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Self‑potential time series reveal 
emergent behavior in soil organic 
matter dynamics
Kennedy O. Doro1*, Nathan P. Stoikopoulos2, Carl‑Georg Bank2 & F. Grant Ferris2

The active cycling of carbon between soil organic matter and the atmosphere is of critical importance 
to global climate change. An extensive body of research exists documenting the capricious nature 
of soil organic matter (SOM) dynamics, which is symptomatic of an intricate network of interactions 
between diverse groups of heterotrophic microorganisms, complex organic substrates, and highly 
variable local environmental conditions. These attributes are consistent with elements of complex 
system theory and the temporal evolution of otherwise unpredictable patterns of behavior that 
emerge from long range dependency on initial conditions. Here we show that vertical depth profile 
of self-potential (SP) time series measurements responds in a quantitative manner to variations in 
soil moisture, SOM concentrations, and relative rates of microbial activity. Application of detrended 
fluctuation analysis (DFA) of self potential time series data is shown additionally to reveal the presence 
of long-range dependence and emergence of anomalous electrochemical diffusion behavior, both of 
which diminish with depth as SOM specific energy densities decline.

The vast quantity of carbon stored as organic matter in the top 3 m of soils is greater than amounts that exist in 
the atmosphere and terrestrial vegetation combined1–4. Because of this, even a small change in the biogeochemical 
processes that contribute to the conversion of soil organic matter (SOM) into greenhouse gases such as carbon 
dioxide or methane could further exacerbate global climate change even as mean temperatures rise and extreme 
variations in rainfall become more frequent5. Higher turnover rates of SOM in surface soils and emission of 
greenhouse gases also threaten the vertical transport and long-term sequestration potential of organic carbon in 
deeper soil horizons where radiocarbon ages are commonly as old as one thousand to more than ten thousand 
years1,4,6. Investigation of these interconnected vulnerabilities in SOM dynamics has exposed significant chal-
lenges to researchers not only in terms of how to integrate traditional physical, chemical, and biological measure-
ments in a quantitative manner, but also how to reduce the tremendous amount of time spent on sampling for 
multiple analyses. An alternative approach in soil hydrological and biogeochemical studies is the growing use 
of self-potential (SP) monitoring, a geophysical method based on passive measurement of electrical potential 
differences generated by the movement of charged ions and water through porous subsurface materials7,8.

SP has been used to locate ore deposits, map hydrothermal zones, monitor groundwater flow and character-
ize contaminated sites due to their associated electrochemical, thermoelectric, electrokinetic, piezoelectric, and 
redox effects9. The method holds considerable promise to be applied in new ways as demonstrated in this study, 
especially with respect to a time-series analysis of its signals which opens new opportunities for quantifying mois-
ture dependent organic matter-microbial activity dynamics. In soils, natural electric potential gradients can be 
attributed to electrokinetic effects caused by flowing water and biochemical effects attributable to oxido-reduction 
phenomena10. Decoupling the source of SP signals is non-trivial but petrophysical relationship between SP sig-
nals and hydraulic gradient is well established through an electrokinetic coupling coefficient9,11. This approach 
facilitates signal interpretation by taking the coupled effects of mobile charged solutes, as well as the charged 
nature of stationary minerals and associated organic matter, into account12. SP signals therefore offer an indirect 
but robust approach to quantify soil processes including soil moisture, soil organic matter content and relative 
microbial activity driving biogeochemical changes in soils. In this study, we use strong correlations between 
measured SP signals and soil moisture, SOM, and relative microbial activity rates to demonstrate the capability 
of using SP to scale understanding of SOM dynamics in a non-invasive way with minimal disturbances. We also 
use a time-series analysis of SP data to demonstrate the transient behaviour of SOM-microbial activity rates.
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Results and discussion
Soil hydraulic conditions and microbial activity.  The moderately high saturated hydraulic conductiv-
ity values determined for Meilleurs Bay terrace sands are conducive to rapid infiltration and downwards move-
ment of meteoric precipitation through the unsaturated zone (Fig. 1A). While depth variations in hydraulic con-
ductivities parallel corresponding fining and coarsening trends in grain size (Fig. 1A), the well-sorted nature of 
the sands constrain porosity to a narrow range near 39% (Fig. 1B). Measurements of bulk density follow the same 
trends, decreasing in the direction of fining upwards grain sizes and increasing with coarsening upwards grain 
sizes, with the lowest bulk densities close to the surface (1482 kg/m3) and 1.45 m underground (1443 kg/m3). 
Considering the nearly constant porosity and uniform mineral composition of the terrace sands, the observed 
variations in bulk density can be attributed directly to differences in soil organic matter content with the great-
est amounts predicted for depths corresponding to the lowest bulk densities (Fig. 1C)13–16. The peak of SOM at 
1.45 m depth is consistent with the presence of a root mat horizon in the upwards coarsening interval between 
0.9 and 1.5 m depth17.

Post-wetting drainage dynamics of unsaturated porous media are complex owing to spatial and temporal 
changes in the extent of hydraulic continuity between pores12,18,19. At the time of this investigation, 24 h after a 
rainfall event, moisture levels were close to the residual volumetric water content anticipated for rapid drain-
age of meteoric precipitation through highly permeable sandy soils (Fig. 1B)18. Elevated water contents at 0.10 
and 1.45 m depths correspond directly to depth levels with the smallest grain size, lowest hydraulic conduc-
tivity, and highest content of soil organic matter. Among these parameters, linear regression established that 
soil organic matter content accounted for the greatest proportion of the variance in volumetric water contents 
(R2 = 0.81; Fig. 1D). Similar relationships have been reported in other studies documenting the enhancement 
of water retention by soil organic matter16,20, including extracellular polymeric substances produced in situ by 
microorganisms21.

Decomposition of organic matter in soils by heterotrophic microbial respiration is strongly dependent on 
soil moisture22,23. This relationship is reflected in the similar depth profiles of calculated soil moisture microbial 
activity24 and measured volumetric water contents (Fig. 1E and B, respectively). Another underlying premise of 
the microbial activity-soil moisture function is that relative soil moisture microbial activity is reflective of the 
bioavailability of soil organic matter under partially saturated conditions24. This invokes the Monod kinetics 
model of microbial growth and substrate utilization under nutrient limiting conditions22,25. Recognizing that 
soil moisture and organic matter content are related (Fig. 1D) provides a useful paradigmatic link between the 
microbial activity-soil moisture function and bioavailability of organic matter implied by the Monod relation-
ship. As shown in Fig. 1F, soil moisture microbial activity at different horizons across the depth profile is, in fact, 
responsive to organic matter concentrations, calculated independently as a function of bulk density. The impli-
cation is that soil moisture does limit the bioavailability of soil organic matter under fluctuating soil moisture 
conditions, with a half-saturation constant K = 0.97 + 0.03 for a relative soil moisture microbial activity equivalent 
to one-half of the level of microbial activity expected under optimal soil moisture conditions.

Self‑potential response.  Mean values of the SP time series (supplementary material Fig. S1), increased 
from 5.3 mV at 0.10 m to 42.7 mV at 1.20 m depth, then underwent a sharp decrease to − 10.4 mV at 1.45 m 
depth before resuming an upwards trend to 38.5 mV at 3.5 m (Fig. 2A). The trend reversal in SP response with 
depth is a mirror reflection of that observed with soil water content, soil organic matter, and soil moisture micro-
bial activity. Of these parameters, water content accounts for 83% of the depth profile variation in SP (Fig. 2B) 
compared to 96% for soil organic matter (Fig. 2C) and 90% for soil moisture microbial activity (Fig. 2D).

The linear correlation between mean SP response and water content as an independent variable is consistent 
with numerous theoretical and experimental studies9,11,12; however, considerable variation exists in the reporting 
of coupling coefficients (i.e., slope of the regression), depending on the saturated streaming potential coupling 
coefficient ( Cs ) and how differences in pore water specific energy are expressed10,26,27. Here we apply a version of 
the Helmholtz-Smoluchowski equation for Cs that incorporates the effective conductivity of a saturated porous 
medium, as defined by Archie’s Law7,12,28,29; relevant equations and parameters and are defined in the methods 
section. For an unsaturated porous medium, the difference in specific energy can be formulated in terms of 
volumetric water content as dP = Lcρwgφ

−1dθ where Lc is a soil-specific characteristic length scale that defines 
the maximum extent of hydraulic continuity for gravity drainage30; CsLcρwgφ

−1 thus represents a conditional 
unsaturated streaming potential coefficient. For the field data, this approach gave -0.024 mV/Pa for Cs , a soil zeta 
potential of − 46.22 mV, and 0.10 for the volumetric water content ( θref  ) at the shallow depth of the reference 
electrode. The first two values are consistent with those reported for fine quartz sands at low electrical conduc-
tivities (ca. 10–3 S/m) that accompany infiltration of dilute meteoric precipitation26,31, while the estimate for θref  
is comparable to that measured at a depth of 0.10 m in the borehole (Fig. 1B).

The strong effect of SOM on SP is an intriguing finding that is related, in electrochemical terms, to surface 
charge development and cation exchange capacity of organic matter-mineral aggregates in soils, including those 
containing microbial biomass12,32–34. Recognition of the relationship between SOM and volumetric water content 
(Fig. 1D) allows for refinement of the streaming potential coupling coefficient and extends the theoretical basis 
for quantitative interpretation of variations in SP response to observed differences in soil organic matter concen-
trations (Fig. 2C). In this case, the difference in specific energy takes the form dP = LcρwgmSOMφ−1dSOM with 
mSOM equivalent to the slope of the linear regression of θ as a function of SOM; Lc is a soil-specific length scale that 
defines the maximum extent of hydraulic continuity in the porous network as a function of parameters α and n of 
the van Genuchten model of soil water retention30. The corresponding estimates for Cs and soil zeta potential from 
the SP data are − 0.028 mV/Pa and − 55.2 mV, respectively. These estimates compare favorably to those derived 
on the basis of SP response as a function of volumetric water content. At the same time, a calculated reference 
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Figure 1.   Soil depth profiles of hydraulic properties and relative levels of microbial metabolic activity. (A) Grain 
size distribution measurements of the tenth (d10) and sixtieth percentile (d60) particle diameters, along with the 
coefficient of uniformity Cu = d60/d10 . (B) Calculated saturated hydraulic conductivities and porosities, as well 
as measured volumetric water content. (C) Soil organic matter contents estimated from measured bulk densities; 
the shaded interval (A)–(C) indicates the level where overall trends in hydraulic properties undergo a short 
reversal. (D) Volumetric water content as a function of soil organic matter. (E) Relative levels of soil microbial 
activity determined with respect to volumetric water content, and jointly with respect to relative amounts of 
microbial biomass. (F) Relative soil moisture microbial activities as a function of soil organic matter. The solid 
line represents the best fit of the Monod kinetics model for the dependence of relative soil moisture microbial 
activity under limiting amounts of soil organic matter. Dashed lines are prediction intervals at p values that 
represent the proportion of variance accounted for by the regression (R2).
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electrode SOM concentration of 1.6% w/w is comparable to that at 0.10 m (1.53% w/w) and 1.45 m (1.41% w/w) 
depths in the borehole (Fig. 1C). As expected for this condition ( dSOM = [SOM]ref − [SOM]borehole → 0 ), 
the observed SP response at these depths is near 0 mV (Fig. 2A). This illustrates the potential to apply inverse 
modeling in SP surveys to map out SOM concentrations in soils by geophysical means.

The correlation between SP and soil moisture microbial activity presumably reflects the impact of changes 
in water content on mass transport processes and the manifest bioavailability of soil organic matter. Because 
optimal microbial activity is realized at a water saturation of 0.6524,35, the soil-specific characteristic length scale 
that defines the upper drainage limit at fSMA = 1.0 is taken to be 0.65Lc30. This gives the difference in pore water 
specific energy in relation to microbial activity as dP = 0.65Lcρwgdfh , which yields estimates of -0.027 mV and 
-53.2 mV for Cs and zeta potential, respectively. A predicted value of fh = 0.62 was ascertained for soil moisture 
microbial activity at the reference electrode, in good agreement those calculated from measured water contents 
at 0.10 m ( fh = 0.60) and 1.45 m ( fh = 0.66) depths in the borehole (Fig. 1E). Accounting for SP response as 
a function of soil moisture microbial activity through an unsaturated streaming potential coupling coefficient 
provides a new quantitative geophysical perspective on how changes in pore water energy status are apt to influ-
ence the bioavailability and fate of SOM in soils.

Self‑potential and long‑range correlation.  The application of DFA to examine the correlation struc-
ture of time series data has become a widely used computational method in time series analysis17,36–38. The SP 
time series yielded DFA α scaling exponents that declined with depth from as high as 1.75 in the upper 1.45 m 
of the profile to 0.90 at 3.5 m depth (Fig. 3A). This trend reflects a progressive weakening of long-range correla-
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Figure 2.   (A) Soil depth profile of mean self-potential values from 1200 s time series recorded at a sampling 
frequency of 1.0 Hz; the dot diameter indicating the mean values is larger than + 2 σ of the time series. Self-
potential response as a function of (B) volumetric water content, (C) soil organic matter content, and (D) soil 
moisture microbial activity; solid lines represent the best fits obtained for the corresponding linear regression 
equations. Dashed lines are prediction intervals at p values that represent the proportion of variance accounted 
for by the regression (R2).
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tion in temporal fluctuations of SP at deeper soil horizon levels36,38,39. As a signal dependent on the movement of 
water and ions in porous medium, measurements of SP contain information that pertains directly to underlying 
current flow and mass transport processes. Specifically, the local diffusive flux of each ionic species is described 
by the Nernst-Planck relationship in which ion mobility is determined by thermodynamic chemical potential 
gradients and migration in an electric field12. This is insightful for DFA of the SP time series because it points 
to diffusion of electrochemical energy as an important process in the manifestation of long-range correlations. 
Within this framework, the conventional model of Fickian diffusion applies in the case of classical Brownian 
motion where α = 1.0. Conversely, α  = 1.0 denotes a family of anomalous diffusive behaviors that are described 
in terms of fractional Brownian noise as super-diffusion ( α > 1.0) or sub-diffusion ( α < 1.0), whereas α = 0.5 rep-
resents uncorrelated Gaussian white noise40,41. Extension of these concepts to the observed depth profile of 
DFA α values imply a transition from super-diffusion of electrochemical energy near the surface to weak sub-
diffusion in deeper sub-soil horizons.

The most important nonequilibrium driver of energy flow in soil systems is organic matter. While SOM 
exhibits a high degree of heterogeneity with respect to molecular structure and biogeochemical reactivity, specific 
energy density (J/mg SOM) from differential scanning and bomb calorimetry measurements provide a direct 
estimate of the energy state of SOM with respect to susceptibility of oxidation to carbon dioxide. SOM specific 
energy density can be modeled as decreasing exponential function of depth based on measurements across a 
wide variety of soil types42–47 (Fig. 3A). This permits comparison of the SP time series DFA values with corre-
sponding estimates of SOM energy densities (Fig. 3B). The trend evident in the data follows a distinctive pattern 
of a logistic transition between energy states with α values increasing as a function of SOM energy density48. 
The inflection point of the regression curve at -0.59 J/mg SOM is at an energy level where the predicted range of 
DFA α values evoke the onset of Brownian motion and normal diffusion in the SP fluctuations. Conversely, high 
SOM energy densities and α scaling exponents fall into the range of super-diffusive electrochemical behavior 
that is symptomatic of contributions from high rates of microbial respiration37,49. Moreover, a cross-over from 
super-diffusion ( α > 1.0) to sub-diffusion ( α < 1.0) is apparent across a narrow range of SOM energy densities 
(− 2.0 to − 4.0 J/mg SOM) that implies a transition from non-equilibrium microbial catalyzed to mass action 
controlled chemical reactivity (e.g., mineral-SOM interactions) as the primary determinant of electrochemical 
energy flow in deeper subsoil horizons48,49.

Emergent behavior in soil organic matter dynamics.  There is ample evidence supportive to extending 
the paradigm of complex system theory to SOM dynamics3,32,50. Recognition of a high degree of spatiotemporal 
variation of interactions between physical, chemical, and microbial processes under non-equilibrium conditions 
in soils is an especially compelling consideration. Another hallmark of complex systems is the manifestation of 
emergent behavior in the form of a perceptible degree of long-range dependence and sensitivity to initial condi-
tions within a rich network of interacting processes5,6,51,52. These attributes are mirrored not only by the observed 
correlations of self potential to soil moisture, SOM content and microbial activity (Fig. 2), but also the detection 
of long-range dependency and emergence of anomalous diffusion behavior in the SP time series data. Moreover, 
the progressive loss of long-range dependence with depth and approach to normal diffusion behavior is consist-
ent with a weakening and possible loss of some network interactions with declining SOM energy densities.
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Another insightful aspect of the logistic relationship between DFA  α values of the SP time series and SOM 
energy density is the changing width of the nonlinear regression prediction interval (Fig. 3B). Of particular inter-
est is the greater range of the prediction interval ( α ∈ [1.45, 1.90]) at energy densities ≤ -3.0 J/mg SOM, which 
is representative of shallow depths ≤ 1.20 m. Considering that α depicts the strength of long-range dependence 
and emergence of anomalous diffusivity, the wide prediction interval suggests that potentially small perturba-
tions in the underlying network of interacting dynamic variables (e.g., soil moisture, SOM content, microbial 
activity) could trigger almost an order of magnitude shift in emergent behavior. The potential for such unpredict-
able “chaotic” changes is perceived as another characteristic feature of temporal dynamics in complex systems, 
including heterogeneous soil environments5,6,53. Conversely, the much-narrowed prediction interval at SOM 
energy densities ≥ − 2.0 J/mg SOM signifies a weakening of long-range dependency and dissipation of anomalous 
diffusion behavior owing to a fragmentation of network interactions.

Conclusion.  The correlation between SP and SOM, soil moisture and soil microbial activity demonstrated 
in this study highlights a new opportunity to quantify soil organic matter and soil moisture-microbial activity. 
The complexity with direct measurements of these soil properties makes alternative approaches valuable for 
constraining and scaling up the spatial and temporal resolution of their estimates. While this study uses borehole 
SP measurements, surface measurement of SP has been demonstrated for groundwater and contaminated sites 
characterization. Hence, SP provides a non to minimally invasive geophysical tool which when combined with 
minimal direct measurement would improve the characterization and monitoring the spatial and temporal vari-
ations in soil organic matter and microbial activity. This is bound to expand our mechanistic understanding of 
the capricious nature of soil organic matter. Besides elucidating the transient nature of electrochemical energy 
flow in SOM relatable to soil microbial respiration, the time-series SP data acquisition presented in the studies 
challenges the conventional approach of electrical geophysical data acquisition broadly applied in subsurface 
characterization and monitoring including complex environmental systems9,10,12,38. Specifically, electrical signa-
tures are commonly measured multiple times and an average value calculated and attributed to a given location. 
In complex and emergent system, this ignores the pronounced temporality that may be inherent in such system. 
We therefore recommend adoption of a time-series measurement approach for soil electrical signals (mostly 
natural potentials) as this is apt to capture temporal perturbations indicative of complex time-varying emergent 
processes within the subsurface.

Methods
Study site description.  The study site is a small forest clearing (NAD 83 UTM coordinates 18 T 297593E 
5115217 N; elevation 133 masl) in the upper reaches of the Meilleurs Bay catchment on the south bank of the 
Ottawa River, approximately 10 km northwest of Deep River, Ontario, Canada13. The mean annual temperature 
in the region is 4.9° C, ranging from 18.4 °C in July to − 10.5 °C in January54. The average annual precipitation is 
878 mm with the local climate falling into the Köppen classification scheme as Dfb, humid continental55–57. The 
forest at the study site is composed of balsam fir (Abies balsamea), red maple (Acer rubrum), yellow birch (Betula 
alleghaniensis), white spruce (Picea glauca), eastern white pine (Pinus strobas), and poplar (Populus tremuloides). 
Prominent species along the edge of the clearing are wild blueberry (Vaccinium angustifolium), black raspberry 
(Rubus occidentalis), and wild strawberry (Frangaria vesca). Ground vegetation in the clearing includes fescues 
and tufted grasses (Festuca and Lolium sp.), goldenrod (Solidago sp.), sweet fern (Comptonia peregrina) and 
hawkweed (Hieracium sp.).

Around 10.5 ka BP, the retreat of the Laurentide Icesheet from the Precambrian Canadian Shield opened 
the Ottawa River valley to drainage from pro-glacial meltwater lakes in the Huron and Michigan sub-basins of 
the Great Lakes13,58. This discharge contributed to extensive deposition of medium- to fine-grained glaciofluvial 
channel sands along the slopes of the river valley. As water levels fell in response to incremental icesheet recession 
and changes in drainage routes of the pro-glacial lakes, subaerial exposure of the channel sand deposits contrib-
uted to the development of humo-ferrric podzol soils (Canadian soil classification scheme), which dominate 
over much of the upper Ottawa Valley region, including the Meilleurs Bay locality4,17. At the Meilleurs Bay, a 
series of terraces between 129 and 141 masl document brief fluctuations in river height during the recession of 
the Laurentide Ice Sheet36.

Instrumentation of the Meilleurs Bay catchment with an extensive network of piezometers has established 
that the unsaturated vadose zone at the study site extends to a depth of 5.0 m or more59. Seasonal and interan-
nual fluctuations in water table depths throughout the aquifer are small, typically less than ± 0.5 m. Regional 
hydrological studies indicate that approximately 37 percent of the annual precipitation contributes to ground-
water recharge or runoff. The remainder is returned directly to the atmosphere by evapotranspiration. Almost all 
the groundwater recharge occurs during and just after the spring snowmelt, whereas strong evapotranspiration 
during the summer months gives rise to soil moisture deficits.

Soil depth profile and self‑potential measurements.  An open-barrel stainless steel sand auger with a 
diameter of 5 cm was used to advance a borehole to a final depth of 3.5 m through the unsaturated vadose zone 
at the study site. Sediment samples were collected for determination of grain size distribution, bulk density, and 
volumetric water content at 0.15 to 0.50 m intervals. Sample temperatures were recorded immediately after col-
lection using a Solinst Levelogger to facilitate estimation of prevailing water density ( ρw ) and dynamic viscosity 
( µ ) values. Saturated hydraulic conductivities were calculated from the grain size distributions using a modified 
Hazen equation60
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with the coefficient of uniformity ( Cu ) equal to the ratio between the 60th ( d60 ) and 10th ( d10 ) percentile particle 
size diameters (in meters) and g corresponding to the acceleration of gravity. Porosity ( φ ) was calculated as a 
function of Cu

24,47.

Bulk densities ( ρb ) were used to estimate soil organic matter concentrations (SOM % by weight) following 
the relationship derived for sandy forest soils of glacial fluvial origin10,26

Measurements of self potential were made at each depth interval using a Fluke 289 logging multimeter with an 
internal impedance of 20 MΩ. A pair of Cu–CuSO4 non-polarizing electrodes were connected to the terminals of 
the multimeter by two 30 m lengths of 18 gauge solid-core insulated copper wire. The lead electrode was fastened 
to a length of 2.5 cm outer diameter PVC conduit (to permit installation and retrieval from the borehole) and 
connected to the positive terminal of the multimeter. The reference electrode was connected to the negative ter-
minal and inserted 0.15 m into the ground approximately 40 m away from the borehole. Readings were recorded 
as a time series at a frequency of 1 Hz over an interval of 1200 s (20 min). Potential differences recorded by the 
multimeter represent an average of five readings taken over the course of one second.

Assessment of microbial activity.  Relative rates of microbial heterotrophic respiration were calculated 
as a function of volumetric water contents using the microscale soil moisture microbial activity function ( fh ) 
developed by Yan et al.24

The value of fh compares heterotrophic respiration rates ( rθ ) at different levels of soil moisture ( θ ) to the maxi-
mum rate ( rmax ) sustained by an optimal water content ( θopt ), which is taken to be approximately 65 percent of 
soil porosity ( φ ) (i.e., θopt = 0.65φ ). Suggested values of Kθ = 0.1 for the soil organic matter desorption constant 
and n = 2 for the saturation exponent were used along with the soil organic matter-microorganism collocation 
factor a , estimated as a function of fine grain mineral content (< 45 µm diameter fraction; a = 2.8c45 − 0.046 ), 
to complete parameterization of the fh function24.

At soil moisture values below 0.65φ , the loss of hydraulic continuity between pores restricts soil organic matter 
bioavailability and limits heterotrophic microbial activity as predicted by the Monod microbial growth model24,25.

Rearrangement yields

Here γ is the yield coefficient for microbial growth on soil organic matter, µmax is the maximum microbial growth 
rate constant, m is the microbial biomass concentration, [SOM] is the soil organic matter concentration (%), 
estimated from bulk density values, and KS is the half-saturation constant (i.e., the SOM concentration where 
the rate of heterotrophic respiration is 0.5 rmax).

Evaluation of self‑potential response.  In a saturated porous medium, the difference in self-potential 
ϕ with respect to specific energy of pore water, expressed in terms of pressure ( P , energy per unit volume) is 
proportional to a streaming potential coupling coefficient Cs

The Helmholtz-Smoluchowski equation gives Cs as a function of the electrical permittivity of water ( ǫ ), zeta 
potential ( ζ ), dynamic viscosity ( µ ), and effective conductivity ( σ)

The influence of pore space connectivity on effective conductivity is described by Archie’s Law

(1)K = 1.52× 10−3

(

ρwg

µ

)

Cu(d60)
2

(2)φ = 0.2
(

1+ 0.93Cu
)

(3)SOM = −7.30ln

(

ρb − 0.70

0.95

)

(4)fh =
rθ

rmax
=

(

Kθ + θopt

Kθ + θ

)(

θ

θopt

)1+an

(5)rθ = γµmaxm
[SOM]

KS + [SOM]
= rmax

[SOM]

KS + [SOM]

(6)fh =
rθ

rmax
=

[SOM]

KS + [SOM]

(7)−
∂ϕ

∂P
= Cs

(8)Cs =
ǫζ

µσ

(9)σ = σwφ
m
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where σw is the electrical conductivity of the water, φ is porosity, and m is the porosity (or cementation) 
exponent12,28. This gives

As water saturation ( Sw = θ/φ ) decreases during drainage, the change in pore water specific energy is charac-
terized by a soil-specific length scale ( Lc ) that defines the maximum extent of hydraulic continuity in the porous 
network as a function of parameters α and n of the van Genuchten model of soil water retention

Within the limits of drainage between saturated and residual water contents of a soil

Rearrangement and substitution into (7) yields

which gives a linear relationship for self-potential differences as a function of volumetric water contents at refer-
ence ( θref  ) and measurement ( θ ) electrodes.

Estimates for Cs (mV/Pa), ζ (mV), and θref  ( −) were calculated from the slope and intercept of the regression 
of field data (SP as a function of θ ) using values reported for m = 1.3 ( −)12,  α = 14.5 (m-1) and n = 2.68 ( −)61 
together with porosity from grain size analysis ( φ = 0.37).

Energy density of soil organic matter.  The energy density ( Ed ) of soil organic matter tends to decrease 
in an exponential manner with respect to depth z43,

with a decay constant k = 1.35 + 0.19 m-1, and surface Ed(z=0) =  − 17.70 + 0.60 J/mg SOM ascertained for 125 
measurements of SOM Ed at different depths across a wide variety of soil types42–47. This empirical relationship 
was applied to derive estimates for SOM Ed values at borehole depths corresponding to each of the measured 
SP time series.

Data analyses.  Nonlinear estimation using Levenberg–Marquardt optimization in STATISTICA 13.2 was 
employed to derive parameter estimates and the portion of variance accounted ( R2 ) for in dependent variables 
of regression equations. Analyses of the self-potential time series were performed in Python (3.8) by detrended 
fluctuation analysis (DFA) using the dynamical systems package Nolds (0.5.2) following the procedure described 
by Peng et al.27; the minimum time interval of windows was limited to 60 s in length, and computations were 
performed using both non-overlaping windows and successsive windows overlapped by half of their length. To 
further refine our estimate of DFA precision, each time series was downsampled into two time series equivalent 
to a sampling frequency of 0.5 Hz and the scaling exponents of the two new time series were calculated inde-
pendently as described above. For all of the time series, the standard error of mean DFA α values was < ± 0.06. 
Random shuffling of each time series yielded α = 0.5, as expected for an uncorrelated signal.

Data availability
Data available on request from the corresponding author.
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