
Original article

EcoliNet: a database of cofunctional gene

network for Escherichia coli

Hanhae Kim, Jung Eun Shim, Junha Shin and Insuk Lee*

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul,

Korea

*Correspondence author: Tel: þ82 2 2123 5559; Fax: þ82 2 362 7265; Email: insuklee@yonsei.ac.kr

Citation details: Kim,H., Shim,J.E., Shin,J., et al. EcoliNet: a database of cofunctional gene network for Escherichia coli.

Database (2015) Vol. 2015: article ID bav001; doi:10.1093/database/bav001

Received 22 September 2014; Revised 8 December 2014; Accepted 2 January 2015

Abstract

During the past several decades, Escherichia coli has been a treasure chest for molecular

biology. The molecular mechanisms of many fundamental cellular processes have been

discovered through research on this bacterium. Although much basic research now

focuses on more complex model organisms, E. coli still remains important in metabolic

engineering and synthetic biology. Despite its long history as a subject of molecular in-

vestigation, more than one-third of the E. coli genome has no pathway annotation sup-

ported by either experimental evidence or manual curation. Recently, a network-assisted

genetics approach to the efficient identification of novel gene functions has increased in

popularity. To accelerate the speed of pathway annotation for the remaining uncharacter-

ized part of the E. coli genome, we have constructed a database of cofunctional gene net-

work with near-complete genome coverage of the organism, dubbed EcoliNet. We find

that EcoliNet is highly predictive for diverse bacterial phenotypes, including antibiotic re-

sponse, indicating that it will be useful in prioritizing novel candidate genes for a wide

spectrum of bacterial phenotypes. We have implemented a web server where biologists

can easily run network algorithms over EcoliNet to predict novel genes involved in a

pathway or novel functions for a gene. All integrated cofunctional associations can be

downloaded, enabling orthology-based reconstruction of gene networks for other bacter-

ial species as well.

Database URL: http://www.inetbio.org/ecolinet

Introduction

Escherichia coli is perhaps the most intensively studied

species of bacteria, due to its utility in both exploring the

molecular mechanisms underlying fundamental biological

processes and manufacturing useful metabolites for the

biomedical industry. Numerous molecular genetics tech-

niques have been developed in E. coli over the past several

decades, making it the standard bacterial species in which

to study genetics and the molecular mechanisms underly-

ing cellular phenotypes. This attention has led to the
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elucidation of many conserved metabolic pathways in E.

coli, resulting in its use as a metabolic engineering plat-

form. Despite its importance in science and engineering, a

significant portion of the E. coli genome remains uncharac-

terized. For example, as of September 2014, the Gene

Ontology database (1) had no biological process annota-

tions supported by either experimental evidence or manual

curation for �2000 protein coding genes. A holistic E. coli

pathway map could significantly improve our ability to en-

gineer metabolic phenotypes by providing a genetic circuit

design that accounts for the entire system.

Although traditional forward and reverse genetic

approaches have played major roles in gene-to-phenotype

association mapping in E. coli, a more efficient and sensi-

tive genetics approach would facilitate characterization of

the part of the genome whose function is not yet known.

Network-assisted predictive genetics is an example of such

an approach whose popularity is growing (2, 3). Here, we

present a functional gene network for E. coli, dubbed

EcoliNet, which includes 95 520 cofunctional associations

and covers �99% of the genome. EcoliNet has high pre-

dictive power for a wide variety of bacterial phenotypes,

including response to various stresses and drugs. To make

EcoliNet freely available as a hypothesis-generating tool,

we have implemented a web server where users can con-

duct network algorithms, prioritizing novel genes for a

pathway or novel functions for an E. coli gene. The

EcoliNet server (http://www.inetbio.org/ecolinet) provides

not only public prediction tools but also a database of

cofunctional associations between E. coli genes, derived

from diverse biological data. Moreover, cofunctional gene

networks for other bacterial species can be constructed via

orthology-based transfer of information from EcoliNet.

Construction of cofunctional networks

Cofunctional links between E. coli genes were inferred

from seven distinct types of data as summarized in Table 1.

The inferred links with data-intrinsic measures were

benchmarked using gold standard gene pairs derived from

annotation databases for pathways and biological proc-

esses. Hence, two genes linked by significant benchmark-

ing score are likely to operate same pathways or biological

processes. The database contains seven cofunctional net-

works derived from each of seven data types and an inte-

grated network. The network construction follows a

machine learning process with Bayesian statistics frame-

work. More details about the network construction are

described below.

E. coli genome data

E. coli genome was downloaded from National Center for

Biotechnology Information genome database (ftp://ftp.

ncbi.nlm.nih.gov/genomes/) on 11 November 2011. It has

a total of 4496 genes, of which 4146 protein coding genes

were used to construct EcoliNet. For functional annota-

tions, we used Gene Ontology (1) downloaded on

February 2013 and EcoCyc, version 16.5 (4).

Gold-standard cofunctional gene pairs for

network training

A functional gene network is constructed through a ma-

chine learning process. A gold-standard set of gene associ-

ations works as a cornerstone for error-tolerant and

unbiased learning. To construct gold-standard data, we

Table 1. Seven distinct types of data incorporated into EcoliNet

Code Data type description # unique genes # unique gene pairs

CC Cofunctional links inferred from cocitation of two genes across 57 062 PubMed

Central (PMC) articles for E. coli biology

2296 50 528

CX Cofunctional links inferred from coexpression pattern of two E. coli genes (based

on high-dimensional gene expression data)

4039 67 494

DC Cofunctional links inferred from co-occurrence of protein domains between two

E. coli coding genes

2283 9643

GN Cofunctional links inferred from similar genomic context of bacterial orthologs of

two E. coli genes

3568 23 439

HT Cofunctional links inferred from high-throughput protein-protein interactions

between two E. coli genes

3209 15 543

LC Cofunctional links inferred from small/medium-scale protein-protein interactions

(collected from protein-protein interaction data bases) between two E. coli genes

764 1073

PG Cofunctional links inferred from similar phylogenetic profiles between two E. coli

genes

1817 17 504

EcoliNet A cofunctional E. coli gene network by integration of all above link sets 4099 95 520
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generated positive cofunctional links by pairing genes that

share at least one annotation by Gene Ontology Biological

Process (GO-BP) terms with GO evidence code of IDA

(inferred from direct assay), IGI (inferred from genetic

interaction) or IMP (inferred from mutant phenotype).

Five GO-BP terms with the largest number of member

genes—DNA-dependent transcription (GO:00006351),

DNA-dependent negative regulation of transcription

(GO:0045892), DNA-dependent regulation of transcrip-

tion (GO:0006355), DNA-dependent phosphorelay signal

transduction system (GO:0000160), DNA-dependent

positive regulation of transcription (GO:0045893)—were

excluded to avoid biased learning towards these large bio-

logical processes (5). After this filtration, 6896 cofunc-

tional associations among 1474 genes were derived from

GO-BP annotations. In addition, we employed E. coli

pathway annotations by EcoCyc and MetaCyc (6). With

exclusion of superpathways to avoid between-pathway as-

sociations, we obtained 4694 cofunctional links among

885 genes from those annotations. EcoCyc and MetaCyc

provide highly redundant information and provide only

347 and 193 complementary links, respectively. Only 786

of the 4694 links (17%), however, were overlap with

GO-BP links. Therefore, GO-BP, EcoCyc and MetaCyc to-

gether provide a total of 10 804 positive gold standard

functional associations among 1835 genes. We also

inferred 1 671 891 negative gold-standard functional asso-

ciations by connecting 2 of the 1835 annotated genes that

do not share any of the annotations.

Probabilistic integration of cofunctional links

Using Bayesian statistical framework, we devised log-likeli-

hood scores (LLS) to measure likelihood of a functional as-

sociation between two genes for the given supporting

evidence (7). For given gold-standard cofunctional link (L)

and supporting evidence (E), LLS is represented as:

LLS ¼ ln
P LjEð Þ=P � LjEð Þ

P Lð Þ=P � Lð Þ

� �

where PðLjEÞ and Pð� LjEÞ are the frequencies of positive

and negative gold-standard links in condition of the given

evidence, respectively, whereas P(L) and P(� L) are the

frequencies of all positive and all negative gold-standard

links, respectively. All individual sets of gene pairs inferred

from different evidences are scored by the LLS.

To increase completeness of a network model, all indi-

vidual linkage sets inferred from different evidences are

integrated based on the unified LLS. Due to the occurrence

of a functional association supported by multiple evi-

dences, we devised a weighted sum (WS) method which is

a variant of naı̈ve Bayesian integration (5). Unlike naı̈ve

Bayesian integration, the WS effectively handle correlation

among data sets during integration. For example, in sum-

mation of LLS from multiple data sets, the WS method re-

duces redundant information by adjusting weight for

different data sets by the following equation:

WS ¼ S0 þ
Xn

i¼1

Si

D� i
; for all S�T;

where S is LLS for the given cofunctional link, and i is the

rank index of LLS; S0 is the best LLS. A free parameter D

is a weight factor, and T is the cutoff of minimum LLS to

be integrated.

Cofunctional links inferred from cocitation (CC)

Cofunctional genes tend to appear in the same article (8).

By scanning full texts of 57 062 articles with abstract con-

taining the word ‘Escherichia coli’ or ‘E. coli’ in the

PubMed Central database, we collected pair relationship

between an E. coli gene name and an article. Then we

measure significance of CC between two genes using

hypergeometric probability.

Cofunctional links inferred from coexpression

(CX)

We collected 132 microarray series containing more than 8

expression samples from Gene Expression Omnibus

(GEO) at March 2013 (9). A functional association of two

genes can be inferred by coexpression patterns across given

experimental conditions using Pearson correlation coeffi-

cient. We observed significant correlation between coex-

pression and cofunctional association from 54 series

containing a total of 1709 samples. We integrated the 54

coexpression networks derived from the 54 series into

a single coexpression network using WS method. This inte-

grated network was then integrated into the EcoliNet. All

54 coexpression networks are downloadable from

EcoliNet server.

Cofunctional links inferred from the cooccurrence

of protein domains (DC)

Protein domains are recurring sequence units of protein re-

gion, involved in protein function and evolution.

Cofunctional genes often share the same protein domain.

Thus, we may be inferred functional association by signifi-

cant domain cooccurrence between two proteins based on

InterPro database (10). We measure significance of domain

cooccurrence between two proteins by weighted mutual
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information (WMI), which accounts for frequency of each

domain (11). In the WMI, rarer domains receive higher

weights assuming that rarer domains are associated to

more specific pathways.

Cofunctional links inferred from genomic contexts

(GN and PG)

Similar genomic contexts between two genes may reflect

their functional couplings under evolutionary and regula-

tory constraints. We employed two effective genomic con-

text approaches, phylogenetic profile similarity (PG)

(12–14) and gene neighborhood (GN) (15–17), to infer

functional associations between two genes. We used a total

of 1748 fully sequenced prokaryotic genomes (122 for

Archaea, 1626 for Bacteria). The similarity of the genomic

contexts during speciation can be measured by coinherit-

ance patterns of two genes in phylogenetic profiles. We,

first, ran all E. coli protein coding sequences against all

protein coding sequences of the 1748 genomes to obtain

the similarity profile matrices of the genomic contexts by

calculating blast hit scores. The generated profile matrices

were used to calculate mutual information scores as for

Date et al. (18). For EcoliNet, we built two networks spe-

cific to each of two domains, Archaea and Bacteria, and

then integrated them into a single phylogenetic profile net-

work. To infer cofunctional association by GN, we used

two complementary methods of measuring genomic

neighborhood: distance-based GN and probability-based

GN (19). These two networks were then integrated into a

single GN network.

Cofunctional links inferred from protein–protein

interactions (HT and LC)

Functional associations between genes can be inferred

from two types of protein–protein interaction (PPI) data

sources: (i) small/medium scale PPIs (LC) derived from

curated PPI databases such as IntAct (20), DIP (21), MINT

(22), BioGRID (23); (ii) large-scale high-throughput PPIs

(HT) inferred by affinity purification-mass spectrometry

(24–26) and yeast two hybrid analysis (27). These four net-

works inferred from high-throughput and literature cur-

ation PPIs are downloadable from the EcoliNet server.

Network assessment and applications

Assessment of EcoliNet

EcoliNet comprises 4099 E. coli coding genes (�99% of

the coding genome) and 95 520 cofunctional links.

Fair evaluation of trained cofunctional links requires a val-

idation set of gene pairs that are independent from the ori-

ginal training set for the links. To assess the predictive

power of EcoliNet, we used data from knockout pheno-

types subjected to 324 growth and chemical stress condi-

tions (28). We defined genes associated with each stress

Figure 1. (a) Assessment of E. coli gene networks performed using data on knockout phenotypes in the presence of 324 different growth and chemical

stress conditions. The plot represents the percentage coverage of the E. coli coding genome vs. the percentage of E. coli gene pairs that share at least

one knockout (KO) phenotype. Cumulative accuracy (y-axis) of a network was measured for each successive bin of 1000 gene pairs sorted by network

edge scores, and coverage (x-axis) of each accuracy measure was based on the total number of genes of the cumulated set of gene pairs. EcoliNet

outperforms all individual networks derived from seven data types as well as eNet. EcoliNet with no links derived from CCs (EcoliNet-noCC) shows over-

lap of performance curves for the assessment with the intact EcoliNet. Codes for seven data types are summarized in Table 1. (b) Box-and-whisker plots

summarize the prediction performance for eNet, STRING, and EcoliNet. The AUC values between eNet and EcoliNet shows significant difference

(P¼ 2.28�10�4, Wilcoxon signed rank test), while those between STRING and EcoliNet are not significantly different (P¼ 0.31, Wilcoxon signed rank

test). Because the number of links can affect performance measure, we used only top 79 876 links, the size of eNet, for testing all three networks.
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Figure 2. EcoliNet search results by ‘Find new members of a pathway’ option with 13 query genes for tobramycin resistance. (a) ‘Find new members of

a pathway’ submission page generally takes multiple query genes with ORF name or gene name. (b) All connected query genes (11 out of 13 query

genes) in EcoliNet are listed in a table. (c) ROC curve analysis results in a high AUC score (0.915), which indicates that known tobramycin resistance

genes can be highly predictable by connections among them in EcoliNet. (d) A network of query genes is visualized by Cytoscape Web installed in

EcoliNet web server. (e) New candidate genes for tobramycin resistance are prioritized by sum of edge weight scores (log likelihood score) to all query

genes and top 100 candidate genes are listed in a table with various information such as data types supporting association with the query genes.
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Figure 3. EcoliNet search results by ‘Infer functions from network neighbors’ option for tobramycin resistance genes. (a) ‘Infer fucntions from network

neighbors’ option may take multiple query genes. GO-BP terms for prediction can be filtered for various GO evidences and default setting used the

following six types of reliable evidences: inferred from direct assay (IDA), inferred from mutant phenotype (IMP), inferred from genetic interaction

(IGI), inferred from physical interaction (IPI), inferred from expression pattern (IEP), traceable author statement (TAS). (b) Top 10 inferred GO-BP terms

for ‘b0945’, a genes for tobramycin resistance.
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phenotype as those with a growth defective score below

�4, then measured the percentage of gene pairs that shared

at least one relevant stress phenotype. Network accuracy

for the given coverage of coding genes shows that the inte-

grated network, EcoliNet, outperforms networks derived

from individual component data types (Figure 1a), demon-

strating effectiveness of the data integration in constructing

a genome-scale network for E. coli. To test whether poten-

tially circular logic derived from literature-based network

information resulted in the overestimation of EcoliNet’s

performance, we also assessed EcoliNet in the absence of

links derived from only CCs (EcoliNet-noCC). We found

no performance difference for the assessment after removal

of cofunctional gene pairs inferred from only cocitation,

indicating that circular logic did not compromise our valid-

ation and that the measured predictive power of EcoliNet

can be generalized to many other phenotypes.

We also compared EcoliNet to other widely used

cofunctional E. coli gene networks, eNet (26) and

STRING (29), for the phenotype prediction. We measured

network prediction power for each knockout phenotype

with leave-one-out analysis setting in which a gene for a

knockout phenotype is prioritized by network connections

to all other member genes. Retrieval rate of true predic-

tions for each knockout phenotype was measured by re-

ceiver operating characteristic (ROC) analysis, which is

summarized as area under the ROC curve (AUC) score.

We found no significant difference between EcoliNet and

STRING (P¼ 0.31, Wilcoxon signed rank test), while

EcoliNet showed significantly higher performance than

eNet (P¼2.28� 10�4, Wilcoxon signed rank test) in

phenotype prediction power (Figure 1b). Although

EcoliNet and STRING are similar in prediction power,

EcoliNet has a merit of hypothesis generation service. The

EcoliNet web server provides interactive web interface in

which users can generate candidate gene-to-phenotype

hypotheses for query genes, while STRING allows only

browsing interacting proteins of query genes.

Public data and utilities of EcoliNet

To maximize EcoliNet’s usability, we have implemented a

web server where experimental biologists can run network

algorithms to predict novel candidate genes for a given

phenotype (Figure 2) or novel candidate functions for a

gene of interest (Figure 3). If a user submits genes that show

similar knockout phenotypes to ‘Find new members of a

pathway’ query submission page (Figure 2a), search func-

tion first analyzes the connectivity among those genes using

ROC analysis, which is summarized as area under the curve

(AUC) score, and visualizes their network using Cytoscape

Web software (30) installed on EcoliNet server. For

example, Figure 2b–e shows results from ‘Find new mem-

bers of a pathway’ search using 13 E. coli query genes

whose null mutants show increased resistance against

tobramycin. A high AUC score (Figure 2c) and appearance

of a highly connected network (Figure 2d) for the query

genes indicate that most intrinsic tobramycin resistant genes

are functionally coupled and that other associated genes

could be new candidates for tobramycin resistant genes.

Hence, the server provides the top 100 genes connected to

the 13 tobramycin resistance genes submitted, as new can-

didates (Figure 2e). If a user submits uncharacterized genes

to ‘Infer functions from network neighbors’ query submis-

sion page (Figure 3a), the server provides the top 30 candi-

date GO-BP terms for each query gene (Figure 3b). The

user may choose specific GO evidence codes for functional

prediction; the default setting uses only GO-BP terms sup-

ported by experimental evidence and the literature.

EcoliNet freely distributes edge information, not only

for the integrated network but also for all individual com-

ponent networks, including those for individual data sets

at network download page of the EcoliNet web server

(http://www.inetbio.org/ecolinet/downloadnetwork.php).

These data will allow alternative network integration,

which can be used to construct new E. coli gene networks.

Moreover, orthology-based network transfer enables con-

struction of gene networks for other bacterial species,

including many pathogens (31).

Discussion

Although E. coli is one of the most intensively studied and

utilized model organisms, a large portion of its genome re-

mained uncharacterized. Computational prediction models

will facilitate identification of novel gene functions. For in-

stance, a recently initiated COMBREX project, the goal of

which is to improve our understanding of microbial pro-

tein function by bridging computational and experimental

approaches, chose E. coli as one of its two focus organisms

(32). Network-based functional prediction tools, such as

EcoliNet, will play key roles in such community-wide ef-

forts. Expansion of our knowledge of pathways will con-

tribute to better E. coli metabolic engineering. In addition,

EcoliNet’s freely available functional gene associations can

be used to reconstruct cofunctional gene networks for

other bacterial species via orthology-based methods (31).

Therefore, EcoliNet will be a useful research resource for

not only E. coli but also other bacterial species.
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