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De novo protein conformational 
sampling using a probabilistic 
graphical model
Debswapna Bhattacharya1 & Jianlin Cheng1,2,3

Efficient exploration of protein conformational space remains challenging especially for large proteins 
when assembling discretized structural fragments extracted from a protein structure data database. 
We propose a fragment-free probabilistic graphical model, FUSION, for conformational sampling in 
continuous space and assess its accuracy using ‘blind’ protein targets with a length up to 250 residues 
from the CASP11 structure prediction exercise. The method reduces sampling bottlenecks, exhibits 
strong convergence, and demonstrates better performance than the popular fragment assembly 
method, ROSETTA, on relatively larger proteins with a length of more than 150 residues in our 
benchmark set. FUSION is freely available through a web server at http://protein.rnet.missouri.edu/
FUSION/.

Successfully predicting protein three-dimensional structures of near-experimental accuracy from their 
amino acid sequence requires efficient navigation of astronomically large conformational space1 accessi-
ble to proteins. Fragment assembly approaches2–4 include rapid exploration of conformational space by 
restricting local conformations (i.e., fragments) to those observed in experimentally-solved structures 
extracted from the Protein Data Bank (PDB), and assembling the fragments to form complete structures. 
Such a locally restrained search strategy has proven to be an extremely powerful method to fold small 
proteins (< 100 residues) with reasonable accuracy5. For larger proteins, however, the inherent rigidity 
and incomplete coverage of these discrete fragments often impose kinetic limitations in sampling6,7, 
hindering the possibility of accurate de novo protein structure prediction.

Significant progress has been made recently to overcome the limitations of fragment-based methods 
by performing probabilistic sampling guided by local structural preferences8–10. Although promising and 
mathematically attractive, these approaches are either based on coarse-grained (i.e., Cα) representations 
of protein structure8,9, or they assume ideality in backbone planarity10 (i.e., ω -angles). A coarse-grained 
model is of limited use in high-resolution protein structure prediction because of the one-to-many corre-
spondence between Cα traces and full atomic detail of a protein’s backbone. Also, small, but cumulative, 
and often systematic, deviations from ideality in backbone planarity exists11, which, if ignored, might 
also lead to possible minor distortions in the structure. Assuming ideal bond lengths and bond angles, 
the minimum angular degrees of freedom needed are three dihedral angles (φ , ψ , ω ) to accurately place 
backbone Cartesian coordinates (x, y, z of three atoms - N, Cα, and C) of a residue. This is the granu-
larity used by typical fragment assembly methods, such as ROSETTA2; however, fragment-free de novo 
sampling at this grain has not yet been demonstrated, to our knowledge.

Here, we propose an Input-Output Hidden Markov Model12 (IOHMM) to capture the preferences of 
the dihedral angles associated with protein backbone (φ , ψ , ω ) given its sequence as shown in Fig. 1a. 
An IOHMM is based on a non-homogeneous Markov chain, where emission and transition probabili-
ties depend on the input. IOHMM is, therefore, an appropriate choice for protein structure prediction, 
where the goal is to sample protein conformation given its sequence (i.e., input). The proposed model, 
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FUSION, captures local relationships between protein sequence and structural features and allows for 
probabilistic sampling of conformational space of the protein backbone in full-atomic detail (i.e., at the 
same granularity as fragment assembly) from a continuous space different from the discrete space of 
fragment assembly.

Results
In this section, we first briefly describe the architecture of FUSION, then describe sampling strategies, 
and finally present an evaluation of its performance from various perspectives.

Architecture of FUSION. FUSION ensures sequential dependencies between protein sequence 
(input) and structural space (output) through a Markov chain of hidden states. In each slice, as presented 
in Fig. 1b, an input node (A) captures the protein’s sequence space. Connections between the input nodes 
represent the transition probabilities between residues along the protein chain. Output (i.e., emission) 
nodes correspond to structural space, modeled using secondary structure (S), dihedral angle pair  
(D: φ , ψ ), and peptide bond conformation (P: ω ). The hidden node (H) is a discrete node that can adopt 
30 states (which is the optimal number of states) where, each of these states specifies which mixture 
component is chosen among the possible emission distributions. The optimal number of hidden states 
and all other associated parameters were determined by training the model using a maximum likelihood 
method on a large set of representative experimentally-solved protein structures.

Generating protein conformation. In the trained model, each hidden node value is associated with 
preferences of secondary structure types, and backbone geometry, conditioned on sequence. This pro-
vides a convenient way of generating protein structural features compatible with its sequence. For a 
given protein sequence, a corresponding hidden node sequence can be sampled from one end to the 
other through plausible paths in the transition matrices of input and hidden nodes. After obtaining a 
particular sequence of hidden node values, emission values for the output nodes are drawn from the cor-
responding conditional probability distributions. It is also possible to seamlessly resample random-length 
segments of the protein using the forward-backtrack algorithm13. Furthermore, the inclusion of second-
ary structure information into the model allows for sampling the conformational space associated with 
both amino acid, and, optionally, secondary structure, when the latter becomes available (e.g., predicted 
from amino acid sequence). The sampled dihedral angles (φ , ψ , ω ), conditioned on sequence-based 
observations can then be readily converted into Cartesian coordinates, giving rise to a protein backbone 
in full-atomic detail. Repeated resampling of random stretches of dihedral angles in FUSION mimic 
fragment replacement in fragment assembly methods, but in a probabilistic way, which reduces intrinsic 
sampling bottlenecks imposed by a discretized fragment library (e.g., boundary effects2).

The probabilistic nature of FUSION facilitates its effective integration as a proposed distribution in 
Markov Chain Monte Carlo (MCMC) simulations, under the control of an empirical force field. We used 
the classic Metropolis-Hastings MCMC approach14, by resampling random stretches (3 to 15 residue 

Figure 1. Architecture of FUSION IOHMM. (a) Circular nodes represent stochastic variables and arrows 
in the graph specify the conditional independent relationships among variables. Input nodes capture protein’s 
sequence space while output (i.e., emission) nodes correspond to structural space. Hidden nodes specify 
dependencies between sequence and structural space along the sequence (i.e., not only between consecutive 
nodes). (b) In each slice, an input node controls transition of the residue classes in the amino acid sequence 
(A) and a Markov chain of hidden nodes (H) captures the sequential dependencies along the peptide chain 
where each hidden node corresponds to three kinds of emission distributions: (1) three-state secondary 
structure labels (S): helix (H), strand (E), and coil (C), (2) backbone (φ , ψ ) dihedral angle pairs (D), and (3) 
ω  angles associated with peptide bonds (P). The type of emission distribution is specified in square boxes.
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segment) of the current candidate structure, x, having a dihedral angle sequence d, to propose a new 
sequence of dihedral angles d′ , resulting in the next candidate structure, x′ , and accepting or rejecting 
the move using standard Metropolis-Hastings acceptance criterion. Simulations were carried out using 
the low-resolution scoring function of ROSETTA15, together with ambiguous sequence-derived predicted 
information. FUSION’s model-based conditional sampling approach removes a major bottleneck of using 
fragment assembly as a proposal distribution that, by contrast, implicitly introduces a system-specific 
bias into the force field, which is difficult to quantify16. Thus, it is generally impossible to satisfy the 
condition of detailed balance14, which is a fundamental prerequisite to ensure that simulations sample 
the Boltzmann distribution of the applied force filed.

Blind assessment of FUSION. We blindly tested the generality and accuracy of FUSION using 42 
protein targets with a sequence length less than 250 residues that were simultaneously under investi-
gation in X-ray crystallography or NMR spectroscopy laboratories during the 11th community-wide 
experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). A 
reduced representation of protein structure was adopted that used the backbone atoms and a side-chain 
centroid to generate up to 10,000 low-resolution models for each protein sequence within a limited pre-
diction window of three days. The reduced models were then expanded by adding side chains using the 
smoothed backbone-dependent rotamer library17,18 to produce all-atom decoys.

Angular preferences. To investigate whether FUSION captures the angular preference of dihedral 
angles (φ , ψ , ω ) observed in proteins, we ranked the all-atom decoy population for each target using 
DFIRE19 statistical potential and compared the joint histograms of (φ , ψ ), (φ , ω ), (ψ , ω ) angles from the 
lowest scoring decoy as well as the lowest Cα-rmsd (root mean square deviation of alpha-carbon coordi-
nates after optimal structural superposition) decoy in the set of the top five low-scoring decoys (i.e., best 
of five) with that of their experimental structures. As shown in Fig. 2, the distribution of (φ , ψ ) angles 
was in close agreement with the observations in both cases and covered the entire allowed space of the 

Figure 2. Distributions of dihedral angles φ, ψ, and ω. The joint histograms of (φ , ψ ), (φ , ω ), and (ψ , ω )  
are shown for experimental structures (a), FUSION-generated decoys with lowest DFIRE score (b) and 
decoys closest to their corresponding experimental structures among the five lowest scoring decoys (c), with 
color code ramping from blue to red for low to high density.
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Ramachandran plot20. The distributions of (φ , ω ) and (ψ , ω ), despite correctly capturing the major peaks, 
revealed noticeable deviations in ω  angles compared to their experimental counterparts. However, these 
apparent outliers might be due to the restraints imposed by the use of ideal bond lengths and angles 
during the simulations, to some degree.

Secondary structure propensity. In addition to capturing the dihedral angle distribution, FUSION 
decoys revealed excellent similarity in overall secondary structure content compared to the experimental 
structures. In Table  1, we present the secondary structure content of the experimental structures and 
FUSION decoys. Over the entire benchmark set, having ~34% helix (α -helix, 310-helix, and π -helix) 
and ~30% β -strand (extended strand, and isolated β -bridge), both lowest scoring and the best of five 
decoys contained ~32% helix and ~23% β -strand. It should be noted, however, that formation of β -strand 
residues requires specific nonlocal interaction (i.e., hydrogen bonding), which is beyond the scope of a 
Markovian model like FUSION, and was primarily achieved by the scoring function.

Nature of sampled energy landscape. To study the energy landscape encountered during FUSION 
simulations, we examined the relationship between DFIRE energy score and Cα-rmsd of decoy popula-
tions. In Fig. 3, we show 2-dimensional distribution of conformations as a function of the DFIRE energy 
score, on the y axis and the Cα-rmsd to the native state on the x axis for a diverse set of targets with dif-
ferent topologies and sequence lengths. Strong convergence was observed in several cases as defined by 
a distinct funnel-shaped energy landscape. FUSION produced convergent sampling across a broad spec-
trum of target lengths ranging from small targets with a relatively simple fold (like T0773-D1; Fig. 3a) 
to larger protein having complex topologies (like T0776-D1; Fig. 3f). The energy landscape encountered 
by FUSION over the entire benchmark set is presented in Supplementary Fig. 1.

Extent and distribution of conformational sampling. To further examine the degree of confor-
mational sampling done by FUSION, we investigated the proportion of good decoys (having a Cα-rmsd 
below 6 Å with the native structure), the accuracies of the decoys having the lowest DFIRE scores, and 
the best decoys out of the five lowest DFIRE scores. Table 2 reports each of these measures for all the tar-
gets in the benchmark set. For 24 out of 42 targets, FUSION generated some good decoys with Cα-rmsd 
less than or equal to 6 Å. For 15 targets, the best of the top five lowest scoring decoys selected by DFIRE 
from all the decoys generated by FUSION had an accuracy better than 6 Å, even though the percentage 
of good decoys is not always high. As expected, smaller size targets tend to have a much higher pro-
portion of good decoys as well as a higher accuracy than that found using larger targets. Nevertheless, 
for some fairly large proteins having more than 200 residues, the low-scoring conformations sampled 
by FUSION reached close to the 6 Å mark. For instance, the best of five low-scoring decoys for tar-
get T0760-D1, a 210-residues β  protein domain, achieved an accuracy of 6.66 Å. However, for target 
T0849-D1, a 236-residue mostly helical protein domain, the best of five low-scoring decoys achieved an 
accuracy of 8.71 Å.

To gain additional insights into the nature of the decoy population, especially for larger proteins, 
we examined the Gaussian kernel density estimation for the accuracy of decoys generated by FUSION. 
In Fig. 4, we show the distribution and degree of sampling for three targets with a sequence length of 
more than 200 residues. For T0760-D1 (Fig. 4a), the range of sampled conformational space is diverse 
with a high density of decoy population between 15  Å and 20 Å and reaching an accuracy of 5.53 Å. 
For T0805-D1 (Fig. 4b), the conformation space is less diverse with a definite peak near 10 Å. The best 
decoy attained 5.91 Å Cα-rmsd. For T0849-D1 (Fig. 4c), the distribution is multimodal with many peaks 
between 6 Å and 20 Å with the best decoy reaching an accuracy of ~6 Å. The degree and distribution of 
conformational sampling for all targets are presented in Supplementary Fig. 2.

Comparisons with fragment-assembly. We compared FUSION with the popular fragment assem-
bly method ROSETTA2, which constructs a library of fragments from PDB using sequence profile, sec-
ondary structures, and other sequence-derived features. FUSION also assembles fragments to produce 
the final structure. A direct comparison between FUSION and ROSETTA, therefore, is not fair because 
ROSETTA has a clear advantage in its use of multiple sequence information during fragment selection. 
Moreover, we did not exclude homologues fragments in order to realize the full potential of ROSETTA. 
On the other hand, FUSION does not have such advantage since the training dataset is non-homologous 
to the benchmark set curated well before CASP11, and it is a model-based sampling approach rather than 
a fragment assembly method based on a fragment library. However, FUSION simulations used ambigu-
ous distance restraints derived from sequence-based predicted residue-residue contacts as an additional 
pseudo energy term, which were not used in ROSETTA. We, therefore, decided to compare the accu-
racy of the best decoys generated by ROSETTA and FUSION. The comparison offers some interesting 
insights.

Out of 16 smaller proteins with a length of less than 100 residues, ROSETTA outperformed FUSION 
in 14 cases in terms of the accuracy on reporting the best decoy as shown in Table 3. For instance, for 
target T0759-D1, a 34 residues small protein domain, the best decoy produced by ROSETTA had a 
Cα-rmsd of 0.67 Å compared to the native protein, outperforming the best decoy generated by FUSION 
with a Cα-rmsd of 2.38 Å by a large margin. However, for larger proteins with more than 150 residues, 
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Experimental structure
Lowest scoring 
FUSION decoy

Best of five lowest 
scoring FUSION 

decoys

Target ida Length %αb %βc %α %β %α %β

T0759-D1 34 47.06 11.76 50.00 0.00 55.88 0.00

T0759-D2 62 35.48 29.03 38.71 14.52 40.32 16.13

T0760-D1 210 7.46 47.76 3.98 50.25 0.00 50.25

T0763-D1 130 20.77 41.54 7.69 25.38 7.69 25.38

T0765-D1 76 31.58 31.58 31.58 23.68 31.58 10.53

T0766-D1 108 26.85 54.63 28.70 48.15 25.93 50.93

T0768-D1 143 42.27 36.08 7.69 18.18 7.69 18.18

T0769-D1 97 29.14 30.46 37.11 35.05 40.21 28.87

T0771-D1 150 40.30 31.34 15.23 31.13 19.21 10.60

T0773-D1 67 50.23 10.50 40.30 35.82 40.30 35.82

T0776-D1 219 10.00 60.91 48.86 13.24 47.95 12.33

T0782-D1 110 2.40 60.80 0.00 50.91 2.73 54.55

T0784-D1 125 8.04 59.82 12.00 47.20 2.40 54.40

T0785-D1 112 48.72 14.10 19.64 25.89 20.54 23.21

T0792-D1 78 32.84 26.12 41.03 10.26 47.44 10.26

T0803-D1 134 46.70 15.23 23.88 14.93 23.13 17.16

T0805-D1 213 14.29 41.21 38.58 13.71 38.07 14.21

T0812-D1 183 53.97 12.91 9.89 15.93 4.95 25.82

T0815-D1 106 31.13 46.23 33.02 46.23 33.02 49.06

T0816-D1 68 73.53 0.00 80.88 0.00 73.53 0.00

T0818-D1 134 32.84 41.04 28.36 16.42 32.09 15.67

T0820-D1 90 73.33 0.00 73.33 4.44 71.11 0.00

T0820-D2 36 19.44 27.78 38.89 27.78 27.78 22.22

T0822-D1 114 3.51 53.51 3.51 37.72 3.51 42.11

T0824-D1 108 37.96 25.00 29.63 14.81 32.41 14.81

T0829-D1 67 25.37 32.84 26.87 31.34 26.87 31.34

T0833-D1 108 7.41 70.37 0.00 50.93 0.00 54.63

T0834-D1 99 49.49 20.20 50.51 0.00 49.49 0.00

T0834-D2 92 60.47 2.33 36.05 0.00 50.00 0.00

T0836-D1 204 82.35 0.00 77.45 0.98 72.55 0.00

T0837-D1 121 75.21 0.00 76.03 0.00 71.90 0.00

T0838-D1 126 23.02 40.48 26.98 0.00 27.78 3.17

T0841-D1 244 9.57 25.22 11.26 35.06 11.26 35.06

T0847-D1 169 33.14 30.77 31.95 19.53 33.73 21.30

T0849-D1 236 60.17 8.05 58.05 7.63 56.36 7.63

T0853-D1 76 15.79 31.58 17.11 19.74 22.37 10.53

T0853-D2 72 25.00 37.50 26.39 20.83 26.39 20.83

T0854-D1 132 36.36 21.21 41.67 19.70 43.18 18.94

T0854-D2 70 68.57 0.00 67.14 5.71 67.14 5.71

T0855-D1 115 33.91 24.35 34.78 28.70 34.78 28.70

T0856-D1 159 0.00 50.31 1.89 37.11 1.89 45.28

T0857-D1 96 0.00 52.08 0.00 40.63 5.21 41.67

Average 121d 33.94 29.92 31.59 22.37 31.68 21.60

Table 1. Secondary structure contents in the experimental structures and FUSION decoys. aIdentification 
numbers of the targets assigned by CASP11 assessors. bPercentage of residues in alpha helix. cPercentage of 
residues in beta strand. dRounded to nearest integer.
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in terms of accuracy of the best decoy, FUSION performed better than ROSETTA. For eight out of nine 
targets with more than 150 residues, the best models generated by FUSION were consistently more accu-
rate than ROSETTA. As shown in Fig. 5, in six out of nine cases, the best models generated by FUSION 
were reasonably accurate with a Cα-rmsd less than 6 Å, while ROSETTA failed to reach the accuracy of 
6 Å in any of the cases. Moreover, for target T0849-D1 with a sequence length of 236 residues, the best 
decoy generated by FUSION attained 6.01 Å Cα-rmsd, while best decoy generated by ROSETTA had an 
accuracy of 9.01 Å.

Discussion
This study introduces a probabilistic approach for sampling of a protein backbone in full atomic detail in 
continuous space, free from a fragment library. The sampled conformation has a reasonable stereochem-
istry, which is reflected by its realistic angles and secondary structure. Its ability to incorporate noisy 
predicted information during simulation and complete coverage of the conformational space accessible 
to proteins makes it fundamentally different from prior fragment assembly approaches.

An analysis of the performance of the proposed method, FUSION, in a blind assessment revealed its 
capability to perform convergent sampling, covering a large spectrum of conformational space accessi-
ble to a protein sequence. It performs favorably especially for larger proteins producing more accurate 
decoys compared to fragment assembly techniques, opening the possibility to predict near-native struc-
tural models even for large proteins in a de novo manner.

An obvious next step in the future is to extend the model to capture both backbone and side chain 
conformational bias. Given the large degrees of freedoms in the side chain of a protein molecule, this 
will pose a formidable computational challenge. Integrating multiple sequence alignment information 
into the model could be another possible direction to be investigated in the future.

To facilitate usage of the FUSION method by life scientists around the world, a public web server has 
been made freely available at http://protein.rnet.missouri.edu/FUSION/, where users can access and sub-
mit FUSION modeling jobs. Instructions on submitting and retrieving modeling jobs are also provided 
at the website. Due to limited computational resources, and to ensure a reasonable turn-around time, the 
maximum number of decoys per job submission is limited to 10,000.

Methods
Parameterization of protein conformational space. Before formulating a probabilistic model 
capturing detailed sequence to structure relationships, mathematical parameterization of protein con-
formational space is essential. Twenty naturally occurring amino acid residues usually specify protein 

Figure 3. Energy landscapes of FUSION simulations for diverse protein targets. (a–f) Energy (DFIRE 
score) verses accuracy (Cα-rmsd) for decoys produced by FUSION for protein targets T0773-D1 (a), 
T0765-D1 (b), T0769-D1 (c), T0815-D1 (d), T0833-D1 (e) and T0776-D1 (f), with color coding from blue 
to red for low to high density and a measure for the underlying energy scale. The lowest scoring decoys (in 
blue) overlaid on the experimental structures (in green) are highlighted in the insets, with their accuracies 
(Cα-rmsd) quantified below. In each case, protein length is indicated within parentheses next to the target 
name.

http://protein.rnet.missouri.edu/FUSION/
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sequence space. Due to their intrinsic stereochemistry, these residues give rise to distinct population dis-
tributions in Ramachandran space20. Analysis of high-resolution experimental structures21–23 has shown 
that it is convenient to consider these distributions in eight classes: (1) glycines not preceding prolines, 

Target ida Length

Cα-rmsd (Å)

<6 Å 
(Percent)

Lowest 
Scoring

Best of five 
lowest scoring

T0759-D1 34 16.67 6.52 5.92

T0759-D2 62 0.98 11.39 4.62

T0760-D1 210 0.11 6.86 6.66

T0763-D1 130 0.00 15.86 15.86

T0765-D1 76 20.85 4.32 4.23

T0766-D1 108 2.85 2.95 2.64

T0768-D1 143 0.00 9.41 9.41

T0769-D1 97 55.73 3.99 3.17

T0771-D1 150 0.00 17.45 17.22

T0773-D1 67 62.76 2.19 2.19

T0776-D1 219 52.60 3.56 3.42

T0782-D1 110 0.00 8.86 8.35

T0784-D1 125 0.05 13.73 5.32

T0785-D1 112 0.00 14.46 10.48

T0792-D1 78 0.51 10.44 8.47

T0803-D1 134 0.00 16.37 12.18

T0805-D1 213 0.03 11.04 8.46

T0812-D1 183 0.00 19.30 17.37

T0815-D1 106 72.26 3.36 2.44

T0816-D1 68 38.32 7.78 3.63

T0818-D1 134 0.00 12.27 8.70

T0820-D1 90 0.01 12.86 12.07

T0820-D2 36 51.36 6.04 4.23

T0822-D1 114 0.00 13.89 11.78

T0824-D1 108 0.00 14.19 12.25

T0829-D1 67 9.07 3.85 3.85

T0833-D1 108 0.79 7.12 6.87

T0834-D1 99 0.00 16.18 11.16

T0834-D2 92 0.00 13.53 11.82

T0836-D1 204 0.00 15.22 14.65

T0837-D1 121 0.02 15.42 10.11

T0838-D1 126 0.00 17.49 12.50

T0841-D1 244 0.05 6.28 6.28

T0847-D1 169 0.32 6.48 5.55

T0849-D1 236 0.00 12.16 8.71

T0853-D1 76 0.00 14.19 10.30

T0853-D2 72 0.00 9.39 9.39

T0854-D1 132 60.62 2.04 1.80

T0854-D2 70 59.19 2.62 2.62

T0855-D1 115 0.05 8.99 8.99

T0856-D1 159 0.04 9.95 7.37

T0857-D1 96 0.00 12.58 10.93

Table 2.  Accuracy of FUSION decoys. aTargets highlighted in bold indicates that FUSION generated some 
decoys with Cα -rmsd (Å) less than < 6 Å.
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(2) prolines not preceding prolines, (3) β -branched amino acid residues, isoleucines and valines, not 
preceding prolines, (4) all amino acids except glycines, prolines, isoleucines, and valines not preced-
ing prolines, (5) glycines preceding prolines, (6) prolines preceding prolines, (7) β -branched residues 
isoleucines and valines preceding prolines, and (8) all amino acids except glycine, proline, isoleucine, 
and valine preceding prolines. We use these eight classes of amino acids residues to represent protein 
sequence space.

On the structural side, we adopt a backbone-only representation of proteins, where, each amino acid 
residues in a protein chain can be characterized using three angular degrees of freedom, the φ , ψ  and ω  
dihedral angles, assuming ideal bond lengths and bond angles24. Due to the presence of steric hindrance 
and electrostatic interactions, backbone dihedral angle pairs (φ , ψ ) cluster together in distinct regions 
of the Ramachandran plot in naturally-occurring protein structures. Densely populated regions corre-
spond to low energy conformations found in common elements of secondary structures, most signifi-
cantly, right-handed α -helices, left-handed α L-turns and extended β -strands. We, therefore, considered 
three-state secondary structure types (helix, strand and coil) to capture this preference. Furthermore, we 
included the peptide ω  angles, which have been found to exhibit systematic variations in (φ , ψ ) space 
in proteins11,25. This parameterization is simple, yet adequate to describe protein backbone conformation 
in atomic detail.

Formulating the probabilistic graphical model. We briefly describe the most important aspects 
of the proposed model in Fig. 1. For each slice, i, a residue type identifier, Ai specifies which of the eight 
classes of residue types serves as input in a given slice, and a hidden variable, H, that can adopt 30 dif-
ferent discrete states (see below). Each of these states (Hi) corresponds to a specific emission distribution 
over secondary structures (Si: helix, strand, and coil), dihedral angle pairs (Di: φ , ψ ), and peptide bond 
conformations (Pi: ω ). Conformational space of a protein with n residues is specified by the following 
probability distribution:

∑

∏

( , , ) = ( ) ( ) ( ) ( )

× ( , ) ( ) ( ) ( )
( )=

−

P S D P P H A P S H P D H P P H

P H H A P S H P D H P P H
1

H

i

n

i i i i i i i i i

1 1 1 1 1 1 1 1

2
1

where, the sum runs over all possible hidden node sequences H =  (Hi, …, Hn).
We model the discrete nodes A and S using conditional probability tables. In order to capture the 

angular preferences of the backbone dihedral angle pair node (D), we use a mixture of bivariate von 
Mises distributions (the cosine variant), which is most suited for this purpose26. Bivariate von Mises 
distribution specifies dihedral angle pairs (φ , ψ ), both ranging from –π  to π  as points on torus. The 
probability density function is given by:

φ ψ κ κ κ κ φ µ κ ψ ν κ φ µ ψ ν( , ) = ( , , ) ( ( − ) + ( − ) − ( − − + )) ( )f c exp cos cos cos 21 2 3 1 2 3

where, μ and ν are means for φ  and ψ , respectively, κ1 and κ2 are their concentration, while κ3 is related 
to their correlation.

Angular preference of the ω  dihedral angle node of a peptide bond (P) is modeled using a mixture 
of von Mises distribution27, which can be considered the circular equivalent of Gaussian distribution. 
The von Mises distribution takes the circular nature of angular data into account, but it also represents 

Figure 4. Accuracy spectrums of FUSION decoys for large proteins. (a–c) Gaussian kernel density 
estimation for the accuracy (Cα -rmsd) of decoys generated by FUSION for protein targets T0760-D1  
(a), T0805-D1 (b), T0849-D1 (c), with protein size indicated within parentheses next to the target name. 
For each target, accuracies (Cα-rmsd) of the whole decoy population are represented as vertical spikes along 
the horizontal axis, and each spike represents a decoy, along with a family of curves with varying bandwidth 
from 0.01 Å to 1.0 Å with a step of 0.01 Å, which corresponds to the color ramp from yellow through red. 
The most accurate decoys (in blue) overlaid on the experimental structures (in green) are highlighted in the 
insets, with their accuracies (Cα-rmsd) specified under the insets.
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dihedral angles ranging from –π  to π  as points on circle. The probability density function has the fol-
lowing form:

Target ida Length

Cα-rmsd (Å)

FUSION ROSETTA

T0759-D1 34 2.38 0.67

T0759-D2 62 3.69 2.79

T0760-D1 210 5.53 11.18

T0763-D1 130 11.32 10.52

T0765-D1 76 3.42 1.96

T0766-D1 108 2.64 4.62

T0768-D1 143 7.68 5.78

T0769-D1 97 3.02 2.34

T0771-D1 150 11.75 9.87

T0773-D1 67 1.97 0.97

T0776-D1 219 2.95 9.95

T0782-D1 110 7.29 4.21

T0784-D1 125 3.49 12.43

T0785-D1 112 10.00 9.33

T0792-D1 78 4.07 3.50

T0803-D1 134 9.33 7.72

T0805-D1 213 5.91 10.64

T0812-D1 183 14.17 14.79

T0815-D1 106 1.94 2.63

T0816-D1 68 2.10 1.76

T0818-D1 134 7.84 9.09

T0820-D1 90 5.98 5.70

T0820-D2 36 2.56 2.02

T0822-D1 114 9.40 9.68

T0824-D1 108 7.90 7.86

T0829-D1 67 3.15 1.87

T0833-D1 108 3.62 3.06

T0834-D1 99 11.05 9.82

T0834-D2 92 7.70 7.06

T0836-D1 204 9.75 9.61

T0837-D1 121 5.85 3.04

T0838-D1 126 8.80 8.74

T0841-D1 244 5.60 14.67

T0847-D1 169 5.32 10.12

T0849-D1 236 6.01 9.01

T0853-D1 76 7.57 5.21

T0853-D2 72 7.18 4.81

T0854-D1 132 1.76 4.57

T0854-D2 70 2.31 3.52

T0855-D1 115 5.52 4.18

T0856-D1 159 5.53 10.22

T0857-D1 96 8.76 8.77

Table 3.  Accuracy of best decoys generated by FUSION and ROSETTA. aTargets highlighted in bold have 
sequence length of more than 150 residues.
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ω λ κ
κ ω λ
π κ

( , ) =
( ( − ))

( ) ( )
f

I
exp cos

2 30

where, λ is the mean angle, κ >  0 is a concentration parameter, and I0 is the modified Bessel function of 
the first kind and of the order zero.

Training data, parameter estimation, and model selection. As training data, we collected 
1,740 non-redundant protein domains, covering different SCOP folds, from the SABmark dataset, ver-
sion 1.6528. Residue class and angle information was extracted directly from the training data, whereas 
three-state secondary structures (helix, strand, and coil) were assigned using DSSP29. The training dataset 
contains 270,350 observations.

Parameter estimation for FUSION was done using Stochastic Expectation-Maximization (S-EM)30, 
as implemented in Mocapy++ software package31. In each iteration, the S-EM algorithm consisted of 
two steps: (1) for each observation in the training set, plausible hidden nodes were resampled using the 
forward-backtrack algorithm13, which allocated each observation in the training set to a specific hidden 
state (E-step); (2) the parameters were updated using maximum likelihood, assuming the model was 
fully observed (M-step). S-EM algorithm is known to be a better choice than classic EM algorithm on 
large datasets due to its computational efficiency and its ability to avoid convergence to local optima30.

The optimal size of the hidden node is a hyperparameter that has to be determined separately, and 
choosing the optimal hidden node size is crucial for the model to succeed. For low size, the model will 
be too coarse; however, if the size is too high, it will lead to overfitting. We estimated the optimal hidden 
node size using the Akaike Information Criterion (AIC)32, a well-established model selection criterion:

θ( ) = − ( ( ) + ( )AIC n L d n2 log 2 4

where, L(θ|d) is the likelihood of the model given the data d, and n is the number of parameters. The 
AIC value reaches a minimal value for the optimal model. The AIC was calculated for hidden node sizes 
of 10 to 100 (with a step size of 5), using a likelihood obtained after convergence of the S-EM algorithm. 
Since the nature of the training process is stochastic, parameter estimation for each hidden node size was 
repeated four times with different starting conditions. For a model with a hidden node size of 30, the 
AIC value reached its minimum value, resulting in 7,812 parameters (Supplementary Fig. 3). We chose 
this model as the optimum one.

Conformational sampling. For a given stretch of n residue protein sequence, the amino acid resi-
dues can be readily mapped to the residue classes (A1, …, An). The plausible values of the hidden nodes, 
Hi, are then sampled from one end to the other, from the distribution P(Hi|Ai =  ai, Hi−1 =  hi−1). Based 

Figure 5. Accuracy of FUSION and ROSETTA on large targets. Ribbon diagrams of PDB files are shown 
for (a) experimental structures, (b) the most accurate (lowest Cα-rmsd) decoys generated by FUSION, and 
(c) the most accurate (lowest Cα-rmsd) decoys generated by ROSETTA for protein targets with a sequence 
length of more than 150 residues. All molecules are rainbow colored blue to red from the N- to C-termini. 
Models were optimally superimposed to the target, and then separated by translations along the vertical 
direction with numbers below them quantifying their accuracy (Cα-rmsd).
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on the sequence of hidden node values, samples for corresponding emission nodes are drawn from the 
corresponding conditional probability distribution ( , = ),P S D P H hi i i i i .

Once we have sampled a sequence of hidden values, (H1, …, Hn), a sequence of secondary structure 
types (S1, …, Sn), a sequence of (φ , ψ ) angle pairs (D1, …, Dn), and a sequence of ω  dihedral angles of 
the peptide bonds (P1, …, Pn), given an appropriate sequence of residue classes (A1, …, An), resampling 
a sub-sequence, from position l to m can then be done using the forward-backtrack algorithm13. The 
algorithm involves two steps. In the first step, the forward variables 
( ) = ( = = , = )− −f j P H k H h A ak j l l j j1 1  are calculated for each possible hidden node value k in each 

slice j ∈  (l, …, m), using the forward algorithm33. Subsequently, the hidden nodes values, hj, are sampled 
from position l to position m proportional to ( ) ( = = , = )+ +f j P H h H k A ak j j j j j1 1 . In the second step, 
emission nodes at each position j ∈  (l, …, m) are sampled from the conditional probability distribution 
( , , = )P S D P H hj j j j j . In case the secondary structure information is available, or, predicted from the 

protein sequence; hence, the same sampling and resampling strategies can be applied simply by treating 
secondary structure types (Si) of the corresponding sequence position i, as observed. This unique condi-
tional sampling approach makes it possible to incorporate observed structural features to guide the sam-
pling of dihedral angles.

Simulation protocol. For each protein in the benchmark set, we predicted a three-state secondary 
structure (helix, strand, and coil) from the amino acid sequence using machine-learning based secondary 
structure predictors PSIPRED34 and Raptor-X35. To reduce the effect of noisy prediction on the mode-
ling performance, we flagged the secondary structure as observed only when the consensus confidence 
(confidence of secondary structure ∈  [0, 1]) for a residue was above 0.5. For the rest of the residues, 
secondary structures were left hidden, allowing flexibility during the simulations.

We used ROSETTA’s low-resolution scoring function, Erosetta, as one part of the FUSION’s energy 
functions to guide the simulations, accessed through its Python-based interface, PyRosetta36. Briefly, 
it includes terms for van der Waals hard sphere repulsion (vdw), residue environment (env), residue 
pair (pair), Cβ packing density (cb), secondary structure packing [helix–helix pairing (hh), helix-strand 
pairing (hs), strand-strand pairing (ss), strand pair distance (rsigma) and sheet formation from strands 
(sheet)], plus radius of gyration (rg). The details for each of these terms have been described elsewhere15. 
In general, the ROSETTA low-resolution scoring function favors compact structures with buried hydro-
phobic residues, and paired β  strands. To further guide the sampling, we added ambiguous distance 
restraints as an additional pseudo energy term using sequence-based predicted residue to residue con-
tacts [two amino acid residues are considered to be in contact if the distance between their Cβ atoms (Cα 
for glycine) in the experimental structure is less than 8Å] using NNcon37 and PhyCMAP38. The contact 
energy was defined as a function of atom pair distance restraint39 between Cβ atoms (Cα for glycine):

( ) =











( − ) <
≤ ≤

( − ) ≤ ≤ +

− − + > > ( )

f x

x lb for x lb
for lb x ub

x ub for ub x ub rswitch

x ub rswitch rswitch for x ub rswitch

0

5

2

2

2

where, x is the distance between the corresponding atoms for a contact pair, lb is the lower bound (1.5 Å), 
ub is the upper bound (8 Å), and rswitch is a constant of 0.5. We filtered all contacts except the top L/5 
(sorted by confidence of prediction ∈  [0, 1]), and we predicted contacts from each predictor, where L is 
the sequence length of the protein. In order to further account for low accuracy in sequence-based pre-
dicted contacts, contact energy was evaluated within ±  δ  neighboring residues of a predicted contact 
pair [i, j], for small values of δ , and the minimum energy value was considered as ambiguous contact 
energy Eij (e.g., for δ  =  1, ambiguous contact energy, Eij, of a predicted contact pair [i, j] would be the 
minimum of contact energy evaluated at [i, j], [i ±  1, j], [i, j ±  1], and [i ±  1, j ±  1]). Summing up Eij 
values over the top L/5 predicted contact pairs from each contact predictor resulted in the contact-derived 
restraint energy, Econtact. The value of δ  was set as a logarithmic function of the sequence separation 
between the residues under consideration: δ = ( − )log i j . Based on our preliminary simulation runs, 
such an ambiguous (less than residue-level precision) definition of contact not only compensates for the 
noise in contact prediction, but it also facilitates achieving an optimal balance between contact-derived 
restraints energy and general physical chemistry, which is implicit in the ROSETTA scoring function. 
The total energy, Etotal (x), of a conformation x with dihedral angle sequence d, is a linear combination 
of ROSETTA low-resolution scoring function, and contact-derived restraint energy function:

( ) = ( ) + ( ) ( )E x E x E x 6total rosetta contact

Subsequently, Boltzmann’s law was used to convert the energies into probabilities:

β( ) ∝ (− ( )) ( )P x exp E x 7total total
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where, the inverse temperature, β, was set to 2.0 kT.
For a transition from a dihedral angle sequence from d to d′  in the FUSION model, Metropolis-Hastings 

acceptance criterion can be expressed as:

α ( → ′) =




,
( ′) ( ′ → )

( ) ( → ′)




 ( )

d d
P d P d d
P d P d d

min 1
8

where, α ( → ′)d d  is the acceptance probability corresponding to the transition from state d to d′ ; more-
over, P(d′ ) and P(d) are the probabilities of d and d′  according to the target distribution, while ( ′ → )P d d  
and ( → ′)P d d  are the probabilities of a move from state d′  to state d, and vice versa, according to the 
proposal distribution.

Since we used FUSION as a solely proposed distribution, and the transition in dihedral sequence 
from state d to d′  results in a transition of conformation from x to x′ , the Metropolis-Hasting expression 
reduces to:

α ( → ′) =




,

( ′) ( )

( ) ( ′)





 ( )
d d

P x P d

P x P d
min 1

9

total fusion

total fusion

where, Ptotal (x) is the scoring function derived probability described above, and Pfusion (d) is the product 
of the probabilities of dihedral angles in d according to FUSION, conditioned on the residue classes and 
optionally secondary structure types.

We performed 20,000 MCMC iterations to generate each low-resolution model by resampling random 
stretches of 3 to 15 residue segment, and selected the structure with the highest probability (i.e., lowest 
energy). The lowest energy structure was further relaxed using a smooth reparameterized version of 
ROSETTA’s low-resolution scoring function2,15.

Sources of experimental PDB structures in the benchmark set. The experimental PDB struc-
tures used in the 42-protein benchmark set were downloaded from the CASP11 website at http://pre-
dictioncenter.org/download_area/CASP11/targets/. The domain definitions and the PDB accession codes 
were provide by CASP assessors at http://predictioncenter.org/casp11/domains_summary.cgi.
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