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Differentiating central nervous 
system infection from disease 
infiltration in hematological 
malignancy
Emma A. Lim1,7*, James K. Ruffle2,7, Roshina Gnanadurai3, Heather Lee4, 
Michelle Escobedo‑Cousin5, Emma Wall3, Kate Cwynarski5, Robert S. Heyderman6, 
Robert F. Miller3 & Harpreet Hyare2

Hematological malignancies place individuals at risk of CNS involvement from their hematological 
disease and opportunistic intracranial infection secondary to disease-/treatment-associated 
immunosuppression. Differentiating CNS infection from hematological disease infiltration in these 
patients is valuable but often challenging. We sought to determine if statistical models might aid 
discrimination between these processes. Neuroradiology, clinical and laboratory data for patients 
with hematological malignancy at our institution between 2007 and 2017 were retrieved. MRI 
were deep-phenotyped across anatomical distribution, presence of pathological enhancement, 
diffusion restriction and hemorrhage and statistically modelled with Bayesian-directed probability 
networks and multivariate logistic regression. 109 patients were studied. Irrespective of a diagnosis 
of CNS infection or hematological disease, the commonest anatomical distributions of abnormality 
were multifocal-parenchymal (34.9%), focal-parenchymal (29.4%) and leptomeningeal (11.9%). 
Pathological enhancement was the most frequently observed abnormality (46.8%), followed by 
hemorrhage (22.9%) and restricted diffusion (19.3%). Logistic regression could differentiate CNS 
infection from hematological disease infiltration with an AUC of 0.85 where, with OR > 1 favoring CNS 
infection and < 1 favoring CNS hematological disease, significantly predictive imaging features were 
hemorrhage (OR 24.61, p = 0.02), pathological enhancement (OR 0.17, p = 0.04) and an extra-axial 
location (OR 0.06, p = 0.05). In conclusion, CNS infection and hematological disease are heterogeneous 
entities with overlapping radiological appearances but a multivariate interaction of MR imaging 
features may assist in distinguishing them.

Hematological malignancies are a heterogeneous group of cancers that affect the blood, bone marrow and lymph 
nodes, and are usually classified into various types of lymphomas, leukemias, bone marrow failure and plasma 
cell disorders. Cumulatively, these conditions represent an increasing global healthcare burden. Hematological 
malignancies confer an increased risk of central nervous system (CNS) infection from an array of risk factors, 
including from disease-related disruption of immune function or the blood–brain barrier, as well as therapeutic 
interventions such as high dose chemotherapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) 
or chimeric antigen receptor T-cell therapy1.

CNS infection is associated with significant morbidity and mortality2, necessitating an accurate and timely 
diagnosis to enable prompt treatment. In the setting of allo-HSCT, for example, a variable incidence of between 
5 and 15% has been reported. Despite this group being a significant ‘at-risk’ patient population for opportunistic 
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CNS infection3–5, to date only limited data exists, predominantly focused on specific infectious agents or particu-
lar treatment regimens5–10. A wide range of imaging appearances for infection have been described11.

A dysregulated host immune response in systemic hematological malignancy can yield imaging findings in 
CNS infection which deviate from the classical features described in the literature. In these cases, the anticipated 
enhancement, perilesional oedema, and diffusion characteristics may be altered, weak or absent entirely12,13. 
Furthermore, the propensity of hematological malignancies to infiltrate the CNS can further confound image 
interpretation, with certain subtypes of lymphoma having an increased risk of CNS disease, such as non-Hodgkin 
lymphoma14. Hematological CNS disease dissemination is associated with poor outcomes6,14,15, and an accurate 
diagnosis is vital. Similar to infection11, the manifestations of intracranial hematological disease are heterogene-
ous and inclusive of parenchymal mass lesions, white matter abnormalities, ependymal, meningeal and bony 
abnormalities14,16–19. Comparing singular imaging features is often insufficient in discriminating between CNS 
infection and hematological disease infiltration. As such, a multi-faceted approach to reaching the diagnosis is 
plausibly required.

Given that both CNS infection and hematological disease infiltration are associated with reduced survival 
and necessitate divergent management pathways, the role of the radiologist in differentiating these two disease 
states is crucial. At odds with this need for diagnostic accuracy is the minimal available evidence to guide imag-
ing interpretation in this context5. Therefore, there is a need for an approach that studies the diverse imaging 
appearances of these patients. We argue this is best characterized by sufficiently complex models that capture the 
major interactions between imaging features, which we establish in this article using a cohort of hematological 
oncology patients from a major tertiary hematology center.

Methods
Study population.  We retrospectively identified adult and adolescent patients with hematological disease 
at our tertiary hematology center who underwent an MRI head study between October 2007 and September 
2017, using an automated search of the medical electronic radiology information system for MRI head imag-
ing requests made by the hematology department. Departmental approval was obtained for the retrospective 
collection of anonymous data, therefore written informed consent was not required. The search terms used for 
clinical data request were as follows: lymphoma, diffuse large B cell lymphoma (DLBCL), Waldenstrom’s Mac-
roglobulinemia (WM), lymphoplasmacytic, Bing Neel, leukemia, acute lymphoblastic leukemia (ALL), acute 
myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute pro-
myelocytic leukemia (APML), multiple myeloma, polyneuropathy organomegaly endocrinopathy myeloma and 
skin changes (POEMS) syndrome, and CNS infection (infection, infectious, infective, abscess, empyema, men-
ingitis, encephalitis, meningoencephalitis, viral, bacterial, cytomegalovirus (CMV), Ebstein–Barr virus (EBV), 
herpes simplex virus (HSV), progressive multifocal leukoencephalopathy (PML), JC virus, human herpesvirus 
(HHV), HHV-6, varicella zoster virus (VZV), toxoplasmosis, cryptococcus, cryptococcal, tuberculosis (TB), 
cysticercosis, fungal, aspergillus, candida and mucormycosis). Search terms included all recognized synonyms 
and common misspellings. These data were collated and verified by a senior infectious disease clinician with 
over 30 years’ experience (RFM) using an electronic keyword search, and manually reviewed by a radiology 
resident. Exclusion criteria included patients without a diagnosis of hematological malignancy, patients with a 
negative keyword search, and any second or subsequent MRI Head study performed in each patient. A study 
consort flow diagram is reviewable as Supplementary Fig. 1.

Patient data was curated as part of their routine clinical care. The rationale for this was twofold. Firstly, it 
would facilitate research into this patient group with no interruption to their care, additional risks, or incurred 
treatment costs. Secondly, such a study would enable evaluation of the range of investigations—radiological, 
serological, or otherwise—that this type of cohort typically undergo during routine clinical care, as evidenced 
in detail elsewhere, see Refs.20–24.

Each MRI head study was independently reviewed by three separate individuals: an attending neuroradi-
ologist and two radiology residents. The presence or absence of an imaging abnormality in one or more of six 
anatomical distributions was recorded electronically: (i) focal parenchymal, (ii) multifocal parenchymal, (iii) 
ependymal, (iv) leptomeningeal, (v) pachymeningeal and (vi) extra-axial. The presence of three additional radio-
logical features: (i) pathological intracranial contrast enhancement on T1-weighted images following gadolinium-
based intravenous contrast administration, (ii) diffusion restriction on diffusion weighted imaging and (iii) signal 
abnormalities on one or more sequences consistent with intracranial hemorrhage, was also recorded. Patient 
demographic data and the underlying hematological disease were obtained through retrospective interrogation 
of electronic patient records. Any discordance in recorded imaging data were reviewed with the senior attending 
neuroradiologist and a consensus reached.

Clinical and laboratory data for each patient were collected from electronic patient records, including (i) type 
of hematological malignancy, (ii) type of treatment (chemotherapy only vs. stem cell transplant), (iii) the presence 
of peripheral blood neutropenia or lymphopenia, (iv) cerebrospinal fluid analysis (hematology, biochemistry, 
culture, PCR, cytology) and (iv) each patient’s final clinical diagnosis, which represented the final decision of 
a multidisciplinary team meeting (MDT) based on a combination of the clinical, radiological, laboratory tests 
and pathological information. Patients were subsequently categorized as “CNS infection”, “CNS hematological 
disease” or “other”. Where CNS infection was diagnosed, the causative organism was recorded.

Statistical analysis.  Graphical analysis.  A Bayesian graphical analysis was used to model the high dimen-
sional interplay between imaging and other investigatory features in the formulation of a network25–30. In brief, 
this approach permits the allocation of patient imaging and clinical factors as individual ‘nodes’, and the com-
monality between them as ‘edges’. This approach yields a network that may reveal underlying structure to better 
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understand the complex imaging appearances across the two heterogenous conditions. We undertook a system-
atic review to the use of ‘graph theory’ AND ‘central nervous system infection’ OR ‘central nervous system he-
matological disease’ (with all possible synonyms) and found no prior research in this domain to have taken this 
approach. The main aim of this approach was to facilitate modelling of complex interaction patterns between 
arrays of patient features, including a means to harmonize data across the imaging, other investigatory and 
clinical domains. All imaging, serological, cerebrospinal fluid and other diagnostic features were used as nodes 
of the network, and the strength of connection, or edges, between them derived by their conditional probability, 
P(X|Y) (Supplementary Fig. 2). For example, the probability of the cerebrospinal fluid (CSF) showing an abnor-
mal finding, given the presence of an abnormal white cell count (WCC) on the CSF [P(CSF Abnormality|CSF 
WCC Abnormality)], must always equal one, since all abnormal CSF WCC would lead to an abnormal overall 
CSF result. Conversely, the probability of a CSF WCC abnormality, given the CSF has any abnormal finding 
[P(CSF WCC Abnormality|CSF Abnormality)] must lie in the range space of 0–1, since not all abnormal CSF 
findings are secondary to a deranged WCC. Bayes’ theorem is detailed elsewhere and we would recommend the 
following for further reading31. This process was computed for all possible pairwise features creating a directed 

graphical network, consisting of 21 nodes (the individual features) and 420 edges (binomial coefficient of 
(
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2

)

 , 

or ‘21 choose 2’, with both edge directions implicitly possible). Edges were weighted by the probabilistic occur-
rence of if one event was conditionally associated with another as described above. Directed edges with a prob-
ability of occurring of 0—i.e., those that were probabilistically implausible—were removed. After model fitting, 
the eigenvector centrality of features was ascertained, weighted by the directional conditional probability of the 
connecting edge. Eigenvector centrality provides an insight as to the ‘influence’ of a given imaging or clinical 
feature on the overall disease network32, and hence is a valuable approach to establish especially important fea-
tures that may predict one diagnosis over another whilst still being appropriately modelled in a multivariate 
domain that accounts for the heterogeneity of the disease. Analysis was undertaken with graph-tool (https://​
graph-​tool.​skewed.​de)33 in Python version 3.6. Graph layout visualization was computed by the scalable force 
directed placement (SFDP) spring block layout, weighted by the conditional probability of the edge and the total 
degree count of each feature (the number of connections to and from it).

Logistic regression.  Multivariate logistic regression models were used to ascertain imaging features key to the 
differential diagnosis in the study group, emulating the heuristic of a radiologist reviewing the imaging. Four 
separate sequential models were constructed: first, a general abnormality detection model to identify features 
indicative of either CNS hematological disease or CNS infection; second, separate models to identify CNS infec-
tion in those proven positive from the remainder of the cohort; third, a separate model to identify CNS hema-
tological disease from the remainder; and finally, a model to discriminate between both CNS hematological 
disease and CNS infection. All models used the binomial logit link, and variable selection was performed with 
stepwise feature selection with maximizing goodness of fit by the Akaike information criterion (AIC)34. All mod-
els were constructed using R (version 4.1.2), and for each the odds ratios for statistically significant (p < 0.05) 
features were extracted and the area under the receiver operator characteristic curve (ROC) computed.

Conference presentation.  Preliminary data of this work were presented in oral format at the 2021 Euro-
pean Congress of Radiology.

Results
Patient demographics.  1855 MRI head attendances were screened for eligibility, with 1746 excluded as 
the second or subsequent study for any individual (n = 488) or having returned a negative key term search for 
both an underlying hematological malignancy and suspected infection (n = 1258) (Fig. 1). The remaining 109 
patients formed our study sample [median age 52 years (range 13–81); 56 (51.4%) male; 94 (86.2%) inpatient] 
(Table 1). The recorded underlying hematological diagnoses were lymphoma (n = 50), leukemia (n = 51), mye-
loma (n = 4), myelodysplastic syndrome (n = 3) and monoclonal gammopathy of uncertain significance (n = 1). 
All patients had received standard chemotherapy to treat their underlying malignancy. 27 patients had received 
stem cell transplantation, from which 23 were allogeneic stem cell transplants, and 4 were autologous stem cell 
transplants. CSF data were available in 53 patients (48.6%); of which 36 (67.9%) demonstrated an abnormality 
[protein (n = 21), PCR positivity (n = 13), WCC (n = 11), blasts (n = 6), bacterial growth (n = 3), glucose. (n = 2) 
and India Ink stain positivity (n = 1)]. Neutropenic and lymphopenic status were available in 81 of 109 patients. 
Peripheral blood neutropenia 1 month surrounding the MRI scan was observed in 35 of 81 patients (43.2%) and 
peripheral blood lymphopenia in 34 of the 81 patients (41.9%).

The 28 patients (25.7%) diagnosed with intracranial infection [median age 55 years (range 15–81); 16 (57.1%) 
male] had an underlying diagnosis of leukemia (n = 12), lymphoma (n = 14), myeloma (n = 1) and myelodys-
plastic syndrome (n = 1). A range of CNS infections were diagnosed: cytomegalovirus (n = 6) and other viral 
encephalitides (HSV, HHV6, unspecified) (n = 4), pseudomonas aeruginosa (n = 3) and enterovirus meningitis 
(n = 1), unspecified pyogenic abscess (n = 1), fungal [(n = 4), aspergillosis (n = 3), cryptococcus (n = 1), saccharo-
myces (n = 1), parasitic (toxoplasmosis n = 4) and JC virus (n = 3)]. The 15 patients (13.8%) diagnosed with CNS 
involvement of their hematological malignancy (median age 56 years (range 19–72); (8 (53.3%) male) had an 
underlying diagnosis of lymphoma (n = 10, including 1 case of Waldenstrom macroglobulinemia) and leukemia 
(n = 5). 66 patients (60.6%) received an alternative diagnosis other than CNS infection or CNS involvement of 
their hematological malignancy. Based upon the final MDT outcomes, radiological deep phenotyped data were 
segregated into (i) CNS infection (n = 28), (ii) CNS hematological disease (n = 15) and (iii) other treatment-related 

https://graph-tool.skewed.de
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changes, previous infarction, cerebral microangiopathy, microhemorrhage, subdural hematoma or hygroma, 
pachymeningeal abnormalities secondary to lumbar puncture (LP), or a normal intracranial appearance (n = 10).

Abnormal diagnostic investigations in patients with hematological malignancy.  Frequency of 
abnormalities.  Within our sample, the commonest abnormalities were localized to multifocal parenchymal 
(n = 38; 34.9%), focal parenchymal (n = 32; 29.4%), leptomeningeal (n = 13; 11.9%), dural (n = 12; 11%), extra-
axial (n = 8; 7.3%) and ependymal (n = 7; 6.4%) (Fig.  1). Pathological enhancement was the most frequently 
observed abnormality (n = 51; 46.8%), followed by hemorrhage (n = 25; 22.9%) and restricted diffusion (n = 21; 
19.3%). The network coalescing imaging features, blood tests and LP findings for all patients demonstrating the 
complex interplay between these features across complimentary domains is further discussed in the supplemen-
tary material and visualized in Supplementary Fig. 2.

Diagnostic features of CNS hematological disease infiltration.  Frequency of abnormalities.  In the 
CNS hematological disease infiltration subgroup, the abnormalities were localized to focal parenchymal (n = 7; 
46.7%), multifocal parenchymal (n = 5; 33.3%), dural (n = 4; 26.7%), leptomeningeal (n = 4; 26.7%), extra-axial 
(n = 3; 20%) and ependymal (n = 1; 6.7%). Pathological enhancement was the most frequently observed abnor-
mality (n = 12; 80%), followed by restricted diffusion (n = 5; 33%) and hemorrhage (n = 3; 20%). Construction 
of the directed graphical network of features in the hematological disease CNS involvement subgroup yielded 
a 19-node network of 196 edges (Fig. 2A). There was a high degree of heterogeneity amongst this subgroup, yet 
there were several highly probable directed links between imaging and other investigatory features. For exam-
ple, ependymal or ventricular abnormalities were highly associated with several multi-modal features, ranging 
from abnormal diffusion, focal parenchymal abnormalities, hemorrhage, a PCR-positive or abnormal CSF WCC 
on LP, which in turn were well associated with an overall abnormal CSF sample, a diagnosis of lymphoma and 
abnormal intracranial enhancement.

Diagnostic features of CNS infection in patients with hematological malignancy.  Frequency of 
abnormalities.  In the infection subgroup, the abnormalities were localized to multifocal parenchymal (n = 16; 

Figure 1.   Case examples of anatomical imaging classification in MRI head studies with confirmed final 
diagnosis of either CNS infection of hematological disease involvement.

Table 1.   Cohort demographics.

Feature Value

Age (range) 52 (13–81)

Gender 56 male, 53 female

Diagnosis Lymphoma (n = 50), leukemia (n = 51), myeloma (n = 4), myelodysplastic syndrome (n = 3) and monocloncal gammopathy 
of uncertain significance (n = 1)

Complication CNS infection (n = 28), CNS hematological disease dissemination (n = 15)
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57.1%), focal parenchymal (n = 7; 25%), leptomeningeal (n = 4; 14.3%), ependymal (n = 4; 14.3%), dural (n = 2; 
7.1%) and extra-axial (n = 1; 3.6%). Pathological enhancement was the most frequently observed abnormality 
(n = 15; 53.6%), followed by restricted diffusion (n = 9; 32.1%) and hemorrhage (n = 9; 32.1%). Construction 
of the directed graphical network of features in the CNS infection subgroup yielded a 19-node network of 232 
edges, containing more possible edges than the CNS hematological disease counterpart (Fig. 2B). This process 
appeared to identify a segregation of features into two broad feature groups linked by the imaging features of 
intracranial hemorrhage, extra-axial abnormality, and focal parenchymal abnormality. The former coalesced the 
presence of dural abnormalities, extra-axial collections, leptomeningeal, focal parenchymal and pathological 
enhancement, whilst the latter included CSF and blood culture findings and multifocal parenchymal abnor-
malities. Diffusion abnormality appeared to link these two feature groups. The features with greatest eigenvector 
centrality were, again, abnormal enhancement, an abnormal CSF result, a known history of lymphoma, followed 
by a range of discrete imaging, serological, or CSF tests.

Comparison of diagnostic investigations in CNS infection and hematological disease involve‑
ment subgroups.  Having derived the eigenvector centrality measures from the imaging, serological and 
CSF features, cross comparison between the CNS hematological disease and CNS infection subgroups was 
performed (Fig.  3). This process identified key features more ‘influential’ in the pathology network for each 
group. Features that favored hematological disease involvement were the presence of blasts in CSF, in addition to 
focal parenchymal abnormalities, CSF protein abnormality, dural, leptomeningeal or pathological enhancement 
abnormalities and extra-axial abnormalities. In contrast, features that favored CNS infection were the presence 
of neutropenia, in addition to a positive blood culture, multifocal parenchymal abnormalities, a positive CSF 
PCR, intracranial hemorrhage, ependymal or ventricular abnormality, restricted diffusion and, albeit weakly, an 
underlying diagnosis of either myeloma or leukemia.

Predicting diagnosis by imaging features.  Multivariate logistic regression models were fitted to deter-
mine if specific arrays of imaging features held some predictive value over ascertaining either diagnosis. These 
were constructed in a formulaic manner with an intent to emulate the cognitive heuristics used by a radiolo-
gist, wherein firstly an abnormality is either identified or not in this cohort, which could be either due to CNS 
infection or CNS hematological disease, following which an attempt is made to discriminate between the two 
differentials (Fig. 4).

Abnormality detection.  The abnormality detection logistic regression model identified three imaging features 
significantly related to the identification of general abnormality which might be either secondary to infection 
or CNS disease. These were abnormal intracranial enhancement [Odds Ratio (OR) 4.76, 95% CI 1.78–12.76, 
p = 0.002], restricted diffusion (OR 4.10, 95% CI 1.13–14.88, p = 0.03), and multifocal parenchymal abnormality 
(OR 2.77, 95% CI 1.03–7.47, p = 0.04). This model achieved an area under the curve (AUC) of 0.77.

Figure 2.   Visual network analysis of CNS hematological disease involvement and infection. (A) Graphical 
representation of CNS hematological disease feature network. (B) Graphical representation of CNS infection 
feature network. Nodes are color-coded according to their eigenvector centrality, and edge size and color is 
proportional to the directed conditional probability, with color key as shown. CSF cerebrospinal fluid, PCR 
polymerase chain reaction, WCC​ white cell count.
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CNS hematological disease prediction.  The hematological disease involvement model identified 4 significant 
features in identifying hematological CNS disease from the remainder of the cohort. These were multifocal 
parenchymal abnormality (OR 24.06, 95% CI 1.44–403.22, p = 0.02), dural abnormality (OR 16.12, 95% CI 1.17–
232.65, p = 0.04), intracranial enhancement (OR 15.62, 95% CI 2.14–113.92, p = 0.007) and focal parenchymal 
abnormality (OR 12.22, 95% CI 1.12–133.51, p = 0.04). A trend in utility for the absence of hemorrhage to iden-
tify CNS hematological disease was apparent. Whilst non-significant, this was retained by the automated step-
wise feature selection model in optimization as per the minimum AIC (OR 0.21, 95% CI 0.027–1.66, p = 0.13). 
This model achieved an AUC of 0.83.

CNS infection prediction.  The CNS infection model identified 3 significant features in identifying CNS infec-
tion from the remainder of the cohort. These were intracranial enhancement (OR 3.42, 95% CI 1.16–10.10, 
p = 0.02), multifocal parenchymal abnormality (OR 3.22, 95% CI 1.11–9.33, p = 0.03) and restricted diffusion 
(OR 4.01, 95% CI 1.00–16.13, p = 0.05). This model achieved an AUC of 0.74.

Distinguishing CNS infection from CNS hematological disease.  A logistic regression model constructed to 
differentiate CNS infection from hematological disease involvement identified 4 features beneficial in doing 
so. With OR > 1 favoring infection, and < 1 favoring CNS disease, these were: hemorrhage (OR 24.61, 95% CI 
1.48–409.02, p = 0.02), focal parenchymal abnormality [retained in minimizing the AIC, albeit non-significant] 
(OR 0.18, 95% CI 0.03–1.11, p = 0.06), enhancement (OR 0.17, 95% CI 1.48–409.01, p = 0.04), and extra-axial 
(OR 0.06, 95% CI 0.00–0.99, p = 0.05). This model achieved an AUC of 0.85 in fitting. We provide a case-based 
example of the model heuristic as Fig. 5.

Discussion
Here, we quantify the value of MRI in the diagnosis of, and differentiation between, CNS infection and CNS 
hematological disease infiltration when treated in a multivariate domain that facilitates the interaction between 
imaging features. We reveal the phenotypic networks that plausibly underpin the heterogenous intracranial 
appearances and investigatory findings of both intracranial infection and CNS disease manifestations in patients 
with hematological malignancy in a large tertiary referral center. These findings illustrate that, whilst singular 
imaging features may be of variable benefit in discriminating the conditions, the harmony between the presence 
and/or absence of imaging findings in a multivariate space offers benefit in discriminating what can otherwise be 
two disorders that are classically—in the reporting room—hard to segregate. The utility of this modelled approach 
is demonstrated with companion cases in Fig. 5, illustrating that whilst singular imaging features seem relatively 
non-specific, a multivariate approach permitted segregation of the two diagnoses.

Reassuringly, both the clinical factors and radiological findings that were of statistically significant value in the 
identification of and differentiation between the two disease states were in keeping with the larger evidence base 
amassed for patients with generalized immunosuppression5,7,11–13,35–37, where one may infer similar alterations in 

Figure 3.   Quantitative graphical centrality differences of diagnostic features between CNS hematological 
disease involvement and infection. Absolute difference in the normalized eigenvector centrality of features, 
weighted by directed conditional probability. Features with value above zero (left side of bar plots) favor the 
CNS hematological disease involvement group and features with value below zero favor the CNS infection 
group (right side of bar plots). CSF cerebrospinal fluid, PCR polymerase chain reaction, WCC​ white cell count.
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disease behavior. Therefore, these results should give radiologists greater confidence in utilizing these features 
in this population and serve as an incremental step in furthering the understanding of these complex processes.

Differential diagnosis in intracranial appearances.  Imaging is frequently an important diagnostic 
test performed in a patient with prior hematological malignancy, where there is a high risk for opportunistic 
CNS infection or hematological disease involvement. MRI is perfectly suited as a non-invasive tool to help guide 
clinical management decisions, especially in cases where LP and biopsy are unobtainable. Whilst CSF analysis 
and brain biopsy remain the gold standard in the diagnosis of CNS infection and hematological disease involve-
ment, they are invasive and associated with both false-positive and false-negative results38. As such, an effort to 
ascertain key imaging features that might act as indicators of a specific abnormality, or aid in differentiating the 
two, is justified. Here, we provide a series of preliminary models, first seeking to identify abnormalities which 
suggest either infection or hematological disease involvement, followed by a model to interrogate which of the 
two is more probable in an area of existing uncertainty. The findings illustrate imaging features which are likely 
to help guide this process.

Imaging features.  Regarding imaging features, the presence of intralesional hemorrhage was the most 
discriminatory. Hemorrhage can be seen in a variety of CNS infections but is infrequent in untreated CNS 

Figure 4.   Modelling to identify and differentiate CNS hematological disease involvement and infection with 
imaging features alone. (A) Models were constructed with the aim to emulate the cognitive heuristic of a 
reading radiologist, wherein a first layer model of abnormality detection is derived, in this case identifying 
either of CNS hematological disease involvement or infection (red box). Following which, separate models 
to aid in the differential of either CNS hematological disease involvement (teal box) or infection (green box) 
are constructed to identify predictive features. Lastly, a model in effort to differentiate the two is built (purple 
box). (B) Receiver operator characteristic (ROC) plots of these four models, color coded as above. Beneficial 
features and Odds ratios with 95% confidence intervals for each model are shown on a log scale in (C–F). 
(C) Abnormality detection model identified three favoring features. (D) The CNS hematological disease 
involvement model identified 4 features favoring it (OR > 1) and one that made it less likely (OR < 1). (E) The 
CNS infection model identified 3 features favoring it. (F) The abnormality distinction model identified 1 feature 
favoring CNS infection (OR > 1) and 3 features favoring CNS involvement of the hematological disease (OR < 1). 
Asterisks correspond to p values as per conventional standards: **p < 0.01,*p < 0.05. CSF cerebrospinal fluid, PCR 
polymerase chain reaction, WCC​ white cell count.
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hematological disease19. In HSV-1 encephalitis, hemorrhage is of variable appearance depending on the chro-
nicity of the blood products, although commonly presents as regions of T1-hyperintensity or GRE T2*/SWI 
hypointensity with ‘blooming’39. Peripheral hemorrhage can be seen in cerebral toxoplasmosis40 and aspergillus 
may be hemorrhagic41. The presence of restricted diffusion was not discriminatory as this finding is encountered 
in both CNS infection and CNS hematological disease infiltration. Although homogenous diffusion restriction 
in the central necrotic core is seen in pyogenic abscesses42, restricted diffusion of the lesion wall can be seen in 
toxoplasmosis40 and aspergillosis41, similar to that observed in CNS lymphoma in the immunosuppressed state. 
The presence of enhancement, a focal abnormality or an extra-axial abnormality were, to a lesser extent, more 
suggestive of CNS hematological disease involvement, rather than infection, in our cohort. There is potential 
bias in these findings as three of our CNS infection cases had a final diagnosis of viral encephalitis without 
pathological enhancement on MRI, whilst two patients with extra-axial abnormalities both had a final diagnosis 
of relapsed B-cell lymphoma. However, knowledge of these findings can aid the radiologist when assessing MR 
images and taken together with clinical information, can improve discrimination of CNS infection from CNS 
hematological disease.

Strengths and limitations.  Whilst the study appears to encompass a small sample size, this outcome 
was the result of a thorough search over a 10-year period at our tertiary level hematology referral center which 
receives referrals across a nationwide catchment area. It therefore seems appropriate to draw inference from this 
sample. This work is similar in size to the largest currently described in the literature, which focuses primarily 
on clinical guidance5,37. Due to the retrospective study design and limitations of the electronic patient records 
system, complete data regarding neurological examination findings, corticosteroid administration and timing, 
neutropenic status and bone marrow transplantation status was not achievable, and investigation of any features 
not captured in this article should be addressed in future work. To our strength, this is the largest cohort of its 
kind collected for this specific analysis and consisted of every hematological oncology patient treated at a major 
tertiary center over a ten-year period. Whilst the sample size may appear relatively small compared to the time-
frame for collection, the adverse outcomes associated with CNS infection, CNS manifestations of hematological 
disease or the misdiagnosis of either of these confers a clinical importance that can be considered disproportion-
ate to the number of patients affected. Future work should include prospective evaluation of the most discerning 
radiological parameters to provide external validation of their use in these contexts.

Figure 5.   Case example of multivariate abnormality differentiation model. Cerebral aspergillosis in a patient 
with chronic lymphocytic leukemia (A–C) and secondary CNS lymphoma in a patient with DLBCL (D–F). Rim 
enhancing parenchymal lesions are demonstrated within the left frontal lobe in both cases (A,D) with peripheral 
restricted diffusion (B,E). The former is multifocal in distribution, whereas the latter is solitary. Peripheral 
hypointensity on T2* GRE (C) in the patient with cerebral aspergillosis is keeping with prior hemorrhage, 
whereas no evidence of hemorrhage was demonstrated in the case of DLBCL (not shown). CNS central nervous 
system, DLBCL diffuse large B-cell lymphoma.
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Conclusions
We present a comprehensive imaging analysis of the largest, most studied group of individuals with hematologi-
cal malignancy with either superadded CNS infection or disease dissemination. This is a complex disease group 
wherein exists much diagnostic uncertainty due to overlapping and variable imaging features. We provide a 
framework to better understand the disease systems that underpin this heterogeneity and identify important 
imaging features which, whilst largely uninformative taken as singular entities, when coalesced to multivariate 
models offer value in differentiating intracranial infection from CNS disease in patients with hematological 
malignancy. Further studies should validate and refine these models in additional, larger, patient cohorts.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available under the 
framework that governs its use. Modelling code however is available from the corresponding author on reason-
able request.
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