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COVID-19 mortality is primarily driven by abnormal alveolar fluid metabolism of the lung,
leading to fluid accumulation in the alveolar airspace. This condition is generally referred to
as pulmonary edema and is a direct consequence of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection. There are multiple potential mechanisms leading to
pulmonary edema in severe Coronavirus Disease (COVID-19) patients and understanding
of those mechanisms may enable proper management of this condition. Here, we provide
a perspective on abnormal lung humoral metabolism of pulmonary edema in COVID-19
patients, review the mechanisms by which pulmonary edema may be induced in COVID-
19 patients, and propose putative drug targets that may be of use in treating COVID-19.
Among the currently pursued therapeutic strategies against COVID-19, little attention has
been paid to abnormal lung humoral metabolism. Perplexingly, successful balance of lung
humoral metabolism may lead to the reduction of the number of COVID-19 death limiting
the possibility of healthcare services with insufficient capacity to provide ventilator-assisted
respiration.

Keywords: COVID-19, pulmonary edema, abnormal lung humoral metabolism, syndrome coronavirus 2, drug,
traditional Chinese medicine

INTRODUCTION

COVID-19, an infectious disease caused by a severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has a global reach. By March 31st of 2021, a total of 128.54 million cases of severe
Coronavirus Disease (COVID-19) have been diagnosed globally, and a total of 2.81 million people
have died from the disease (WHO, 2021). Currently, no specific drug has been developed to against
COVID-19, although some existing drugs have been repurposed and approved for treating
hospitalized patients (Ferner and Aronson, 2020; Schlagenhauf et al., 2020). Recently, several
companies came out with vaccines against COVID-19 which have been approved for use. Some
others will likely be approved soon (Kaur and Gupta, 2020; Thanh Le et al., 2020). However, it is still
unclear how the vaccination will proceed and how fast can vaccinations be done. In themeantime, we
urgently need potent reduction in fatality of COVID-19.

Pulmonary edema is the disequilibrium between formation and reflux of lung tissue fluid leading
to the absorption of massive tissue fluid by lung lymph and vein failure. The fluid transudes into and
accumulates in the interstitium of lungs and finally alveolars from lung capillary, leading to severe
disorder of pulmonary ventilation and gas exchange (Staub, 1974). In COVID-19 patients,
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pulmonary edema is diagnosed by lung ultrasound and a
computerized tomography (CT) scan (Udugama et al., 2020).
The condition presents itself as a slowly evolving pneumonia with
insidious early onset interstitial pulmonary edema that undergoes
acute exacerbation in the late stages and alveolar edema (Xu et al.,
2020; Wiersinga et al., 2020). Currently, these symptoms are the
primary consequences of pulmonary virus infection. It is known
that SARS-CoV-2 invades human cells by binding angiotensin-
converting enzyme-2 (ACE-2) receptor and other membrane
ectopeptidases (Xu et al., 2020). When there, the virus itself
and virus-mediated protein-protein interactions lead to the
lung inflammatory storm responsible for the observed
increasing vascular permeability in lung and pulmonary edema
(Tang et al., 2020). It is likely that alveolar fluid clearance (AFC)
failure plays a major role in the pathogenesis of pulmonary
edema. The imbalance of fluid metabolism, pulmonary fluid
clearance (PFC) and rich-protein fluid entrance, may be a key
reason for the acute exacerbation of pulmonary edema in
COVID-19 patients.

Here, we describe molecular mechanisms of PFC and propose
that proteins functioning in this process might serve as an
underappreciated, but yet promising targets for reducing lung
edema in severe COVID-19 patients. These proteins include ion
channels (Na channel, K channel and TRPV4), aquaporins
(AQP), renin angiotensin system (RAS) proteins, and
bradykinin/hyaluronic acid-related enzymes. Drugs targeting at
least some of these proteins have already existed and could be
repurposed to manage pulmonary edema seen in SARS-COV-2
infections. Chinese Medicine (TCMs), already widely used in
China, may also be beneficial in addressing pulmonary edema in
COVID-19 patients (Zhang et al., 2020; Yang et al., 2020d). There
are also several natural compounds which were previously shown
to have positive effects on the lung edema-associated targets
described in this paper (Zhou et al., 2006; Ho et al., 2007; Ji et al.,
2014; Wang et al., 2015; Qu, 2019; Fan et al., 2020; Lung et al.,
2020). In this review, we discuss the clinical characteristics of
COVID-19, current as well as potential new treatments based on
the reduction of lung edema through various means, drugs,
TCMs or natural compounds. We speculate that treatment of
lung-edema will lead to a lower mortality in COVID-19 patients
with severe infections.

VIROLOGICAL CHARACTERISTICS OF
COVID-19

SARS-CoV-2 is an enveloped RNA coronavirus of the genus β,
and is the seventh coronavirus which can infect human (Xu et al.,
2020). The structure of coronavirus (Figure 1 A vision of
coronavirus with the minimal set of structural proteins.)
includes glycoproteins, membranes and nucleic acids. The
spike (S) protein of coronavirus, one of the surface
glycoproteins, is divided into two functional units, S1 and S2.
S1 facilitates virus infection by binding to host receptors, and S2
regulates the membranes fusion to enable viral RNA entering into
host cells for further replication. Therefore, the S protein
determines the host cell of the virus, regulates the viral

attachment and fusion with the host cell membrane, and
promotes cellular invasion. As such, the S protein is essential
for viral infection (Heald-Sargent and Gallagher, 2012; Li, 2016;
Walls et al., 2020).

It has been shown that SARS-CoV-2 infects human cells via
specific binding of S-protein to angiotensin-converting enzyme 2
(ACE2) (Figure 2 Infection and replication process of SARS-
CoV-2) (Xu et al., 2020) and the binding affinity between these
two proteins is 10–20 times greater than that of SARS-CoV and
ACE2 (Yan et al., 2020; Wrapp et al., 2020). ACE2 is most
abundantly expressed in human vascular endothelial cells as
well as alveolar and intestinal epithelial cells. It is also highly
expressed in cardiomyocytes, epithelial cells of renal proximal
convoluted tubule, urothelial cells, esophagus, and ileum
(Harmer et al., 2002; Zhang et al., 2020), facilitating a quick
invasion of the human body by SARS-COV-2 and causing
complications. The latest research revealed that alveolar
macrophages, which normally play a protective role, may also
be infected by SARS-CoV-2 and release T cell chemokines,
resulting large amounts of T cells gathering in lung and
generating IFNγ. IFNγ will continually induce inflammatory
cytokines released by alveolar macrophages, promoting the
activation of T cells and forming a positive feedback loop that
drives persistent alveolar inflammation (Grant et al., 2021). It is
worth mentioning that, except alveoli, which is widely known as
the target tissue, cardiomyocyte can be infected as well. Researches
proved that SARS-CoV-2 can directly infect human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as
well as an engineered heart tissue (EHT), in cellular and organ
level respectively, suggesting that the virus can replicate rapidly in
the cardiomyocytes, infecting other cardiomyocytes, contributing
to cardiomyocyte cell death, myocardial inflammation and even
heart failure (Sharma et al., 2020; Bailey et al., 2021).

FIGURE 1 | A vision of coronavirus with the minimal set of structural
proteins.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6643492

Cui et al. Pulmonary Edema in COVID-19 Patients

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


ABNORMAL LUNG HUMORAL
METABOLISM IN COVID-19

SARS-CoV-2 invasion leads to alveolar and vascular epithelial
cells damage impelling the formation of minimal thrombus,
increasing pulmonary venous pressure and vascular
permeability and leading to massive loss of tissue fluid.
Besides those direct causes of COVID-19 pulmonary edema,
there are other factors that can be described as abnormal

humoral metabolism which can influence the AFC and PFC,
resulting the manifestation of pulmonary edema (Figure 3 Cause
of COVID-19 pulmonary edema).

Abnormal humoral metabolism is mainly manifested as
imbalances of water and electrolytes. Water and sodium
disturbances along with the unusual serum potassium levels
are most common. It has been shown that the incidence and
severity of COVID-19 are closely related to abnormal metabolism
of inorganic salts. Serum sodium shows a decrease trend in

FIGURE 2 | Infection and replication process of SARS-CoV-2.

FIGURE 3 | Cause of COVID-19 pulmonary edema.
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CODIV-19 development (Krolicka et al., 2020). Hyponatremia
(low blood sodium concentration) as well as low
concentrations of potassium and calcium in the blood
serum are also associated with COVID-19 (Lippi et al.,
2020). The functional inhibition of relevant lung enzymes
and ion channels may disturb AFC, thus resulting
pulmonary edema in COVID-19 patients. Na+/K+-ATPase
and ion channels (sodium, potassium, AQPs, and TRPs) are
all involved in the regulation of AFC.

Clinical Characteristics and Pathological
Mechanism of COVID-19
COVID-19 patients often have pathological features such as
pulmonary interstitial or alveolar edema, diffuse tracheal
phlegm thrombus and pulmonary inflammatory lymphoid
infiltration, and are prone to acute respiratory distress
syndrome (ARDS), causing lung injury (Cutts et al., 2017).
The clinical manifestations and CT scans show the presence of
ARDS in critical COVID-19 patients (Ai et al., 2020; Guan et al.,
2020; Huang et al., 2020). Some patients also have leucopenia and
lymphopenia, suggesting a weak immune function, and high
prothrombin time and D-dimer level, indicating abnormal
blood clotting function (Wang et al., 2020), which can all lead
to lung damage and the severer pulmonary edema. Patients in
intensive care units (ICU) have higher plasma levels of IL2, IL7,
IL10, MCP1, MIP1A, GSCF, IP10, and TNFα (Huang et al.,
2020). In these patients, white blood cells count, neutrophil count
and D-dimer level keep rising while lymphocyte count keeps
decreasing as the disease progresses. Therefore, the infection
along with the rapid replication of SARS-CoV-2 causes a large
amount of body fluid permeating through pulmonary alveoli,
leading to ADRS. As the infection progresses, the immune
function is impaired, causing damage to multiple organs,

additional complications, and eventually death (Yang et al.,
2020).

Sodium Channels and Sodium Pumps
Sodium transport is the main ion transport involved in the AFC.
Epithelial sodium channel (ENaC), present in human lungs,
kidneys and other organs, plays a vital role in lung fluid
clearance (Figure 4 Mechanism of inhibiting ENaC inducing
pulmonary edema) (Matthay et al., 2002). Its active absorption of
Na+ is the main driving force of fluid clearance at birth and
alveolar fluid absorption at adult stage (Bardou et al., 2012). The
cystic fibrosis transmembrane conductance regulator (CFTR) and
the ENaC located in the airway apical membranes and alveolar
epithelial cells are essential in regulating lung fluid balance across
airway as the chloride (Cl−) and bicarbonate (HCO3−) secretion
conduits, and alveolar epithelia by sodium (Na+) ion absorption
(Matalon, 1999; Birket et al., 2016; Londino et al., 2017). These
channels are important in maintaining the optimum volume and
ion constitution of bronchial periciliary fluid and alveolar lining
fluid layers, which are necessary in appropriate pathogens
mucociliary clearance and optimum gas exchange, respectively
(Londino et al., 2017). Therefore, severe infections, which are
induced by influenza virus, target the distal lung epithelial cells,
inhibit the ENaC via activating protein kinase C (Kunzelmann
et al., 2000), and damage the pulmonary surfactant (Hofer et al.,
2015; Ito et al., 2015; Woods et al., 2015). SARS-CoV-2 may act in
a similar way. With the presence of active basolateral Na+-K+-
ATPase, inhibition of the entry of apical Na+ can generate a
concentration gradient inducing the uptake of basolateral Na+

with Cl− by Na+-K+-2Cl− cotransporter (NKCC) and thus induce
the apical secretion of Cl− (Solymosi et al., 2013). The secretion of
alveolar fluid, caused by inhibiting Na+ entry, is sensitive to
inhibition of CFTR, NKCC, or Na+-K+-ATPase (Solymosi et al.,
2013), suggesting that CFTR, NKCC or Na+-K+-ATPase

FIGURE 4 | Mechanism of inhibiting ENaC inducing pulmonary edema.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6643494

Cui et al. Pulmonary Edema in COVID-19 Patients

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inhibitors may have potential in treating pulmonary edema
caused by low expression of ENaC. As in lipopolysaccharide-
induced acute lung injury, docosahexaenoic acid and its
derivatives stimulate AFC through alveolar ENaC, Na,K-
ATPase via ALX/cAMP/PI3K pathway (Wang et al., 2014;
Zhang et al., 2017). Moreover, lower expression of alveolar
Na-K-ATPase promotes pulmonary edema, and when the
expression of Na-K-ATPase α1- and α2-subunits decreases,
maximal alveolar epithelial fluid clearance is reduced (Looney
et al., 2005).

Potassium Channels
Potassium channels are usually involved in maintaining the
reabsorption of Na+ and the steady state of electrochemical
gradient, ions and body fluids in airway epithelial cells
specifically. Potassium channels up-regulate ENaC expression
via activating KvLQT1 pathway so as to control AFC (Bardou
et al., 2012). In addition, potassium channels can act as oxygen
sensors in alveolar epithelium and thus adjust lung function to
environmental changes in O2 levels (Bartoszewski et al., 2017). As
reported, large-conductance calcium-activated potassium
channels (BKCa) in alveoli can reduce alveoli opening during
hypoxia, detect O2 variation, and adjust ion transport and fluid
clearance (Jovanović et al., 2003).

Aquaporins
The abnormal expression of AQP is closely related to the
abnormal alveolar fluid metabolism and the subsequent
pulmonary fibrosis of COVID-19 patients. AQP-5 protein,
present in the apical membranes of AT-I cell of alveolar
epithelium, can regulate the transport of water molecules. It
promotes the clearance of surplus fluid in alveoli and keeps
alveolar space dry (Wittekindt and Dietl, 2019). The
expression of AQP-5 is regulated by inflammatory cytokines,
like TNF-α, elevated in the plasma of critical COVID-19 patients
(Hui and Zumla, 2019). As Towne et al., (2001) reported, AQP-5
expression significantly declined during pulmonary
inflammation and edema, and TNF-α decreased AQP5 mRNA
and protein expression levels via TNFR1 and NF-κB pathway
(Towne et al., 2001).

Idiopathic pulmonary fibrosis is also a risk factor for severe
COVID-19 which can be observed in the CT scans of COVID-19
patients (Xu et al., 2020; George et al., 2020). As Gabazza et al.,
(2004) reported, lung fibrosis is linked to decreased mRNA and
protein expression of AQP-5 in the lung. This is supported by the
studies of AQP-5 deficient mice where a fibrotic phenotype with
increased deposition of extracellular collagen type I was observed
in thickened alveolar walls (Gabazza et al., 2004). Therefore,
AQP-5 may be a promising drug target for treating abnormal
humoral metabolism as well as lung injury caused by COVID-19.

Transient Receptor Potential Ion Channels
TRP channels are nonspecific cationic channels located
throughout the respiratory system (Clapham et al., 2001),
where TRPA1, TRPV1 and TRPV4 are the most abundant
TRP subtypes (Kaneko and Szallasi, 2014; Steinritz et al.,
2018). Evidences for TRPs as medium of lung injury are

emerging from studies on various inhalational chemical threats
(Achanta and Jordt, 2020). TRPs regulate their functions through
sensory neuronal and nonneuronal pathways and play an
important role in complicated pulmonary pathophysiologic
events, such as increased intracellular calcium levels,
recruitment of pro-inflammatory cells, cough reflex, blocked
mucus clearance, epithelia integrity disruption, pulmonary
edema, fibrosis and so on (De Logu et al., 2016).

TRPA1 distributes on C-fibers throughout the respiratory
system (De Logu et al., 2016). The stimulation of TRPA1 can
cause coughing, hypersecretion of mucus, rapid shallow
breathing as well as bronchoconstriction (Bessac and Jordt,
2008; Birrell et al., 2009), which, if persistent, may cause
ARDS and other chronic diseases. TRPV1, expressed in
C-fibers of the vagus nerves innervating airways (Cui et al.,
2016), has been considered to play a key role in cough reflex
and increased airway sensitivity caused by various diseases
(Andrè et al., 2009; Couto et al., 2013). It has been reported
that infection with a respiratory-associated virus can significantly
increase the expression and activity of TRPV1 (Abdullah et al.,
2014). TRPV4, expressed in alveolar type I, type II cells and
alveolar capillary endothelial cells, has been considered as a
crucial regulator of alveolo-capillary barrier integrity (Alvarez
et al., 2006; Yin et al., 2008; Goldenberg et al., 2015; Yin et al.,
2016). Studies have confirmed that selective TRPV4 activation
induces rapid loss of alveolo-capillary barrier function and
consequent alveolar edema formation (Alvarez et al., 2006).
Indeed, in several preclinical studies, selective TRPV4
inhibition showed efficacy in preventing or attenuating lung
edema (Thorneloe et al., 2012). Moreover, it has been revealed
that exosomes derived from human adipocyte can inhibit
TRPV4-mediated calcium influx and thus protect mice against
ventilator-induced lung injury (Yu et al., 2020). As such, TRPV4
inhibition likely has protective and beneficial effect on mucus
clearance and pulmonary edema.

Renin Angiotensin System and Bradykinin
During the infection of SARS-CoV-2, RAS, BK and hyaluronic
acid (HA) are all involved in the regulation of AFC and the
formation of pulmonary edema (Garvin et al., 2020). RAS,
especially several cleavage products of the peptide angiotensin
(AGT) along with their receptors, maintains a balance of fluid
volume and pressure. For instance, angiotensin II (Ang II) can
typically generate vasoconstriction and sodium retention when
binding to the AGTR1 receptor and vice versa via the AGTR2
receptor (Garvin et al., 2020). According to previous studies,
activation of AT1 receptor inhibits AFC by down-regulating
cAMP and dysregulating ENaC expression, leading to Ang II-
dependent pulmonary edema and alveolar filling increase (Deng
et al., 2012).

Bradykinin (BK) is an important cellular mediator that causes
vasodilatation and leaky blood vessels, leading to vascular leakage
and edema (de Maat et al., 2020). BK is generated by cleavage of
high-molecular-weight kininogen (HMWK) from plasma-
kallikrein and binds to the BKB2 receptor, and thus results
vascular hemorrhage (Garvin et al., 2020). Inhibition of ACE2
by SARS-CoV-2 impairs the hydrolysis of des-arg9-bradykinin.
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Therefore, the excessive release and decreased hydrolysis of BK
through activating BKB1 and BKB2 receptors result in extra
vascular leakage and pulmonary edema (Figure 5 Mechanism
of BK inducing pulmonary edema and potential drugs)
(Zwaveling et al., 2020).

Hyaluronic Acid and Proteoglycans
CT images of COVID-19 patients revealed fluid and clear liquid
jelly in their lungs, both closely linked to HA (Xu et al., 2020;
Wang et al., 2020). HA is a polysaccharide existing in most
connective tissues which can trap approximately 1,000 times its
weight in water and form hydrogel. HA-related hydrogel has been
found in both, ARDS and SARS. Inflammatory cytokines and
inflammatory storm in COVID-19 patients can strongly induce
the expression of HA-synthase-2 (HAS2), while hyaluronidase
level decreases, resulting in the accumulation of HA and inducing
ARDS and pulmonary edema (Shi. et al., 2020).

In addition, HA is a part of a three-dimensional matrix in
pulmonary interstitial, which consists of HA, PGs and fibrillar
macromolecules providing resistance to tissue compression and
interstitial fluid expansion (Negrini et al., 2008).When PGs and
HA interact with collagen IV, a fibrillar macromolecule
modulating capillary permeability in the vascular basement
membrane, the compound substance limit fluid influx into the
interstitium. Thus, PGs play a key role in the formation of
pulmonary edema. The integrity of PG molecules in the
vascular capillary basement membrane can make sure that
endothelial permeability to fluid and solutes in a low level.
However, the activation of matrix metalloproteinases (MMPs),
which may be triggered by inflammatory factors (Shapiro, 2001),
brings PG degradation, inducing pulmonary edema. It has been
observed that MMP-2 and MMP-9, two most crucial MMPs in
the lung are over-expressed in pulmonary edema (Negrini et al.,
1996; Negrini et al., 1998; Passi et al., 1998), suggesting that

MMPs may become a potential target for pulmonary edema
treatment.

Overall, the decreased expression of alveolar Na-K-ATPase,
misregulation of sodium, potassium, AQP, and RAS channels and
abnormal metabolism of BK and HA can all lead to lung liquid
clearance failure and pulmonary edema, resulting in severe lung
damage and ARDS in COVID-19 patients (Figure 6 The general
regulation approaches of AFC).

CONVENTIONAL TREATMENT OF
PULMONARY EDEMA IN COVID-19
PATIENTS
Currently, many clinical trials are in progress to test coronavirus
treatment, including new drugs and drug repurposing or
repositioning. Immune-modulatory agents, supportive cares,
and antiviral drugs have been tested as COVID-19 treatments
in patients with severe infections (Pascarella et al., 2020; Ren et al.,
2020).

Immune-modulatory agents for COVID-19 include
tocilizumab, human immunoglobulin and the convalescent
plasma. IL6 monoclonal antibody or tocilizumab was thought
to work by interrupting inflammatory storm after the infection,
but the latest clinical study published in NEJM showed that
Tocilizumab was not effective in preventing intubation or death
in mild hospitalized COVID-19 patients (Stone et al., 2020).
Convalescent plasma have been initially shown to be beneficial
for COVID-19 patients with severe infection stabilizing the
immune system (Shen et al., 2020), but the subsequent
randomized controlled trial did not show significant
improvement within 28 days (Li et al., 2020).

Supportive cares for COVID-19 include respiratory support
and circulatory support. Patients receive high-flow nasal cannula

FIGURE 5 | Mechanism of BK inducing pulmonary edema and potential drugs.
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(HFNC), non-invasive ventilation (NIV), mechanical ventilation
or ECMO as respiratory supports (Guo et al., 2020; Pascarella
et al., 2020), a crystalloid fluid to ensure body fluid equilibrium
(Christ-Crain et al., 2020), and anticoagulants for restraining the
thrombus formation to aid in circulatory support (Connors and
Levy, 2020). These supportive approaches have been shown to be
beneficial as adjuvant therapies in COVID-19 patients.

Repurposed drugs with proofs of antiviral effects for other
viral infections have been tried. However, the efficacy and safety
of these drugs in COVID-19 patients are unclear. So far, only
remdesivir was approved by FDA for the compassionate use in
severe infected COVID-19 patients (Beigel et al., 2020). Other
anti-viral drugs, such as arbidol, chloroquine phosphate and
ritonavir, did not exhibit efficacy in randomized, placebo-
controlled trials in COVID-19 patients. Regardless, it seems
reasonable that antiviral therapy might be adopted to patients
with high risk factors as early as possible rather than wait for
severe manifestation of the disease.

Other therapeutic options including organ support,
glucocorticoid therapy, nutritional support have been applied
to COVID-19 clinical treatment without much knowledge of
their efficacy. However, among all current treatments mentioned
above, little attention has been paid to the abnormal humoral
metabolism and pulmonary edema, which is a key factor
threatening patients’ lives.

PUTATIVE DRUG TARGETS FOR
PULMONARY EDEMA IN COVID-19
PATIENTS
Ion channels, AQPs, RAS, bradykinin and hyaluronic acid are
factors influencing the pulmonary edema. The abnormal humoral

metabolism in lungs and the resulting pulmonary edema have
become the main life-threatening factors in COVID-19 patients.
Thus, the relieve of pulmonary edema should be one of the critical
concerns in terms of the treatment of COVID-19 patients.
Consequently, drugs that can normalize humoral metabolism
should be clinically evaluated for their use in the treatment of
COVID-19 patients (Table 1).

Targeting Sodium Channels and Pumps
Since the inhibition of ENaC induces pulmonary edema
formation, targeting ENaC is rational in order to enhance
fluid clearance from the alveoli. Studies showed that ENaC
activators or stimulators can regulate ENaC-dependent fluid
absorption in alveolar and pulmonary edema (Fronius, 2013).
The activation of β-adrenergic receptor, especially β2 (Mutlu
et al., 2004), was found to stimulate Na+ and fluid
reabsorption. It was observed that the expression of ENaC and
Na+/K+-ATPase in primary alveolar type II cells from rat lungs
increased responding to terbutaline (Minakata et al., 1998).
Inhalation or infusion of salbutamol, a β2-adrenergic agonist,
reduced the incidences of pulmonary edema (Sartori et al., 2002)
and was found to be beneficial in ARDS patients (Perkins et al.,
2006). Glucocorticoids were shown to have the ability of inducing
de novo synthesis of ENaC (Chow et al., 1999; Otulakowski et al.,
1999; Sayegh et al., 1999) and affecting ENaC regulatory pathway
via serum and glucocorticoids-inducible kinase-1 (SGK-1) (Chen
et al., 1999; de la Rosa et al., 1999; Itani et al., 2001; Zhang et al.,
2007). However, clinical evidence showing that glucocorticoids
can reduce pulmonary edema by regulating fluid absorption in
alveolar and glucocorticoids is missing. Potentially,
glucocorticoids can be used as anti-inflammatory drugs in
ARDS and pulmonary edema as well as in COVID-19
patients. Amiloride, a prototypic inhibitor of ENaC, might also

FIGURE 6 | The general regulation approaches of AFC.
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have a potential in treating COVID-19 patients. Amiloride was
shown to induce the reduction of ACE2 expression in bronchial
and alveolar epithelial cells (Adil et al., 2020) and can counteract
the low cytosolic pH which has been observed in COVID-19
patients by acting on Na+/H+ exchanger (Cure and Cumhur
Cure, 2020). Since hypokalemia is a major issue in severe
COVID-19 patients (Lippi et al., 2020), amiloride with its
potassium-sparing diuretic activity (Bull and Laragh, 1968) can
potentially be used to restore normal serum potassium
concentrations (Maronde et al., 1983). However, as we
discussed above, the inhibition of ENaC can also induce
pulmonary edema and further studies are required to determine
the potential use of ENaC inhibitors for COVID-19 treatment.

CFTR and NKCC inhibitors show promise in treating
pulmonary edema. Furosemide, a NKCC inhibitor, has been
acknowledged as first-line therapeutic drug for pulmonary
edema all the time (Pickkers et al., 1997; Solymosi et al.,
2013). CFTR inhibitors, like glibenclamide and CFTRinh-172

inhibitor, distinctly reduced absorptive alveolar fluid transport
(Solymosi et al., 2013).

Since pulmonary edema can be promoted by decreased
expression of alveolar Na-K-ATPase (Woods et al., 2015),
drugs or compounds which activate the sodium channel and
Na-K-ATPase may be putative therapeutics. Studies have shown

that MCTR1 (Han et al., 2020), PCTR1 (Zhang et al., 2020) and
protectin DX (Zhuo et al., 2018), endogenously produced lipid
mediators, can effectively improve PFC, ameliorate
morphological damage, reduce lung inflammation, and
increase sodium channel and Na-K-ATPase expression and
activity in vivo and in vitro in lipopolysaccharide (LPS)-
induced ARDS rats model. Resolving D1 (Wang et al., 2014),
generated from ω-3 fatty docosahexaenoic acids, and
ursodeoxycholic acid (Niu et al., 2019) can stimulate AFC and
Na-K-ATPase in LPS-induced pulmonary edema via alveolar
epithelial sodium channel and ALX/cAMP/PI3K pathway,
respectively.

Targeting Potassium Channels
Potassium channels modulate the expression of ENaC. It has been
reported that transepithelial ion transport in alveolar monolayers
can be activated by K+ channel openers in vitro under
physiological conditions (Leroy et al., 2006). KCa3.1 (1-EBIO)
and KATP (minoxidil) channel openers can greatly recover AFC in
mice intratracheally administrated verapamil, which is the first
generation of the phenylalkylamine class of calcium channel
antagonists (Fleckenstein, 1977; Nayler and Dillon, 1986),
suggesting that K+ channel openers might be potential drugs
for treating pulmonary edema (Han et al., 2010).

TABLE 1 | Potential drugs for normalizing humoral metabolism.

Drugs Targets Functions References

Terbutaline ENaC β2-adrenergic agonist Minakata et al. (1998)
Salbutamol Sartori et al. (2002)
Amiloride Prototypic inhibitor of ENaC Bull and Laragh (1968), Maronde et al. (1983), Adil et al. (2020),

Cure and Cumhur Cure (2020)
Furosemide NKCC NKCC inhibitor Pickkers et al, (1997), Solymosi et al. (2013)
Glibenclamide CFTR CFTR inhibitor Solymosi et al. (2013)
CFTRinh-172 inhibitor
MCTR1 Na+ channel and

Na-K-ATPase
Activate the sodium channel and Na-K-ATPase Han et al, (2020)

PCTR1 Zhang et al. (2020c)
protectin DX Zhuo et al. (2018)
Resolving D1 Stimulate AFC through alveolar epithelial sodium

channel, Na-K-ATPase via ALX/cAMP/PI3K pathway
Wang et al. 2014

KCa3.1 (1-EBIO) K+ channel K+ channel openers Fleckenstein (1977); Nayler and Dillon (1986)
KATP (minoxidil)
Dexmedetomidine AQP Regulate AQP expression Jiang et al. (2015)
Lipoxin A4 (LXA4) Shi et al. (2018)
Losartan AT1 AT1 receptor blockers Yang et al. (2020a); Liu et al. (2020); Richardson et al. (2020)
Valsartan
Icatibant Bradykinin Bradykinin antagonist Rasaeifar et al. (2020)
Raloxifene
Sildenafil
Cefepime
Cefpirome
Imatinib
Ponatinib
Abemaciclib
Entrectinib
Glucocorticoids ENaC, cytokines Regulate ENaC expression and impact cytokines Chen et al. (1999); Chow et al. (1999); de la Rosa et al. (1999),

Otulakowski et al. (1999); Sayegh et al. (1999); Itani et al. (2001);
Zhang et al. (2007); Ahmed and Hassan (2020)
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Targeting Aquaporins and Transient
Receptor Potential Ion Channels
AQP-5 plays a significant role in pulmonary edema and
decreased expression of AQP-5 has been observed during the
disease process. Dexmedetomidine can upregulate AQP-1 and
AQP-5 expression in rats with acute lung injury induced by LPS
and thus induce pulmonary edema (Jiang et al., 2015). Lipoxin A4
(LXA4) can stabilize the permeability of pulmonary
microvascular endothelial cell by regulating the expression of
AQP-5 and MMP-9, and reduce alveolar fluid exudation (Shi
et al., 2018).

TRPs are essential for the respiratory system and pulmonary
edema, in which TRPA1, TRPV1 and TRPV4 are the most
important. Inhibiting these TRPs may benefit the treatment of
pulmonary edema. A recent review has summarized the effects of
TRPs in pulmonary chemical injuries, which includes the
representative TRPA1, TRPV1 and TRPV4 antagonists which
have participated in preclinical and clinical studies (Achanta and
Jordt, 2020) (Supplementary Tables S1–S3).

Targeting Renin Angiotensin System and
Bradykinin
RAS plays a significant role in ARDS as well as pulmonary
edema processes. The activities of the molecules in RAS are
ruled by dynamic changes responding to an injury. As the
activation of AT1 receptor promotes the pulmonary edema,
AT1 receptor blockers (ARBs) like losartan, valsartan may be
effective in decreasing pulmonary edema. However,
preliminary reports showed that some ACE inhibitors and
ARBs have no significant clinical benefits in treating COVID-
19 (Richardson et al., 2020), while others showed protective
effects among patients with pre-existing hypertension (Yang
et al., 2020; Liu et al., 2020). The likelihood of hypertensive
patients developing COVID-19, who were treated by ARBs,
was reported to decrease by 76% (Yan et al., 2020). Moreover,
exogenous delivery of Ang (1–7) was shown to play a part in
reducing inflammation and improving pulmonary function in
ARDS models (Wosten-van Asperen et al., 2011).
Recombinant ACE2 was also reported to be a potential
therapy in the clinical study of ARDS, which can lead to
rapid decrease of plasma Ang II level and IL-6 expression.
(Imai et al., 2007; Zhang and Baker, 2017).

Raising evidences suggest that the effect of kinins on
bradykinin receptor triggers the inflammatory responses,
which have been observed in patients with COVID-19.
Consequently, the use of bradykinin antagonists is supposed to
be regarded as a strategy for COVID-19 treatment interventions.
Currently, only icatibant has been approved as bradykinin
antagonist for clinical treatment, and relevant studies have
revealed that cefepime, cefpirome, imatinib, raloxifene,
sildenafil, ponatinib, abemaciclib and entrectinib may also act
as prospective non-selective bradykinin antagonists and have
potential for treatment of COVID-19 (Rasaeifar et al., 2020).
However, further researches into the mode of action, efficacy and
safety of these drugs are required.

Targeting Hyaluronic Acid and
Proteoglycans
Accumulation of HA can directly induce ARDS and pulmonary
edema. Thus, promoting the degradation of HA may be
significant in the recovery process. HA is synthesized by
HAS2. However, so far, no effective inhibitors have been
developed against HAS2. HA is degraded by hyaluronidases
encoded by HYAL1 and HYAL2, whose activity depends on
CD44, an HA receptor (Harada and Takahashi, 2007). CD44
inhibition reduces the IL-2 induced vascular leakage syndrome,
revealing that CD44 may act as a potential target in COVID-19
treatment. Nonetheless, little attention has been paid to CD44 in
COVID-19 treatment. Further studies may determine if CD44
inhibitors can be of use to in COVID-19.

It has already been shown that the dysregulated release of
cytokines is one of the key factors behind poor outcomes in
COVID-19 patients. These cytokine storms can be treated with
steroids, IL-1 antagonists, TNF inhibitors, and Janus kinase
inhibitor (JAK) inhibitors (McCreary and Pogue, 2020).
Fedratinib, an FDA approved JAK2 inhibitor, may be used to
reduce the mortality associated with hyperinflammation by
suppressing the production of several Th17 cytokines
(i.e., IL1b and TNF-alpha, IL21, IL22, IL17) and the
formation of pulmonary edema in combination with anti-
viral drugs (Yang et al., 2020e). Glucocorticoids, especially
dexamethasone, have already been applied in the clinical
treatment of COVID-19. It not only can induce de novo
synthesis of ENaC and affect ENaC regulatory pathway, but
also has an impact on cytokines. A recent review suggested that
low-to-moderate doses of dexamethasone may lower the
mortality rate in patients with severe infections (Ahmed and
Hassan, 2020) and the latest finding indicated that the
neutrophil-to-lymphocyte ratio determines the clinical
efficacy of corticosteroid therapy in COVID-19 patients, as a
neutrophil-to-lymphocyte ratio >6.11 associating with lower
mortality in patients on corticosteroids (Cai et al., 2021).
Moreover, other drugs which can regulate immune system
like hydroxychloroquine and azithromycin may also show
effects in treating SARS-COV-2-induced pulmonary edema
and their effectiveness in treating SARS-COV-2 infections
should be further investigated.

NATURAL COMPOUNDS AND
TRADITIONAL CHINESE MEDICINES FOR
THE TREATMENTOF PULMONARY EDEMA
IN COVID-19

Besides chemical drugs and compounds we discussed above,
natural compounds and TCMs also possess promising antiviral
effects against SARS-CoV-2 and had notably contribution in
curing COVID-19, especially in alleviating pulmonary edema
and preventing the disease development from mild to severe. In
TCM theory, evils of COVID-19 are derived from cold-dampness,
whose core pathogenesis are “toxin” and “dampness”. “Toxin”
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means various pathogenic microorganism and inflammatory
storm presenting in infected patients, and “dampness” means
the abnormal humoral metabolism like inflammatory exudation.
Here, we summarized several natural compounds and TCM
formulas which are very likely to be potential drugs or have
already shown predominant efficacy of COVID-19 patients.

Natural Compounds and Their Effects on
Syndrome Coronavirus 2 Infections
Extensive studies have been conducted to identify the antiviral
and pulmonary edema reducing efficacy of natural compounds,
some of which have already been tested specifically against SARS-
CoV and SARS-COV-2. Some natural compounds along with

their antiviral and reducing pulmonary edema mechanisms are
shown in Table 2.

Natural compounds can inhibit the binding between the virus
and the ACE2 receptor of host cells. Cepharanthine, a
bisbenzylisoquinoline alkaloid derived from tubers of
Stephania Japonica, was shown to have a wide-spectrum
inhibitor of pan-β-coronavirus (Fan et al., 2020; Rogosnitzky
et al., 2020). Emodin, an anthraquinone compound from genus
Rheum and Polygonum, can markedly prevent the binding of S
protein and ACE2 in the study of SARS-CoV (Ho et al., 2007).

RNA-dependent RNA polymerase (RdRp) is a crucial protease
that catalyzes RNA replication from RNA templates and is an
appealing therapeutic target. Theaflavin from black tea was found
to present a lower binding energy when it docks in the catalytic

TABLE 2 | Summary of potential natural compounds against COVID-19.

Plant Compound Structure Antiviral and reducing
pulmonary edema mechanisms

References

Stephania Japonica Cepharanthine ACE inhibitor Fan et al. (2020), Rogosnitzky
et al. (2020)

Rheum palmatum Emodin Blocks the binding of S protein to ACE2 Ho et al. (2007)

Black tea Theaflavin Inhibits RdRp activity Lung et al. (2020)

Atractylodes
macrocephala

Atractylonolide-I Inhibits the formation of IL-6 and TNF-α Ji et al. (2014)

Astragalus propinquus Astragaloside-IV Activates ACE2-Ang-(l–7)-Mas pathway Wang (2015), Qu (2019)

Salvia miltiorrhiz Cryptotanshinone Induces the synthesis of cGMP and NO in cells and
activating NO/cGMP pathway

Zhou et al. (2006)
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pocket of SARS-CoV-2 RdRp. Thus, it could be a potential RdRp
inhibitor for SARS-CoV-2 (Lung et al., 2020).

Inhibiting the inflammatory storm can effectively alleviate
pulmonary edema. Atractylenolide-I, the active component of
atractylodes, could minimize the formation of IL-6 and TNF-α (Ji
et al., 2014), inhibiting the generation of inflammatory cytokines
causing inflammatory response, thus lowering the possibility of
developing pulmonary edema.

As RAS plays an important role in PFC and AFC, astragaloside
IV from Astragalus propinquus is able to protect kidney and
respiratory by activating the ACE2-Ang-(1–7)-Mas pathway in
RAS and improving ACE2, Ang-(1–7), Mas level (Wang et l.,
2015; Qu, 2019).

When SARS-COV-2 invades, vascular endothelial cells are
damaged, causing insufficient arterial flow and minimal
thrombus. Elevated pulmonary venous pressure leads to faster
fluid infiltration into the interstitial lung than the ability of the
pulmonary lymphatic vessel to drain away fluid, resulting in
pulmonary edema. Improving the blood circulation can advance
the oxygen supply for organs, accelerate the absorption of fluid
and eventually improve pulmonary edema. Zhou et al. (2006)
reported that the cryptotanshinone in Salvia miltiorrhiz can
inhibit the synthesis of cGMP and NO in vein endothelial

cells, activate NO/cGMP pathway and improve the blood
circulation.

Traditional Chinese Medicines and
COVID-19 Infection
Multiple TCMs have been already clinical applied for COVID-19
in China and achieved high recovery rate. Some of these TCMs
along with their constituent and antiviral and reducing
pulmonary edema mechanisms are shown in Table 3. Lian-
Hua-Qing-Wen capsules significantly affect virus morphology,
inhibit the SARS-CoV-2 replication with the IC50 value of
411.2 μg/ml, reduce pro-inflammatory cytokines production at
the mRNA level, and show anti-inflammatory effect in vitro
(Runfeng et al., 2020). It has been revealed that COVID-19
patients treated with Lian-Hua-Qing-Wen capsules for 14 days
resulted in a considerably higher recovery rate of 91.5%, a
dramatically shorter median time to symptom recovery of
7 days than the control group, which applied conventional
treatment (Hu et al., 2021). Moreover, the constituent Ephedra
can trigger bronchodilation, relieve breathing disorders and
alleviate pulmonary edema (Zhang et al., 2018). The toad
venom injection can significantly improve the pulmonary

TABLE 3 | Summary of potential TCM formulae against COVID-19.

TCM
formulae

Constituent Antiviral and reducing
pulmonary edema mechanisms

Clinical efficacy References

Lian-Hua-
Qing-Wen
Capsule

Forsythiae Fructus, Lonicerae Japonicae
Flos, Ephedrae Herba, Armeniacae
Semen, Amarum, Isatidis Radix,
Dryopteridis Crassirhizomatis Rhizoma,
Houttuyniae

Inhibits the replication of SARS-CoV-2,
affects virus morphology, exert anti-
inflammatory activity and triggers
bronchodilation

Combined treatment had higher
recovery rate (91.5% vs. 82.4%, p �
0.022), a dramatically shorter median
time to symptom recovery (7 vs.
10 days, p < 0.001), as well as a
remarkably shorter time to recovery of
fever (2 vs. 3 days), fatigue (3 vs.
6 days) and coughing (7 vs. 10 days)
(p < 0.001 for all)

Zhang et al. (2018), Luo
et al. (2020), Runfeng
et al. (2020)

Herba, Pogostemonis Herba, Rhei Radix
et Rhizoma, Rhodiolae Crenulatae, Radix
et Rhizoma, Glycyrrhizae Radix et
Rhizoma and Gypsum Fibrosum

Qing-Fei-Pai-
Du Decoction

Astragali Radix, Bupleuri Radix, Ephedrae
Herba, Armeniacae Semen Amarum,
Gypsum Fibrosum, Coicis Semen,
Trichosanthis Pericarpium, Platycodonis
Radix, Menthae Haplocalycis Herba,
Scutellariae Radix, Glycyrrhizae Radix et
Rhizoma, Lonicerae Japonicae Flos, and
Artemisiae Annuae Herba

Intervenes the inflammatory storm and
triggers bronchodilation

Has an effective rate higher than 90%
and early treatment with Qing-Fei-Pai-
Du Decoction can result better
outcomes, faster recovery, and a
shorter duration of hospital stay

Shi et al. (2020a), Yang
et al. (2020b)

Toad venom
Injection

Toad venom Improving PaO2/FiO2 and ROX index Improves the PaO2/FiO2 and ROX
index (p < 0.001, 95% CI, −111.30 to
−35.90 for PaO2/FiO2; p < 0.001,
95% CI, −7.56 to −2.94 for ROX)
by 95.2%

Hu et al. (2020)

Liu Shen
Capsule

Bezoar, Musk, venom toad, pearl, realgar,
and borneol

Inhibiting the replication of SARS-CoV-2,
reducing inflammatory cytokines
production at the mRNA levels and
suppressing the NF-κB signaling
pathway to downregulate the expression
of cytokines in vitro

Improves respiratory function and
lymphocyte count (similar to the Toad
venom Injection)

Ma et al. (2020a)

Xue-Bi-Jing
Injection

Carthami Flos, Paeoniae Radix Rubra,
Chuanxiong Rhizoma, Salviae
Miltiorrhizae, Radix et Rhizoma, Angelicae
Sinensis Radix

Anti-inflammatory, anti-coagulation,
immune regulation, vascular endothelial
protection, anti-oxidative stress and
other mechanisms

The 28-day mortality of patients with
severe pneumonia could be reduced
by 8.8%, significantly improving
pneumonia severity index (from
93.18 ± 23.17 to 52.18 ± 30.53)

Ma et al. (2020b), Li
et al. (2021)
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function of COVID-19 patients by regulating PaO2/FiO2 and
ROX index and thus alleviate pulmonary edema. As reported,
PaO2/FiO2 and ROX index of patients receiving conventional
treatment combined with toad venom injection (20 ml/day)
improved significantly (−111.30 to −35.90 for PaO2/FiO2 and
−7.56 to −2.94 for ROX). Meanwhile, the number of patients in
the treatment group presenting improved PaO2/FiO2 and ROX
index was higher than that of the control group (95.2% vs. 68.4%
and 73.7%). Moreover, the peripheral blood mononuclear
lymphocyte of COVID-19 patients was also greatly improved,
from 0.91 ± 0.54 to 1.24 ± 0.67 after being treated for a week,
while there was no obvious change in control group (Hu et al.,
2020). The Liu Shen capsule, of which pharmacodynamic
component is also toad venom, was shown to have antiviral
and anti-inflammatory activity against SARS-CoV-2 in vitro, as it
can inhibit the replication of SARS-CoV-2 in Vero E6 cells,
reduce inflammatory cytokines production at the mRNA levels
and suppress the NF-κB signaling pathway to downregulate the
expression of cytokines (Ma et al., 2020a). Qing-Fei-Pai-Du
Decoction, which is officially recommended for the treatment of
COVID-19 patients as mentioned in the guideline issued by NHC
(Trial 7th edition) (PRC, 2020), has an effective rate higher than
90% (2020) and can mediate the inflammatory storm induced by
COVID-19 (Yang et al., 2020b), regulate the innate immune,
cytokine activities (IL-17, NF-κB, TNF etc.), cell growth and
death, as well as the degradation of damaged cells (Zhao et al.,
2020). Moreover, as a retrospective multicenter cohort study
reported, early treatment with Qing-Fei-Pai-Du Decoction
associated with better outcomes, faster recovery, and a shorter
duration of hospital stay (Shi et al., 2020a). Xue-Bi-Jing injection is
also widely applicated in treating COVID-19 patients and by
adding it based on the routine anti-infective therapy, the 28-day
mortality of patients with severe pneumonia could be reduced by
8.8%, greatly improving pneumonia severity index (from 93.18 ±
23.17 to 52.18 ± 30.53) (Ma et al., 2020b). Xue-Bi-Jing injection
may act in COVID-19 by anti-inflammatory, anticoagulation,
immune regulation, vascular endothelial protection, anti-
oxidative stress and other mechanisms (Li et al., 2021).

CONCLUSION

The abnormal humoral metabolism and pulmonary edema
contribute to the severity of symptoms and fatality of COVID-
19 patients. Decreased expression of alveolar Na-K-ATPase,
dysregulation of sodium and potassium channels, aquaporins,

and renin angiotensin system, and abnormal metabolism of
bradykinin and hyaluronic acid as well as cytokine inflammatory
storm all lead to ARDS and pulmonary edema. These in turn, lead to
severe lung damage in COVID-19 patients. Existing drugs and
inhibitors targeting the components of humoral metabolism may
serve as potential treatments for COVID-19 and should be further
investigated. In addition, natural compounds and TCMs which
generally have multiple targets should also be investigated, both in
terms of their efficacy and safety. Focusing on decreasing the
formation of body fluid in lung or promoting the absorption of
body fluid can contribute to a decrease in lung damage and decreased
mortality in COVID-19 patients. Therefore, drugs targeted at the
humoral mechanisms might turn out to be highly effective against
SARS-COV-2 infections.
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