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Chapter 79

Aminopeptidase N

DATABANKS

MEROPS name: aminopeptidase N

MEROPS classification: clan MA, subclan MA(E), family

M1, peptidase M01.001

IUBMB: EC 3.4.11.2 (BRENDA)

Species distribution: subkingdom Metazoa

Reference sequence from: Homo sapiens (UniProt:

P15144)

Name and History

The early history of aminopeptidase N (AP-N) relates to

its role as Cys-Gly dipeptidase or cysteinyl-glycinase
when Binkley and colleagues proposed that this peptidase

activity present in apparently purified RNA preparations

contributed to polypeptide biosynthesis by acting in

reverse in a sequential fashion [1,2]. In 1957, Giorgio

Semenza used newly developed chromatographic proce-

dures to purify, and demonstrate unequivocally, that

cysteinyl-glycinase was a protein distinct from Binkley’s

RNA preparation [3] and subsequently developed a con-

venient assay procedure [4]. The enzyme has also been

referred to in its earlier days as aminopeptidase M (for

microsomal or membrane aminopeptidase), reflecting its

tight association with a microsomal membrane fraction

in pig kidney from which it was first purified by

Pfleiderer & Celliers [5]. The use of the name aminopep-

tidase M is still occasionally seen today in the literature

and the enzyme has also been confused with the cytosolic

‘leucine aminopeptidase’ because of their overlapping

substrate specificities and similar tissue distributions. In

1980 it was suggested that the enzyme should be renamed

aminopeptidase N, reflecting its preference for action on

neutral amino acids [6] and that is the commonly recog-

nized terminology today. The name membrane alanyl
aminopeptidase (m-AAP) was introduced at some point

to clarify the nature and localization of the enzyme and to

distinguish it from its cytosolic counterpart. The enzyme

is widespread but is particularly abundant in the brush

border membranes of kidney, small intestine and placenta

and is also rich in liver. Much of the original characteri-

zation of AP-N was performed on the renal or intestinal

enzymes. However, the presence of the enzyme in brain

has attracted substantial interest since the discovery that it

can participate in the hydrolysis and inactivation of the

enkephalins by hydrolysis of the Tyr1-Gly2 bond [7,8].

AP-N also turns out to be identical with the human clus-
ter differentiation antigen CD13 expressed on the surface

of myeloid progenitors, monocytes, granulocytes and

myeloid leukemia cells [9]. AP-N is also expressed on

stem cells [10]. Soluble AP-N is found in plasma and

urine [11,12], presumably derived by shedding of the

membrane-bound enzyme but the mechanism of release

has not been characterized.

Activity and Specificity

AP-N has a broad substrate specificity removing N-termi-

nal amino acids (XaakXbb-) from almost all unsubsti-

tuted oligopeptides and from an amide or arylamide.

It has usually been assayed with derivatives of alanine,

e.g. Ala-NHMec or the NHPhNO2 or NNap derivatives,

because Ala is the most favored residue. Leu-NHMec and

other bulky hydrophobic amino acid derivatives are also

good substrates but leucinamide is poorly hydrolyzed. For

aminoacyl derivatives, the favored order is reported to be

Ala, Phe, Tyr, Leu, Arg, Thr, Trp, Lys, Ser, Asp, His and

Val. Pro- and α- or γ-Glu-derivatives are very slowly

attacked. When a prolyl residue is preceded by a bulky

hydrophobic residue, e.g. Leu, Tyr or Trp, unusual sec-

ondary reactions can occasionally arise such that the Xaa-

Pro combination is released as an intact dipeptide (see,

for example, McDonald & Barrett [13]). Dipeptides are

readily hydrolyzed, e.g. Cys-Gly, as in the original studies

on this activity [3,4]. Subsite interactions are important

and hence chain length greatly affects the rates, although

precise rules governing specificity have not been defined.

The specific recognition by AP-N of the N-terminal

amino acid of its substrate appears to involve a critical

glutamate residue in the active site (Glu350) [14].

The pH optimum is around 7.0 although the optimum

can rise to 9.0 as the substrate concentration is increased.

However, the Km is lowest in the pH range 7.0�7.5.

Metal chelating agents are effective inhibitors, consistent

with the metallopeptidase nature of the enzyme, and
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sulfhydryl reagents are without effect. A comparison of

the effects of a range of metallopeptidase inhibitors

on membrane aminopeptidases has been carried out by

Tieku & Hooper [15]. Amastatin (originally described as

an inhibitor of glutamyl aminopeptidase (aminopeptidase A)

(Chapter 82) is also a very effective inhibitor of AP-N,

with an increase in potency when preincubated with the

enzyme, the Ki value decreasing from 20 μM to 20 nM,

i.e. it is a slow, tight-binding inhibitor which involves

a conformational change in the enzyme�inhibitor

complex and the kinetics of this reaction have been exam-

ined in detail in [16]. Probestin is also a potent inhibitor

with a reported I50 of 50 nM [15]. Bestatin is also a

well-recognized inhibitor of AP-N although considerably

less potent than amastatin or probestin [15,17]. Actinonin

(I505 2 μM) can be considered a relatively specific

inhibitor of AP-N compared with other membrane amino-

peptidases [15]. The enzyme is only very weakly inhib-

ited by puromycin (see Distinguishing Features, below).

Based on such inhibitory data, a selective enzyme assay

for AP-N has been devised [18]. A range of potent and

selective inhibitors of AP-N have been described

based on derivatives of 3-amino-2-tetralone [19], some of

which exhibit Ki values in the nanomolar range. The

proposed mode of binding of these compounds is as

bidentate ligands with the amino and carbonyl functions

coordinating to the active-site zinc. Highly potent and

selective AP-N inhibitors have been designed which

utilize phosphinic compounds that mimic the transition

state of substrates of the enzyme [20]. Prodrugs of dual

inhibitors of the two enkephalin-degrading enzymes,

AP-N and neprilysin (Chapter 127), also based on a phos-

phinic acid design, are highly effective as anti-nociceptive

compounds [21]. Numerous other warheads for selective

inhibition of AP-N have been developed, for example,

lysine-ureido derivatives [22], or amino-benzosuberone [23].

A dual inhibitor of AP-N and dipeptidyl peptidase IV

(Chapter 745) has potential as a therapeutic in central ner-

vous system inflammation being effective in animal models

of autoimmune encephalomyelitis [24]. Other families of

AP-N inhibitors have been thoroughly reviewed in [25,26].

Structural Chemistry

AP-N is a type II integral membrane protein located on

the plasma membrane as an ectoenzyme. The pI is

approximately 5. The native enzyme exists as a homodi-

mer of subunit Mr 140 000�150 000 in most species [27],

although it is reported to be monomeric in the rabbit [6].

It is heavily glycosylated with carbohydrate accounting

for at least 20% of the mass of the protein. The poly-

peptide chain is susceptible to proteolysis, generating

two fragments of Mr approximately 90 000 and 45 000

that have been referred to in the earlier literature as

β- and γ-subunits respectively (the intact chain being

the α-subunit). This artifact of preparation led to the

suggestion that the native enzyme may be a trimer [28].

The enzyme was originally cloned from a human

intestinal cDNA library [29] and subsequently from rat

[30,31] and rabbit kidney [32]. The rat enzyme comprises

a 966 amino acid polypeptide with a small cytoplasmic

domain, a 24 amino acid hydrophobic segment close to

the N-terminus which serves as the membrane anchor

region and the bulk of the polypeptide chain including

the active site present as an ectodomain. The sequence

includes nine potential N-linked glycosylation sites and a

typical zinc-binding motif (His-Glu-Xaa-Xaa-His) in

which the two closely spaced histidines represent two of

the zinc ligands. The third zinc ligand is a glutamate and

the protein contains one Zn21 per subunit. Chemical

modification experiments have been used to identify argi-

nyl, histidyl, tyrosyl and aspartyl/glutamyl residues at

the active site [33]. The structure of mammalian AP-N

has not yet been solved although it is known for the

Escherichia coli enzyme [34,35], which shows 44% simi-

larity with the human enzyme and this structure has been

used for the rational design of human AP-N inhibitors.

The Lactococcus lactis pepN gene encodes an aminopep-

tidase homologous to AP-N with almost 30% identity

between the bacterial and mammalian proteins and with

particularly high conservation around the active-site

region [36].

Preparation

In the kidney, AP-N represents as much as 8% of the

brush border membrane protein, thereby providing a con-

venient and abundant source to initiate purification. It

was first isolated from pig kidney as ‘cysteinyl-glycinase’

[3] and subsequently as an aminopeptidase [5,37]. The

protein can be purified in either hydrophilic or amphi-

pathic form by proteinase (trypsin, papain) treatment or

detergent solubilization respectively. Conventional chro-

matographic procedures can then be used to isolate the

enzyme (e.g. Feracci & Maroux [6]). The pig small intes-

tinal AP-N has also been purified by immunoadsorbent

chromatography [38]. A 130 kDa glycoprotein purified

from pig kidney brush border membranes by affinity

chromatography on immobilized 4-acetamido-40-isothio-
cyanostilbene-2,20-disulfonate (SITS) followed by conca-

navalin A-Sepharose, turned out serendipitously to be

AP-N [39], suggesting that the protein possesses an

anion-binding site. This procedure provides a convenient

purification method for the enzyme, which represents the

major concanavalin A-binding protein in brush border

membranes. AP-N in the larval midgut cell membranes

of the silkworm, Bombyx mori, is partially sensitive to

release by phosphatidylinositol-specific phospholipase C,
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suggesting that in this species the enzyme may be

anchored through a glycolipid anchor rather than a trans-

membrane domain [40].

Biological Aspects

AP-N is widely distributed among species and tissues

although it is of greatest abundance in brush border mem-

branes of the kidney, mucosal cells of the small intestine

and in the liver. It is also present in the lung where it is

identical to the p146 type II alveolar epithelial cell anti-

gen [41] and is located on endothelial cells in blood ves-

sels. On polarized epithelial cells, AP-N is localized to

the apical domain and is targeted there through an apical

sorting signal thought to be located in the catalytic head

group region of the protein [42]. In the kidney, AP-N

contributes to the extracellular catabolism of glutathione

(43). The cysteinyl-glycine generated during the catabo-

lism of glutathione by γ-glutamyltranspeptidase is hydro-

lyzed by the two ectoenzymes AP-N and membrane

dipeptidase (Chapter 377) contributing approximately

equally [44]. In the intestine, the enzyme functions in the

final stages of protein and peptide digestion.

A detailed localization of the enzyme has been carried

out in the brain because of its potential involvement in

terminating the actions of certain neuropeptides, espe-

cially the enkephalins [45�47] and angiotensin III, which

is a key brain regulator of vasopressin release [48]. In

addition to being present on endothelial cells and synaptic

membranes, AP-N is found on astrocytes and pericytes

[47,49]. It is abundant in the choroid plexus and can

therefore also serve to prevent access to the brain of

potentially damaging circulating peptides. On vascular

cells, AP-N may serve to metabolize certain vasoactive

peptides [50]. An important location of AP-N is in

hematopoietic cells, where it is referred to as CD13 [9].

Here, its expression is restricted primarily to myeloid

cells, but it is also found on antigen-presenting cells, mel-

anoma cells and lymphocytes. On granulocytes it may

cooperate with neprilysin (Chapter 127) to downregulate

responses to chemotactic factors such as formyl-Met-Leu-

Phe [51]. More generally in the immune system it may

serve to inactivate certain cytokines [27,52,53]. The

immunopotentiating and reported antitumor activities of

bestatin may relate to inhibition of AP-N [54]. Reduction

in expression or activity of AP-N results in inhibition of

growth of T cells, probably through a mechanism involv-

ing glycogen synthase kinase-3 [55]. AP-N appears to

regulate the cycle-dependent bioavailability of interleu-

kin-8 in the endometrium and its activity is, in turn, regu-

lated by estrogen [56]. In general, AP-N expression is

dysregulated in various cancers, mainly solid tumors,

and in inflammatory diseases. Its roles in the immune sys-

tem and correlation with neoplastic transformation are

summarized in Riemann et al. [27]. Consistent with its

role in cancers, AP-N itself has been implicated in angio-

genesis [57] and cell motility, and is upregulated in gas-

tric cancer [58] and is a poor prognostic factor in colon

cancer [59,60]. The expression of AP-N has also been

explored in human prostate and hepatic cancer for which

the enzyme may be a valuable histological marker

[61�63]. AP-N has also been proposed as a therapeutic

target in human cancer stem cells [64]. The potential of

AP-N as a target in cancer therapy has been thoroughly

reviewed in Wickström et al. [65].

The human AP-N gene, which occupies 35 kb, is

localized on chromosome 15 [66,67]. Separate promoters

control transcription of the human gene in myeloid and

intestinal epithelial cells [68]. The pig AP-N gene has

been cloned and localized to porcine chromosome 7

[69,70].

A novel feature of AP-N is its ability to serve as a

receptor for certain viruses, especially coronavirus 229E,

an RNA virus that causes upper respiratory tract infec-

tions in humans [71]. Mutagenesis studies suggest that

the virus-binding site lies close to the active-site region,

although enzyme activity is not essential for virus bind-

ing. Human AP-N also appears to mediate human cyto-

megalovirus infection although, again, enzyme activity is

not essential for infection [72]. Another coronavirus,

transmissible gastroenteritis virus, which causes a fatal

diarrhea in newborn pigs, uses intestinal AP-N as its

receptor [73] and peptides identified by phage display

which interact with porcine AP-N can inhibit the viral

infection [74]. AP-N appears to be the major receptor for

the CryIAc toxin of Bacillus thuringiensis in Lymantria

dispar (gypsy moth) [75,76]. At the cell surface AP-N

also associates with the 14-3-3σ protein (stratifin) hence

regulating matrix metalloproteinase-1 expression in

epithelial-stromal cellular communication [77].

AP-N is synthesized in a fully active form. Substance P

and bradykinin, which are not substrates for AP-N, have

been reported as natural inhibitors of the enzyme with Ki

values in the low micromolar range [78]. However, it is

unlikely that they play any physiological role in regulating

enzyme activity and the enzyme is therefore probably

essentially unregulated at the surface of cells. One study

has, however, shown that oxidoreductase-mediated modu-

lation of the thiol status of the cell-surface markedly

affects the activity of AP-N [79] and the enzyme is up-

regulated in response to hypoxia [57]. Expression of AP-N

may vary during cell growth and differentiation and

certain cytokines, e.g. interleukin-4 and interferon γ, can
upregulate levels of AP-N mRNA and protein [27]. In

endothelial morphogenesis AP-N is a transcriptional target

of Ras signaling [80].

The development of an AP-N knockout mouse has

allowed study of the physiological properties of the
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enzyme. The AP-N null mice develop normally with no

apparent physiological or histological abnormalities but

they demonstrated an impaired angiogenic response under

pathological conditions which is consistent with an angio-

genic-promoting role of AP-N in human cancers [81].

Mutations, polymorphisms and alternative splicing of the

AP-N gene seen in leukaemias can cause marked changes

in the trafficking and location of the AP-N protein affect-

ing its function [82,83].

Distinguishing Features

AP-N can be distinguished from the cytosolic leucine

aminopeptidase by its membrane association and its poor

hydrolysis of leucinamide (see above). It can be distin-

guished from another aminopeptidase in brain (cytosol

alanyl aminopeptidase; aminopeptidase PS; Chapter 86)

capable of hydrolyzing the enkephalins by its relative

insensitivity to puromycin (Ki5 78 mM compared with

1 mM for the puromycin-sensitive activity). Actinonin is

a relatively selective inhibitor. The dipeptidase activity of

AP-N can be distinguished from that of the mammalian

membrane dipeptidase (Chapter 377) by the sensitivity of

the latter to cilastatin [84].

Related Peptidases

Several mammalian aminopeptidases with homology to

AP-N have been cloned, including the cytosol alanyl ami-

nopeptidase (Chapter 86), which has been implicated in

cell growth and viability [85], and human placental leu-

cine aminopeptidase/oxytocinase (Chapter 84), which is

also a type II integral membrane protein and may play a

role in the degradation of oxytocin and vasopressin [86].

The major protein present in GLUT4 vesicles in fat and

muscle tissues is a glycoprotein of Mr 160 000 that has

structural homology to AP-N and exhibits aminopeptidase

activity in vitro [87]. The cytosolic leukotriene A4 hydro-

lase (Chapter 96) also has aminopeptidase activity and

belongs to the AP-N family [88].

Further Reading

For reviews, see Bauvois & Dauzonne [25], Sjöström

et al. [89] and Mina-Osorio [90].
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