
receptors Met and IGF-1 receptor, CAFs increased the
expression and phosphorylation of Annexin A2, which
was a key molecule mediating CAF-induced EMT and
gefitinib resistance [152]. Upon long-term treatment with
tyrosine kinase inhibitors (TKIs), cancer cells addicted to
epidermal growth factor receptor (EGFR) or Met activa-
tion showed a metabolic transition to increased glycolysis
and lactate production [153]. These increased lactate levels
triggered CAFs to secrete HGF, leading to Met-dependent
signal transduction in cells that maintain their resistance
to TKIs. Interestingly, in head and neck squamous cell
carcinoma, HGF secreted by CAFs increased extracellular
lactate levels in tumors by enhancing glycolysis [154].

4.1.4 PDGF

The PDGF/PDGFR signaling pathway has a variety of
functions, including modulating angiogenesis, promoting
cancer cell autocrine growth, and regulating tumor stro-
mal fibroblasts [155, 156]. The PDGF/PDGFR signaling
pathway is an essential regulator of CAF formation and
recruitment in the TME and is crucial in CAF-mediated
ECM remodeling and tumor migration, invasion and
metastasis [157, 158]. In breast cancer and CRC, blocking
PDGFR significantly suppressed the recruitment of MSCs
to tumor tissues and their transformation to CAFs, thus
slowing cancer progression [159, 160]. In breast cancer,
paracrine PDGF-CC signaling increased the expression
of HGF, IGF binging protein 3 and Stanniocalcin 1 in
CAFs, resulting in a malignant cell phenotype that lacked
ERα and other luminal markers [161]. Targeting PDGF-
CC could restore cellular sensitivity to hormone therapy
in ERα-negative breast cancers. Cholangiocarcinoma cells
have also been documented to stimulate fibroblast migra-
tion by secreting PDGF-DD to activate Rho GTPase and
JNK signaling [162]. In cholangiocarcinoma, CAFs stim-
ulated by PDGF-DD induced lymphatic endothelial cell
recruitment and three-dimensional assembly, increased
lymphatic endothelial cell permeability and ultimately
accelerated the transendothelial migration of cancer cells
[163]. Erdogan et al. [164] revealed that CAFs facilitated
the directional migration of prostate and pancreatic can-
cer cells by rearranging the fibronectin matrix through
contraction and traction forces mediated by non-muscle
myosin II and PDGFRα. Lung adenocarcinoma cells
undergoing the EMT showed significantly increased lev-
els of secreted PDGF-BB, which enhanced CAF-mediated
ECM remodeling and promoted tumor invasion [165].



18 FANG et al.

4.1.5 EGF

The EGF/EGFR signaling pathway has been widely stud-
ied in cancers. Recent studies have shown that CAFs are
involved in regulating cancer progression mediated by the
EGF/EGFR pathway [166]. In high-grade serous ovarian
cancer, CAFs recruited ascitic cancer cells with high inte-
grin α5 expression to form metastatic units and accelerate
tumor metastasis by secreting EGF to maintain integrin
α5 expression in ascitic cancer cells [167]. In head and
neck cancer, pharmacological inhibition of EGFR reduced
CAF-induced anchorage-independent growth and tumor
spheroid formation, indicating that EGFR was impor-
tant for the maintenance of the CSC phenotype [168].
In addition, Magan et al. [169] showed that upon co-
culture with CAFs, head and neck cancer cells showed
increased proliferation, and increased EGFR expression
and an enhanced therapeutic response to cetuximab were
observed. However, another study of CRC revealed that
after cetuximab treatment, CAFs increased EGF secre-
tion and rendered neighboring cancer cells resistant to
cetuximab through the continuous activation ofMAPKsig-
naling [170]. Clearly, the relationship between CAFs and
cancer treatment responses is controversial, and further
research is needed.

4.2 The Hedgehog signaling pathway

The Hh signaling pathway is evolutionarily conserved and
is related to embryonic development, normal tissue repair,
the EMT, stem cell maintenance, and other processes
[171, 172]. The Hh signaling pathway is mainly com-
posed of three secretory ligands (Shh, Indian hedgehog,
and Desert hedgehog), the negative regulatory recep-
tor Patched (PTCH), the positive regulatory receptor
Smoothened (SMO), and the TF GLI [173]. In the presence
of Hh ligands, PTCH relieves the inhibition of SMO, and
activated SMO initiates a signaling cascade that results in
the activation and nuclear localization of GLI [174]. Activa-
tion and nuclear localization of GLI drive the transcription
and expression of Hh target genes, such as cyclin D, c-myc
and BCL2 [175]. In addition to the canonical pathway that
is mediated by the PTCH/SMO/GLI axis, non-canonical
pathways affect GLI activity and play a role in the Hh sig-
naling pathway through non-SMO-dependent pathways,
such as the TGF-β signaling pathway andMAPK signaling
pathway [176].
CAFs not only are potential sources of Hh ligands in the

TME but also respond to Hh signaling through GLI1 acti-
vation. GLI1 resided only in the nucleus of CAFs but not in
NFs, revealing the activation ofHh signaling inCAFs [177].
Interestingly, compared with that in iCAFs, Hh signal-

ing was differentially enhanced in myCAFs. Blocking Hh
signaling reduced the number of myCAFs and increased
the number of iCAFs, which was related to a decrease in
cytotoxic T cells and Treg expansion, revealing the abil-
ity of Hh signaling to regulate immune cell infiltration
[178]. As an essential signaling pathway in stem cells, the
Hh signaling pathway in CAFs makes a significant con-
tribution to the regulation of CSCs, especially in breast
cancer. In mouse models of triple-negative breast cancer
(TNBC), Hh ligands produced by cancer cells reprogramed
CAFs to provide a TME supportive of CSC acquisition
of chemoresistant phenotypes through the expression of
FGF5 and the production of fibrillar collagen [179]. Inter-
estingly, CSCs in breast cancer could secrete Shh as a
paracrine messenger to activate Hh signaling in CAFs,
which produced factors that subsequently accelerate CSC
expansion and self-renewal [180]. In addition to influenc-
ing CSCs, Hh signaling in CAFs affects the development of
malignant biological behaviors. In gastric cancer, Galectin-
1 upregulatedGLI1 expression by binding to a carbohydrate
structure in integrin β1, activating Hh signaling and induc-
ing the EMT, migration and invasion of cancer cells [181].
Besides, the activation of Hh signaling increased Forkhead
box F1 expression in CAFs, modulating the contractil-
ity of these fibroblasts and the production of HGF and
FGF2 to stimulate lung cancer cell migration [182]. Study-
ing cholangiocarcinoma, Razumilava et al. [183] reported
the effect of non-canonical Hh signaling on tumor pro-
gression and metastasis. GLI needs to be located in cilia
before it can be activated, but cilia are not formed bymalig-
nant cholangiocarcinoma cell lines. Genetic inhibition of
Hh signaling in BDE (ΔLoop2) cells or pharmacological
inhibitionwith vismodegib, a small-molecule antagonist of
SMO, suppressed tumorigenesis andmetastasis, indicating
a newmechanism for mediating Hh signal transduction in
cholangiocarcinoma [183].
As research on Hh signaling inhibitors is relatively

mature, many researchers have focused on exploring
the role of Hh signaling inhibitors in cancers to identify
effective treatments. Compared with that in NFs, SMO
expression is upregulated in CAFs. CAFs expressing SMO
transduce Shh signals to activate GLI1, while siRNA-
induced knockdown of SMO blocks the induction of
GLI1 [184]. Therefore, SMO overexpression may be one
of the mechanisms activating Hh signaling in CAFs. Shh
could facilitate PSC proliferation and potentiate GLI1
expression, which was abrogated by the SMO inhibitor
AZD8542 [185]. In pancreatic cancer, AZD8542 inhibited
tumor growth only in the presence of PSCs, suggesting
a matrix-dependent paracrine signaling mechanism,
which was subsequently confirmed in prostate and colon
cancer models [185]. A large amount of tumor stroma is
produced in pancreatic cancer, and it hinders the delivery
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of chemotherapeutic drugs, but the use of the Shh inhibitor
cyclopamine help eliminates stroma-producing CAFs,
thus contributing to the effective delivery of drugs [186].
A recent study revealed that a PTCH-1-interacting peptide
inhibited the production of ECM and TGF-β by CAFs and
induced cancer cells to express human leukocyte antigen-
ABC and lymphocytes to express interferon-γ, thereby
inhibiting tumor fibrosis and enhancing immune cell infil-
tration [187]. In breast cancer, the use of the SMO inhibitor
vismodegib improved the efficacy of Abraxane and Doxil
[188]. Mechanistically, vismodegib therapy normalized the
TME and improved vascular function by inhibiting CAF
activation to reduce the levels of collagen and hyaluronan.
However, blocking Hh signaling may not necessarily
suppress cancer growth [189]. In pancreatic cancer, the
loss of two Hh coreceptors, growth arrest specific 1 (GAS1)
and brother of CDON (BOC), in fibroblasts reduced the
reactivity of Hh but accelerated tumor growth in vivo
because of an increase in tumor-associated vascularity
[190]. In contrast, the loss of all three coreceptors, GAS1,
BOC and cell adhesion associated, oncogene regulated
(CDON), resulted in the inhibition of tumorigenesis and
angiogenesis. In a Kras-mutated (G12D) mouse model,
ablation of the SMO gene in CAFs led to pancreatic
acinar-ductal metaplasia, which promoted the initiation
of pancreatic cancer [191]. In recent years, studies have
gradually revealed that, in contrast to the previously
described tumor-promoting effect, the effect of Hh signal-
ing on CAFs also has a tumor-suppressing function, which
may explain the failure of Hh signaling inhibitors [192].
Rhim et al. [193] examined a pancreatic cancer mouse
model in which Shh had been knocked out and observed
a reduced number of α-SMA+ myofibroblasts, resulting in
increased angiogenesis, cell proliferation and invasion and
decreased tumor differentiation. In CRC, the activation of
stromal-specific Hh signaling inhibited advanced cancer
progression by regulating BMP signaling and suppressing
the colonic stem cell signature [194]. Therefore, more
in-depth studies are needed to determine methods to cor-
rectly adjust Hh signaling in CAFs and attenuate cancer
progression.

4.3 The Notch signaling pathway

Notch signaling influences numerous cancer biological
processes [195], and different cancers and cancer sub-
types express different Notch receptors and ligands, which
play different roles [196]. Therefore, Notch is considered
both a cancer promoter and suppressor. The microenvi-
ronment determines whether Notch signaling promotes
or suppresses cancer progression [197]. The Notch path-
way includes five typical Notch ligands [Jagged 1 (JAG1),

JAG2,Delta-like 1 (DLL1), DLL3 andDLL4] and fourNotch
receptors (Notch1-4) [198]. Upon ligand binding, a series of
cleavages of Notch receptors are induced to form theNotch
intracellular domain (NICD) [199]. Then, NICD is translo-
cated to the nucleus and interacts with CBF1/suppressor of
hairless/LAG1 (CSL). NICD binding promotes the recruit-
ment of the coactivation complex to CSL, which eventually
leads to the transcriptional activation of CSL response
elements [200]. In addition to this classical Notch signal-
ing pathway, non-canonical Notch signaling is initiated by
non-canonical ligands, in the absence of ligands, or does
not require CSL [200, 201].
CSL suppresses transcription when Notch signaling is

not activated, and therefore deletion of CSL or the down-
regulation of its components results in CAF activation
since the expression of multiple CAF determinant genes
are directly modulated by CSL [202]. The dysregulation
of Notch signaling in CAFs affects the proliferation,
migration, invasion and angiogenesis of cancer cells and
ultimately affects tumor growth and metastasis [203, 204].
The downregulation of CSL in CAFs seems to be closely
related to autophagy. Upon autophagy induction, the
CSL protein level was usually decreased in the tumor
stroma, but the mRNA level was not affected, and studies
have shown that endogenous CSL was associated with
autophagy and the signaling adaptor p62/Sequestosome
1 [205]. Interestingly, CSL silencing in CAFs induced
autophagy by upregulating Unc-51 like kinase 3 expression
[206]. The relationship between autophagy and CSL in
CAFs is complex, and it suggests a new possible direction
for stromal therapy that remains to be further explored. In
addition to autophagy, the DNA damage/repair process is
significantly related to CSL in CAFs. CSL expression was
negatively regulated by stress/DNA damage induced by
ultraviolet radiation A, ROSs, and other factors [207]. P53
is the key effector in the DNA damage response (DDR),
which attenuated CSL gene transcription by suppressing
CSL promoter activity. In addition, surprisingly, Bottoni
et al. [208] showed that, independent of its role in regulat-
ing transcription, CSL was part of a multiprotein telomere
protective complex required for telomere association and
that CSL downregulation in CAFs triggered DNA damage,
telomere loss and chromosome fusion. A recent study
reported heterogeneous amplification and overexpres-
sion of the Notch1 gene in CAFs of skin squamous cell
carcinoma. Notch1 overexpression led to the continuous
expression of CAF effector genes, which might be caused
by the blockade of the DDR and the inhibition of ATM-
forkhead box O3a binding and the downstream signaling
cascade [209].
As one of the important regulatory pathways in

stem cells, the Notch signaling that is dysregulated by
CAFs affects the biological functions of CSCs. In HCC,
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CAF-induced Notch3 expression led to lysine-specific
demethylase 1 deacetylation and activation, thus main-
taining the self-renewal and tumorigenicity of CSCs [210].
In breast cancer, exosomal miR-221 secreted by CAFs
decreased ER expression and upregulated Notch3 expres-
sion in recipient cancer cells, which induced the pro-
duction of CD133-overexpressing CSCs and ultimately
promoted hormone therapy resistance [211]. Additionally,
DLL1+ breast cancer cells recruited CAFs and promoted
Wnt ligand secretion by Notch2/3-expressing CAFs, result-
ing in increased Wnt/β-catenin-dependent DLL1+ CSC
functions to promote metastasis and radioresistance [212].
In summary, unlike other signaling pathways, the Notch

pathway activation in CAFs appears to preferentially alter
autophagy and the DNA damage/repair process and thus
contributes to cancer progression, which suggests novel
applications and prospects for targeting the Notch signal-
ing.

4.4 TheWnt signaling pathway

The Wnt signaling pathway regulates organ development
and regeneration and stem cell differentiation, which is
pivotal for malignancy initiation and progression [213].
The main components of the canonical Wnt pathway
include secreted Wnt ligands, the transmembrane recep-
tor Frizzled (Fzd), coreceptor LDL receptor related protein
(LRP) 5/6, Dishevelled (Dvl), adenomatous polyposis coli
(APC), glycogen synthase kinase 3β (GSK3β), Axin, β-
catenin, and the TFs TCF/LEF [214]. In the absence ofWnt
ligand stimulation, Axin, APC and GSK3β form a destruc-
tive complex that binds to β-catenin and phosphorylates
it, and β-catenin is then degraded upon ubiquitination
[215]. After Wnts bind to Fzd and its coreceptor LRP5/6,
the intracellular protein Dvl is activated, thus inhibiting
the degradation activity of the destructive complex and
stabilizing the β-catenin protein in the cytoplasm. Upon
accumulation in the cytoplasm, stable β-catenin enters the
nucleus and binds to LEF/TCF, which initiates the tran-
scription of target genes such as c-myc and cyclin D1 [213].
Furthermore, β-catenin binds to a variety of TFs in addi-
tion to TCF/LEF, such as Forkhead box TFs, SRY-box TFs,
and SMAD, thereby regulating numerous downstream
biological processes [216].
Wnt signaling is activated in NFs by various factors

and may lead to NF transformation into CAFs [217]. For
example, Wnt4 expression was significantly increased
in the serum of patients with CRC, and it activated
CAFs and induced the EMT by activating β-catenin
[218]. Interestingly, distinct Wnt activities in CAFs also
induced the formation of different CAF subtypes: the
iCAF subtype was induced by low levels of Wnt, while the

myCAF subtype was induced by high levels of Wnt [219].
Transdifferentiated adipocytes are sources of CAFs, and
Wnt pathway activation facilitated this process. In breast
cancer, activation of the Wnt/β-catenin pathway caused
by Wnt3a secreted by cancer cells resulted in increased
secretion of fibronectin and type I collagen and increased
expression of the CAF marker FSP1 in adipocytes [37].
In addition, Wnt ligands might promote CAF activation
through a non-canonical Wnt signaling pathway. Avgusti-
nova et al. [220] revealed that Wnt7a, a key factor secreted
exclusively by invasive breast cancer cells, induced CAF
transformation. However, the activation of canonical Wnt
signaling was not detected in this process, while TGF-β
signaling was observed to be enhanced and led to ECM
remodeling, which facilitated cancer cell migration and
invasion.
The ultimate goal of Wnt-activated CAFs is tumor pro-

motion; therefore, Wnt signaling in CAFs is innately
involved in regulating malignant biological behaviors.
CAF-derived Wnt2 plays a critical role in CRC progres-
sion. Aizawa et al. [221] performed immunohistochemical
staining of 171 samples from patients with CRC and found
that Wnt2 expression in CAFs was significantly associated
with the lymph nodemetastasis (TNM) stage, venous inva-
sion and recurrence.Wnt2 inhibition in CAFs significantly
reduced the invasion andmigration of CRC cells. The abil-
ity of Wnt to enhance the invasiveness of CRC cells might
be mediated by its regulation of CAF motility and ECM
remodeling [222]. Another study reported that proteins
related to angiogenic function, including Angiopoietin-2,
IL-6, granulocyte colony stimulating factor and placental
growth factor, were upregulated by Wnt2 and that Wnt2
knockout in CAFs significantly attenuated angiogenesis
[223]. In CRC xenografts, Wnt2 overexpression led to an
increase in vessel density and tumor volume. In addi-
tion, Wnt2 secreted by CAFs repressed the dendritic cell
(DC)-mediated antitumor T cell response through the sup-
pressor of cytokine signaling 3 (SOCS3)/p-JAK2/p-STAT3
axis, while targeting Wnt2 restored antitumor immunity
and enhanced anti-PD-1 efficacy by increasing the number
of activeDCs [224]. As shown inTable 2, exosomal ncRNAs
derived fromCAFs also play an essential role inWnt signal
transduction.
Abnormalities in Wnt signaling are an important driv-

ing factor for CRC progression. CAF-secreted factors,
including HGF, enhanced Wnt signaling in CRC cells
and induced them to develop CSC phenotypes, thereby
restoring the clonogenic ability or tumorigenicity of more
differentiated tumor cells with relatively low Wnt sig-
naling activity [225]. As previously stated, Wnt signaling
activation in CAFs also exerts a decisive effect on CRC pro-
gression, which further reveals the importance of targeting
the Wnt pathway in CRC.
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4.5 The Hippo signaling pathway

The Hippo signaling pathway, which consists of a group
of conserved kinases, suppresses cell growth and controls
the size and volume of organs in various species [226].
Increasing evidence has confirmed that Hippo signaling
plays critical roles in carcinogenesis, tissue regeneration
and immune modulation [226, 227]. Briefly, after receiving
a growth inhibition signal, the Hippo pathway modulates
the downstream effector YAP/TAZ through a series of
kinase phosphorylation events [228]. TEA domain (TEAD)
family TFs are the best representatives of the TFs reg-
ulated by YAP/TAZ: TEAD TFs transcribe target genes
upon activation by YAP/TAZ and promote cell prolifera-
tion and survival signaling [229]. Most of the biological
functionsmediated byYAP/TAZdepend on the interaction
of YAP/TAZ and TEADs, including a protumorigenic phe-
notype acquired upon dysregulation of the Hippo pathway
[227].
YAP/TEAD protein complexes affect downstream

cytoskeletal proteins by regulating Src transcription,
thus transforming NFs into CAFs, which accelerates
the proliferation and invasion of epithelial cells and
ultimately promotes tumor growth and metastasis [230].
YAP regulated the expression of various cytoskeletal
regulators, such as Anillin and Diaphanous related formin
3, thereby contributing to ECM remodeling and stiffening.
Interestingly, YAP activation itself was modulated by
ECM stiffening, and actomyosin contractility and Src
function were required for this effect [231]. Clearly, a
feedforward self-enhancement loop helped maintain
the CAF phenotype. Cerebral cavernous malformations 3
(CCM3) located at CAF adhesion sites competedwith focal
adhesion kinase (FAK) to bind to paxillin and fine-tuned
mechanotransduction and YAP/TAZ activation mediated
by the FAK/Src/paxillin axis [232]. The inactivation of
CCM3 led to the intensification of tissue remodeling
and force transmission to the matrix, resulting in the
mutual activation of YAP/TAZ in adjacent cancer cells
and ultimately inducing tumor metastasis [232]. Bertero
et al. [233] found that ECM stiffening activated glycolysis
and glutamine metabolism, thus coordinating the flow
of non-essential amino acids in the tumor niche. The
YAP/TAZ-dependent mechanical transduction pathway
influenced the metabolic crosstalk between CAFs and
cancer cells and regulated the metabolic reprogramming
of cancer cells to support cancer progression [233]. In
CAFs, YAP was located in the cytoplasm, while in acti-
vated CAFs, it was located in the nucleus and induced
the expression of genes needed for tumor promotion.
The YAP cytoplasmic-nuclear shuttle was affected by cell
shape changes, YAP nuclear export, and the functions of
actin, Src family kinases and XPO1 [234]. In addition, in

the absence of ECM stiffness stimuli, Spin90 deficiency
led to the recruitment of mDia2 and APC complexes
to microtubules, resulting in increased microtubule
acetylation, which facilitated the nuclear localization
of YAP and ultimately mediated CAF activation [235].
Activated CAFs act on cancer cells by secreting exosomes
to modulate YAP activity, which reveals the importance
of the YAP pathway in CAFs. For instance, CAF-derived
exosomal Annexin A6 stabilized integrin β1 in cancer cells,
leading to ECM network formation and chemoresistance
through the integrin β1/FAK/YAP axis [236]. Some typical
signaling pathways have been shown to synergize with
the YAP/TAZ pathway, and in CAFs, the most common
of which is the Wnt/β-catenin signaling pathway. Liu
et al. [237] identified the interaction between YAP and
β-catenin in CAFs by performing coimmunoprecipitation
and proximity ligation assays. Wnt/β-catenin activation
in CAFs facilitated the nuclear translocation of YAP,
and this nuclear translocation was suppressed when
Wnt/β-catenin signaling was blocked [237]. Ferrari et al.
[70] further revealed that DKK3 modulated the synergism
betweenWnt/β-catenin signaling and YAP/TAZ signaling.

4.6 The NF-κB signaling pathway

The NF-κB family of TFs is involved in a variety of biologi-
cal processes, including inflammation, immune response,
and regulation of cellular functions [238]. These biologi-
cal processes associate closely with cancer initiation and
progression; therefore, NF-κB signaling is not only an
essential regulatory pathway in inflammation and immu-
nity but also a crucial factor in malignancy. The NF-κB
family consists of five members, RelA (p65), RelB, cRel,
NF-κB1 (p50) and NF-κB2 (p52), which exert their physio-
logical functions by forming dimers [239]. In the canonical
pathway, NF-κB activation is initiated by the binding of
ligands (such as TNF-α, IL-1, and lipopolysaccharide) to
their respective receptors (such as the TNF, IL-1 and Toll-
like receptors) [240]. The non-canonical NF-κB pathway
is activated by a small number of cytokines from the TNF
family, such as B cell activating factor of the tumor necro-
sis factor family and CD40 ligand, to induce the synthesis
of NF-κB-inducing kinases [241, 242]. The typical tar-
gets of canonical NF-κB signaling include genes encoding
cytokines, chemokines, growth factors, and CXCLs, which
exert crucial functions in controlling innate immunity and
inflammation, while non-canonical pathways contribute
to the development of secondary lymphoid organs and the
maturation of B lymphocytes [243, 244].
CAFs in skin, breast and pancreatic cancers present

a proinflammatory gene signature that depends on
the activation of NF-κB signaling [245]. CAFs with a
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TABLE 3 Cytokines and chemokines involved in signaling crosstalk between CAFs and cancer cells

Cytokine or
chemokine Cancer type Biological effects Signaling cascades Ref
The Notch signaling pathway
IL-8 Ovarian cancer Stemness and chemoresistance N/A [386]
The Wnt signaling pathway
CXCL12 Ovarian cancer EMT and chemoresistance CXCL12/CXCR4/Wnt/β-catenin [387]
IL-1β Bladder cancer Proliferation and invasion N/A [388]

Ovarian cancer Immune suppression PS1/Wnt/β-catenin/IL-1β [389]
The NF-κB signaling pathway
CCL5 Lung cancer Proliferation HIF-1α/NF-κB/CCL5 [390]
CXCL11 Ovarian cancer Proliferation and migration LTBR/NF-κB/CXCL11 [248]
IL-1β Oral cancer Proliferation, migration and

invasion
IL-1β/NF-κB/CCL22/CCR4 [391]

IL-8 Breast cancer Invasion and EMT IL-8/NF-κB/S100A8 [392]
Nasopharyngeal carcinoma Radioresistance N/A [253]
Gastric cancer Chemoresistance N/A [252]

The JAK/STAT signaling pathway
IL-6 Esophageal squamous cell carcinoma Chemoresistance N/A [270]

Gallbladder cancer Angiogenesis IL-6/JAK/STAT3/NOX4 [264]
Breast cancer Proliferation IL-6/STAT3/AUF1/ATR [393]
Colorectal cancer Proliferation IL-6/STAT3/Periostin [394]
Hepatocellular carcinoma EMT IL-6/IL6R/STAT3/TG2 [395]
Hepatocellular carcinoma Immune suppression IL6/STAT3/PD-L1 [267]

IL-17a Gastric cancer Migration and invasion N/A [271]
The PI3K/AKT signaling pathway
CCL26 Pancreatic cancer Migration N/A [396]
CXCL5 Colorectal cancer Immune suppression CXCL5/CXCR2/PI3K/AKT/PD-L1 [314]
The MAPK signaling pathway
CCL20 Pancreatic cancer Immune suppression N/A [292]
CXCL1 Esophageal squamous cell carcinoma Radioresistance N/A [397]
CXCL6 Hepatocellular carcinoma Stemness CXCL6/ERK1/2/CLCF1 [14]
IL32 Breast cancer EMT and invasion IL32/integrin β3/p38 MAPK [289]
IL-33 Gastric cancer EMT, migration and invasion IL-33/ST2L/ERK1/2/SP1/ZEB2 [398]

Abbreviations: CAFs, cancer-associated fibroblasts; IL, interleukin; CXCL, C-X-C chemokine ligand; EMT, epithelial-to-mesenchymal transition; CXCR, C-X-C
chemokine receptor; PS1, Presenilin 1; NF-κB, nuclear factor kappa-B; CCL, C-C motif chemokine ligand; HIF, hypoxia-inducible factor; LTBR, Lymphotoxin
beta receptor; CCR, C-C motif chemokine receptor; JAK, Janus kinase; STAT, signal transducers and activators of transcription; NOX4, NADPH oxidase 4; TG2,
Transglutaminase 2; PD-L1, programmed death ligand-1; PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinase; ERK, extracellular signal
regulated kinase; CLCF1, Cardiotrophin like cytokine factor 1; ZEB, Zinc finger E-box binding homeobox; N/A, not applicable

proinflammatory gene signature have the ability to pro-
mote macrophage recruitment, angiogenesis and tumor
growth, which are attenuated when NF-κB signaling is
suppressed. NF-κB signaling is vital for the acquisition
and maintenance of tumor-promoting functions in CAFs,
as evidenced by dysregulated NF-κB signaling inducing
iCAF formation and CAF secretion of factors such as
cytokines, chemokines, and growth factors that regulate
tumor growth (Table 3) [246, 247]. For instance, lympho-
toxin in ovarian cancer cells induced chemokine expres-
sion in CAFs mediated by the Lymphotoxin beta receptor

(LTBR)/NF-κB axis, through which CXCL11 enhanced the
proliferation and migration of cancer cells [248]. In HCC,
the increase in serum exosomal miR-1247-3p levels was
related to lung metastasis. Fang et al. [249] found that
tumor-derived miR-1247-3p targeted B4GALT3, activating
integrin β1/NF-κB signaling in CAFs. Subsequently, CAFs
facilitated cancer progression by secreting proinflamma-
tory cytokines, including IL-6 and IL-8. Similarly, integrin
β like 1-enriched exosomes derived from CRC cells stimu-
lated TNF-α induced protein 3-mediated NF-κB signaling
to sensitize CAFs, which then produced large amounts of
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proinflammatory cytokines to enhance metastatic tumor
growth [250].
Importantly, NF-κB signaling in CAFs is of unprece-

dented importance in cancer treatment resistance. Various
factors leading to NF-κB pathway activation in CAFs
exhibit the potential to promote drug resistance. Su et al.
[251] identified and defined a new subpopulation of CAFs,
CD10+GPR77+ CAFs, which was significantly associated
with chemoresistance and poorer survival of patients with
breast or lung cancer. CD10+GPR77+ CAFs were driven
by the continuous activation of NF-κB through p65 phos-
phorylation and acetylation, which were maintained by
complement signaling through the C5a receptor GPR77.
CD10+GPR77+ CAFs induced CSC enrichment by secret-
ing IL-6 and IL-8, providing a survival niche for CSCs
and ultimately promoting cancer initiation and chemore-
sistance [251]. Similarly, IL-8 was expressed at high levels
in patients with gastric cancer presenting chemoresis-
tance. CAF-derived IL-8 potentiated the chemoresistance
of gastric cancer by activating NF-κB signaling [252].
Interestingly, in nasopharyngeal carcinoma,CAFs reduced
radiation-induced DNA damage through the IL-8/NF-κB
axis, thus inducing the acquisition of radiation resis-
tance [253]. In addition, the NF-κB pathway affects the
metabolic characteristics of CAFs, leading to an increase
in aerobic glycolysis and autophagy, thus providing sup-
port for cancer cell growth and invasion and contributing
to drug resistance [254]. Lactate, a product of glycolysis,
induced CAFs to secrete HGF in an NF-κB-dependent
manner, and HGF activated Met-dependent signal trans-
duction in cancer cells and maintained their resistance
to TKIs [153]. Lactate in cancer cells also mediated brain
derived neurotrophic factor production by CAFs in an NF-
κB-dependent manner, activating TrkB/Nrf2 signaling in
cancer cells to reduce their sensitivity to anlotinib [255].
These findings confirm the relationship between NF-κB
signaling, metabolism and drug resistance.
In general, the NF-κB pathway in CAFs modulates

cancer progression and promotes treatment resistance
by regulating inflammatory factors in the TME and a
series of chemokines and cytokines. Approaches target-
ing NF-κB signaling itself or downstream chemokines and
cytokines may contribute to the treatment of cancers with
inflammatory characteristics.

4.7 The JAK/STAT signaling pathway

The JAK/STAT signaling pathway is mainly stimulated
and activated by cytokines [256], all of which have cor-
responding receptors on the membrane. These receptors
themselves have no kinase activity but contain an intracel-
lular binding site for JAKs [257]. In general, cytokines and

growth factors bind to tyrosine kinase-related receptors
and subsequently activate receptor-bound JAKs, result-
ing in autophosphorylation of JAKs and receptor tyrosine
kinase residues [258]. The phosphorylation site on the
receptor binds to the SH2 site of STATs, and receptor-
bound STATs are phosphorylated by JAK to form dimers,
which translocate into the nucleus and act as activated
TFs to regulate the expression of target genes [259, 260].
Different combinations of JAKs [JAK1, JAK2, JAK3 and
tyrosine kinase 2 (TYK2)] and STATs (STAT1, 2, 3, 4, 5A, 5B
and 6) are activated by different ligands and receptors with
a high degree of specificity, thereby regulating basic bio-
logical processes such as cell proliferation, differentiation,
apoptosis and immunomodulation [261, 262].
In the TME, the IL-6/JAK/STAT3 signaling pathway

drives cancer cell proliferation, invasion and metasta-
sis and considerably suppresses the antitumor immune
response [263], and CAFs play crucial roles in these pro-
cesses. As the main sources of secreted IL-6, CAFs play
a role in regulating cancer progression by secreting IL-6
to activate STAT3 in cancer cells (Table 3). For example,
IL-6 secreted by CAFs accelerated the growth and angio-
genesis of gallbladder cancer by activating the JAK/STAT3
signaling pathway in cancer cells and upregulating the
expression of NOX4, a key gene involved in vasculogenic
mimicry [264]. Importantly, CAFs affect cancer immu-
nity through this pathway [265]. By activating STAT3,
IL-6 in CAFs induced the differentiation and formation
of immunosuppressive T cells called CD73+ γδ Tregs, the
infiltration of which weakened the tumor-killing func-
tion of CD8+ T cells and was significantly related to a
poor prognosis for patients [266]. Interestingly, CD73+ γδ
Tregs could stimulate CAFs to secrete IL-6 through the
adenosine/adenosine A2b receptor/p38MAPK signaling
pathway, thus forming an IL-6/adenosine positive feed-
back loop [266]. In HCC, CAFs modulated the survival,
activation and function of neutrophils in tumor tissues
through the IL-6/STAT3/PD-L1 axis [267]. CAFs are also
involved in the differentiation of myeloid-derived sup-
pressor cells (MDSCs) [268]. CAFs recruited monocytes
through the SDF1a/CXCR4 pathway and induced them to
differentiate into MDSCs, which impaired T cell prolifera-
tion and changed the T cell phenotype and function in an
IL-6/STAT3-dependent manner [269]. In esophageal squa-
mous cell carcinoma, IL-6 and exosomal miR-21 secreted
from CAFs synergistically promoted MDSC production
by activating STAT3, resulting in the resistance of tumor
cells to cisplatin [270]. In addition to secreting IL-6, CAFs
alter STAT3 activity in cancer cells through a variety of
other mechanisms to exert their biological effects [132].
For instance, CAFs secreted IL-17a to promote the migra-
tion and invasion of gastric cancer cells by activating the
JAK2/STAT3 signaling pathway [271]. IL-11 secreted by



24 FANG et al.

CAFs enhanced the migration and invasion of gastric can-
cer cells by activating the JAK/STAT3 and MAPK/ERK
pathways [272].
On the other hand, activation of the JAK/STAT path-

way in NFs induces the activation and formation of
CAFs, thusmodulating cancer progression [273, 274]. PSCs
secreted the autocrine leukemia inhibitory factor (LIF) and
activated the JAK/STAT signaling pathway upon stimu-
lation with IL-1, thus accelerating iCAF formation [48].
Albrengues et al. [275] showed that under the action of
LIF, NFswere reprogrammed into CAFswith a preinvasive
phenotype, thus promoting ECM remodeling and cancer
cell invasion. Mechanistically, LIF activated an epigenetic
switch that led to the structural activation of JAK1/STAT3
signaling and resulted in the continuous preinvasion activ-
ity of CAFs [275]. In addition, exosomes derived from
cancer cells can induce the transformation of NFs into
CAFs and regulate the function of CAFs by activating the
JAK/STAT pathway in CAFs. For example, exosomal miR-
210 derived from lung cancer cells increased the expression
of angiogenic factors such as MMP9, FGF2 and VEGFA
in CAFs by activating the JAK2/STAT3 signaling pathway,
which ultimately promoted angiogenesis [276].

4.8 The MAPK signaling pathway

MAPKs are normally expressed in cells where they con-
vert extracellular signals such as those from growth factors
and stress stimuli into intracellular responses, contribut-
ing to embryonic development, tissue homeostasis and
inflammation [277, 278]. Fourmain branches of theMAPK
signaling pathway have been identified: the ERK, JNK,
p38/MAPK and ERK5 branches [279]. Among these path-
ways, the JNK and p38/MAPK pathways have similar
functions related to inflammation, cell apoptosis and pro-
liferation, while ERK mainly regulates cell growth and
differentiation [280]. The major driver of MAPK signal-
ing pathway activation is the phosphorylation cascade
involvingMAPK kinase kinase (MAPKKK), MAPK kinase
(MAPKK), and MAPK, while ERK activation is altered by
the canonical Ras/Raf/MEK/ERK axis [281].
ERK activation in fibroblasts results in their transfor-

mation into CAFs and contributes to tumor growth [282,
283]. For example, when melanosomal miR-211 was trans-
ferred to NFs, it directly targeted IGF2 receptor and acti-
vates MAPK signaling, which drove NFs to acquire CAF
phenotypic characteristics, including increased prolifer-
ation, migration and proinflammatory gene expression,
and ultimately promoting the growth of melanoma [282].
In fact, CAFs preferentially exert their tumor-promoting
functions by regulating the MAPK signaling pathway in
cancer cells. Ligorio et al. [284] combined single-cell

RNA and protein analyses to study the role of CAFs in
regulating heterogeneity in pancreatic cancer and found
that a significant single-cell population shifted toward
the invasion-related EMT and proliferative phenotypes
with the activation of MAPK and STAT3 signaling. In
neuroblastoma, CAFs promoted the proliferation, sur-
vival and chemoresistance of neuroblastoma cells in vitro
through a mechanism depending on the co-activation
of JAK2/STAT3 and MEK/ERK signaling in cancer cells
[285]. Exosomal ncRNAs also mediate the effect of CAFs
on MAPK signaling in cancer cells (Table 2).
The JNK/p38 MAPK signaling pathway plays a piv-

otal role in the formation and activation of CAFs. In
lung cancer, p38-dependent fibroblast-specific hyaluro-
nan synthesis regulated the activation of fibroblasts, thus
accelerating cancer cell proliferation [286]. P38 activa-
tionmaintained the expression of tumor-promoting factors
by CAFs, and this process depended on AUF1 binding
and stabilized the mRNAs encoding related factors to
exert posttranscriptional regulatory effects [287]. How-
ever, Hong et al. [288] revealed that in breast cancer,
p38 signaling suppressed MSC migration to the primary
tumor and metastatic site, inhibited the transformation of
MSCs into CAFs, and ultimately repressed tumor metas-
tasis. Therefore, p38 signaling may exert distinct effects
on the formation and activation of CAFs under differ-
ent conditions, and further research is needed to clarify
the mechanism. Similar to the ERK pathway, the p38
MAPK pathway mediates the interaction between CAFs
and cancer cells to influence cancer progression [289]. In
ovarian cancer, CAFs stimulated glycogen mobilization
in cancer cells, thus promoting glycolysis, and this pro-
cess depended on p38α MAPK activation in CAFs [290].
P38α MAPK in CAFs affected tumor growth and metas-
tasis by altering glycogen metabolism because glycogen
was one of the energy sources in cancer cells, promot-
ing metastatic foci growth. Another study showed that
under hypoxic conditions, lactate in CAFs mediated the
metabolic coupling between CAFs and breast cancer cells
to enhance the mitochondrial activity of cancer cells by
activating the TGF-β1/p38 MAPK/MMP2/9 axis, thus pro-
moting the invasion of cancer cells [291]. In addition, JNK
signaling activation in CAFs suppressed CCL20 secretion,
resulting in a reduction in CD8+ T cell infiltration and
subsequently affecting antitumor immunity [292]. In sum-
mary, the JNK/p38 MAPK signaling pathway modulates
CAF activation and the crosstalk between activated CAFs
and cancer cells through various mechanisms. Strategies
targeting this pathway are important to normalize the TME
and treat malignant diseases.
The MAPK signaling pathway usually cooperates with

the AKT signaling pathway [293, 294]. For example, in gas-
tric cancer, tumor-educated neutrophils activated the AKT



FANG et al. 25

and p38 pathways in MSCs by secreting IL-17, IL-23 and
TNF-α, which induced MSC transformation into CAFs to
facilitate tumor growth and metastasis [295]. In lung can-
cer, vascular cell adhesion molecule-1 secreted by CAFs
activated the AKT and MAPK signaling pathways in can-
cer cells by binding to integrin α4β1, promoting the growth
and invasion of cancer cells [296]. In pancreatic cancer,
the combination of MEK inhibitors and STAT3 inhibitors
alleviated stromal inflammation and enriched CAF phe-
notypes with mesenchymal stem cell-like properties to
overcome immunotherapy resistance [297]. The combined
use of MEK inhibitors (e.g., trametinib), STAT3 inhibitors
(e.g., ruxolitinib) and PD-1 inhibitor (e.g., nivolumab) to
treat a patient with chemotherapy-refractory metastatic
pancreatic cancer has yielded clinical benefits. Therefore,
the effect of crosstalkwith other signaling pathways should
also be considered in efforts to target MAPK signaling.

4.9 The PI3K/AKT signaling pathway

The PI3K/AKT signaling pathway is the most commonly
activated pathway in cancers and promotes the growth,
survival, and, particularly, the metabolism of cancer cells
[298]. The PI3K/AKT pathway is usually triggered by
the activation of membrane receptors such as RTKs or
G protein-coupled receptors [299]. Activated PI3K on
the plasma membrane stimulates the phosphorylation of
phosphatidylinositol 4,5-bisphosphate (PIP2) to produce
phosphatidylinositol 3,4,5-trisphosphate (PIP3) [300]. As
a second messenger, PIP3 recruits AKT to the plasma
membrane, where it is fully activated upon phosphoryla-
tion by the action of phosphoinositide-dependent protein
kinase 1 (PDK1) and mTOR complex 2 (mTORC2) [301,
302]. Activated AKT phosphorylates tuberous sclerosis
protein 1 (TSC1) and TSC2 to dissociate the TSC1/TSC2
complex, negatively regulating mTOR activity. Eventually,
AKT leads to the activation of mTORC1, which increases
protein and lipid synthesis and decreases autophagy, thus
supporting cell growth and proliferation [300]. In addition
to the classical TSC1/TSC2/mTOR axis, AKT regulates a
series of other molecules, such as GSK3, Forkhead box TFs
and IκB kinase complex (IKK), to participate in a wide
range of functions [303].
The activation of the AKT signaling pathway stimulates

CAF formation and infiltration in the TME. Numerous
upstream factors, such as exosomal miR-21 derived from
HCC cells [304] and soluble carcinoembryonic antigen
released from CRC cells [305], sensitized the AKT path-
way to activate CAFs and contribute to cancer progression.
Activation of AKT signaling in CAFs affects cancer pro-
gression inmanyways. Yamamura et al. [306] reported that
Girdin, an AKT substrate, was activated by AKT in CAFs.

When Girdin activity was inhibited, CAF infiltration and
tumor growth were significantly decreased. In OSCC, inte-
grin β2 was expressed at high levels in CAFs and enhanced
the glycolytic activity of CAFs by mechanically regulating
the PI3K/AKT/mTOR pathway [307]. Subsequently, lac-
tate secreted by CAFs was metabolized by cancer cells to
produce nicotinamide adenine dinucleotide, which sup-
ported cell proliferation. In lung cancer, the activation of
the AKT/mTORC1 signaling pathway increased MDM2
translation in CAFs, thereby accelerating cell invasion
[308]. In breast cancer, C3a/C3aR signaling promoted
metastatic cytokine secretion and ECM generation by
CAFs by activating the PI3K/AKT pathway, ultimately
facilitating tumor metastasis [309]. Zhang et al. [310] uti-
lized CUDC-907 to target the PI3K/AKT pathway in CAFs,
successfully suppressed cancer progression and observed
a decrease in the expression of CAF markers. These
outcomes confirm the importance of the PI3K/AKT path-
way in CAFs for cancer progression and emphasize the
potential of therapies targeting this pathway.
More commonly, CAFs modulate cancer progression by

altering the activity of the PI3K/AKT pathway in cancer
cells. In CRC cells, blocking the PI3K/AKT pathway
reversed the accelerated progression caused by co-culture
with CAFs [311]. Thrombospondin 4 (TSP-4) secreted by
CAFs bound to integrin α2 on gallbladder cancer cells to
induce AKT-dependent phosphorylation of HSF1, thus
maintaining the malignant phenotype of these cancer
cells, including their proliferation, EMT and stemness
[312]. Interestingly, activated HSF1 signaling increased
TGF-β1 expression to enhance CAF activation and recruit-
ment and elevated TSP-4 expression in CAFs, forming a
positive feedback loop. Chemoresistance has also been
shown to be related to the activation of the PI3K/AKT
pathway in cancer cells mediated by CAFs. Li et al.
[313] revealed that CAFs regulated microtubule-directed
chemoresistance in breast cancer by secreting collagen to
activate the integrin β1/PI3K/AKT signaling pathway. In
addition, CAF-derived CXCL5 promoted PD-L1 expression
in cancer cells by activating the PI3K/AKT signaling
pathway, thus forming an immunosuppressive microen-
vironment [314]. In summary, CAF-mediated activation
of the PI3K/AKT pathway in cancer cells regulates cancer
progression through multiple mechanisms, and thera-
pies targeting the PI3K/AKT pathway show promise for
application.

5 SIGNALING PATHWAYS IN CAFS AS
POTENTIAL THERAPEUTIC TARGETS IN
THE CLINIC

As mentioned above, TGF-β is crucial for the activa-
tion, formation, and phenotypic maintenance of CAFs.
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Numerous preclinical models have shown the therapeutic
benefit of targeting TGF-β, which has prompted a series
of clinical trials (Table 4). In general, the new approach
involves incorporating TGF-β inhibitors into tried-and-
true treatment regimens in an effort to improve efficacy.
A phase Ib/II clinical trial reported that the combination
of galunisertib, a TGF-β receptor I kinase inhibitor, and
gemcitabine prolonged the overall survival (OS) of patients
with unresectable pancreatic cancer (NCT01373164) [315].
In patients with advanced HCC, galunisertib combined
with sorafenib showed an acceptable safety profile and
prolonged OS (NCT01246986) [316]. For patients with
advanced HCC who were not eligible to receive sorafenib,
galunisertibmonotherapy had a controllable safety profile,
and longer survival was related to lower baseline alpha
fetoprotein (AFP) and response in AFP or TGF-β1 levels
(NCT01246986) [317]. For patients with locally advanced
rectal cancer, the addition of galunisertib to neoadjuvant
chemotherapy improved the complete response rate to 32%
with good tolerability (NCT02688712) [318]. Additionally,
studies examining TGF-β inhibitors in combination with
immunotherapy are ongoing. The phase I study initiated
by Melisi et al. (NCT02734160) [319] evaluated the safety
and activity of galunisertib combined with the anti-PD-
L1 antibody durvalumab in metastatic pancreatic cancer,
but further randomized trials have not been launched.
The safety of SHR-1701, a bifunctional fusion protein tar-
geting PD-L1 and TGF-β, has been certified in a phase
I study for recurrent or metastatic cervical cancer and
has shown encouraging antitumor activity (NCT03774979)
[320]. M7824 is also a protein that simultaneously targets
PD-L1 and TGF-β. The results of NCT02517398 showed
that M7824 had a manageable safety profile and showed
encouraging efficacy in patients with heavily pretreated
advanced solid tumors [321]. A series of phase II clinical tri-
als for SHR-1701 or M7824 are ongoing (e.g., NCT04624217
and NCT05300269).
Stroma remodeling and deposition caused by the acti-

vation of the Hh pathway in CAFs is one of the crucial
factors leading to chemotherapy resistance. Olive et al.
[322] reported that the application of IPI-926, an SMO
inhibitor, considerably enhanced the therapeutic effect of
chemotherapy on a mouse model of pancreatic cancer
by increasing the intratumoral concentration of gemc-
itabine. Unfortunately, the phase II clinical trial of IPI-926
combined with gemcitabine reported the opposite results;
namely, the use of IPI-926 reduced the OS of patients with
metastatic pancreatic cancer (NCT01130142). This disap-
pointing result also led to the early termination of the
phase I study of IPI-926 plus FOLFIRINOX for advanced
pancreatic adenocarcinoma (NCT01383538) [323]. The
combination of vismodegib, anotherHhpathway inhibitor,
with gemcitabine or gemcitabine plus nab-paclitaxel to

treat metastatic pancreatic cancer also produced negative
results (NCT01064622 and NCT01088815) [324, 325]. In
TNBC, Hh-dependent CAF activation and ECM remod-
eling promote the formation of a CSC-supportive niche,
leading to docetaxel resistance [179]. Based on the good
effect on the preclinical model, a phase Ib study of
the SMO inhibitor sonidegib combined with docetaxel
was launched and showed antitumor activity in 3 (of
10) patients with advanced TNBC (NCT02027376) [326].
Another clinical trial applying the SMO inhibitor vismod-
egib combined with neoadjuvant chemotherapy to treat
patients with TNBC is ongoing (NCT02694224). In the pre-
vious section, we have described the immunomodulatory
effect of activated Hh signaling in CAFs, and clinical trials
of Hh pathway inhibitors combined with immunotherapy
are also ongoing (NCT04007744 and NCT04827953).
Activated CAFs are key regulators of the stromal

CXCL12/CXCR4 axis, which is closely related to immune
cell infiltration in the TME. A preclinical study of pancre-
atic cancer revealed that FAP+ CAFs produced CXCL12,
which prevented cancer cells from being detected and
eliminated by T cells. The combination of the CXCR4
inhibitor plerixafor and anti-PD-L1 treatment might
improve the efficacy of immunotherapy [327]. Garg et al.
[328] performed pancreatic injections of a combination
of pancreatic cancer cells and PSCs in a mouse model,
documenting that PSCs secreted CXCL12 in an NF-κB-
dependent manner, which decreased the infiltration of
cytotoxic T cells and increased tumor growth. This effect
was confirmed in human samples and was abolished by
plerixafor [328, 329]. Based on the support from preclinical
results, clinical trials focusing on the CXCL12/CXCR4 axis
monotherapy or in combination with immunotherapy are
ongoing (e.g., NCT04177810, NCT02907099, NCT03168139,
NCT02826486, NCT 02179970, and NCT00903968).
NCT02826486, a phase IIa study evaluating the efficacy
and safety of the CXCR4 antagonist BL-8040 combined
with pembrolizumab and chemotherapy in patients with
metastatic pancreatic cancer, reported that BL-8040
increased the tumor infiltration of CD8+ T cells and
reduced the numbers of MDSCs and circulating Tregs,
which might expand the benefit of chemotherapy [330].
NCT02179970, a phase I study designed to evaluate the
safety of the continued use of plerixafor by patients with
advanced pancreatic or CRC has been completed. The
continuous administration of plerixafor increased the
intratumoral accumulation of CD8+ T cells and natural
killer cells to induce an integrated immune response [331].
The results from NCT00903968 also showed the safety
and effectiveness of using plerixafor in combination with
bortezomib in patients with relapsed/refractory multiple
myeloma [332]. The safety of balixafortide, another CXCR4
antagonist, in combination with eribulin in the treatment
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of HER2-negative metastatic breast cancer has also been
confirmed, and its potential to improve outcomes has
been documented (NCT01837095) [333].
Since the treatments that target CAF markers, such as

FAP, do not directly act on the key signaling pathways we
introduced and have already been extensively summarized
[334], they will not be discussed further in this review.
In addition, clinical trials of IL and STAT inhibitors
are also widely ongoing. However, in contrast to the
TGF-β pathway, Hh pathway, and CXCL12/CXCR4 axis,
researchers have not clearly determined to what extent the
therapeutic effects of IL and STAT inhibitors are related
to CAFs. Notably, due to its particularity, evaluations of
the efficacy of treatments targeting the stroma are mainly
based on preclinical models. Accurate assessment of how
medications affect the TME in clinical studies is still
challenging.

6 CONCLUSIONS

The dysregulation of specific signaling pathways in can-
cer cells is one of the key contributors to cancer initiation
and progression, and this dysregulation may be induced
by various circumstances, including the actions of CAFs.
Through paracrine signaling, cell-cell interactions and
exosome release, CAFs trigger the necessary upstream sig-
nals to activate or repress specific pathways in cancer cells,
thus regulating a variety ofmalignant biological behaviors.
Importantly, the function of CAFs in regulating cancer ini-
tiation and progression is modulated in many respects by
the dysregulation of signaling pathways, most of which
are triggered by cancer cells, thus forming a feedback loop
between the tumor center and the stroma that regulates
cancer progression. Although numerous studies described
in the present review have conducted substantial work on
the mechanisms by which CAFs are involved in cancer
signal transduction, research on the complex regulatory
networks in the TME formed by multiple pathways is still
lacking. This lack of information is evident when applying
treatments targeting tumor-stromal signaling pathways.
The failure of targeted therapy may result from the activa-
tion of potential compensatory signaling when a specific
pathway is blocked in CAFs. The treatment effective-
ness may be considerably increased when the interplay
of multiple pathways is recognized to apply combined
or sequential targeted therapy. Despite the challenges,
strategies designed to target stromal signaling pathways
have shown considerable promise, regardless of whether
the therapy is focused on single or multiple targets or
administered in conjunction with other therapies, such as
chemotherapy and immunotherapy. The development of
efficient treatments will be aided by obtaining a thorough

understanding of the signaling pathways in CAFs and the
regulatory role of the TME in cancer progression.
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