
In 1953, George Palade described [1], in the contin-
uous endothelium of the heart, discrete features of
the plasma membrane defined as spherical mem-
brane invaginations of regular size and shape that
occurred either single or in clusters on both front of
the endothelial cell; he named them plasmalemmal
vesicles. Two years later, Enichi Yamada described
similar structures on the basolateral side of the gall
bladder epithelium, naming them caveolae intracellu-
lares [2] due to their resemblance to ‘little caves’.
Since their discovery, the presence of these mem-
brane invaginations has been documented by elec-
tron microscopists in most cell types, with few excep-
tions. For approximately four decades, the vast data
generated by electron microscopy banked on a pure-
ly morphological definition of caveolae. In absence of
molecular markers, terms such as plasmalemmal
vesicles, caveolae, surface vesicles, pinocytic vesi-
cles were used to describe morphological entities
that may or may not correspond to what they are
believed to mean today. The discovery of caveolin-1
as a molecular marker of these membrane invagina-
tions [3] has enabled biochemical, cell biological and
genetic approaches with results that have consider-

ably contributed to our current understanding of
these structures.

Based on their lipid composition and biophysical
features caveolae are considered a subtype of lipid
rafts [4] that form invaginations and are capable of
endocytosis [5] and transcytosis [6]. What seems to
separate caveolae from other lipid rafts-containing
invaginations and endocytotic pathways, is the pres-
ence of caveolin 1 as a marker [7–11]. Caveolae
have been implicated in many other cellular functions
such as endocytosis, transcytosis, cholesterol
metabolism, mechanosensing and mechanotranduc-
tion, growth factor signaling and other signal trans-
duction events. Several of these caveolar functions
have been confirmed by genetic deletion of the
CAV1 locus, which results in loss of caveolin-1 and a
dramatic reduction of membrane invaginations
resembling caveolae [12,13]. This, however, has also
raised doubts as to caveolae participation in many
cellular functions such as transcytosis and signal
transduction. The Cav1 null mice are viable and fer-
tile with quite a mild phenotype, in contrast with the
multitude of important cellular functions in which
caveolae were implicated. This situation clearly calls
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for the reevaluation of the data obtained so far and
points to the fact that operational definition of caveo-
lae as caveolin 1 containing invaginations might
need revision.

We have considered it timely to have a debate on
how caveolae are defined by different researchers
active in the field.This series of reviews in the JCMM,
a journal that has shown a long standing interest in
the subject, is intended to obviate conceptual 
differences in caveolar definition strengthening our
understanding and possibly lead to the building of a
consensus definition of caveolae.

Radu V. Stan
Guest Editor 
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