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ABSTRACT: Molecular engineering of protein assemblies, including the fabrication of
nanostructures and synthetic signaling pathways, relies on the availability of modular parts that
can be combined to give different structures and functions. Currently, a limited number of well-
characterized protein interaction components are available. Coiled-coil interaction modules have
been demonstrated to be useful for biomolecular design, and many parallel homodimers and
heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of
orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very
few antiparallel homodimers described in the literature, and none have been measured for cross-
reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict
orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then
combined with the CLASSY multistate protein design framework to engineer sets of three
orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the
successful design of three peptides that preferentially formed antiparallel homodimers that,
furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that
formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a
significant expansion of the existing protein-interaction toolbox for molecular engineers.

■ INTRODUCTION

Modular design is used for engineering complex devices in
electronics, mechanics, nanotechnology and other fields.
Recently, biologists have begun to exploit modular parts as a
way to build novel synthetic biological systems.1 Many types of
parts are required to implement diverse structural, binding and
catalytic functions. Here, we focus on the α-helical coiled coil,
which is a protein-interaction domain highly suitable for
inclusion in the growing molecular parts toolkit.2,3 Coiled coils
are prevalent in native proteins and are useful interaction motifs
due to their capacity to encode complex interaction patterns in
a short protein sequence.4−6

Coiled coils form a rod-like structure composed of α-helices
that wrap around each other with a superhelical twist. Coiled-
coil sequences have a characteristic motif commonly referred to
as a heptad repeat, denoted as [abcdefg]n. The a and d positions
are dominated by hydrophobic residues, and are found at the
core of the structure; we refer to a and d positions as core
positions in this work. In coiled-coil dimers, e and g positions
are typically occupied by charged residues and form the
boundary between the core and the surface of the coiled coil.
The b, c, and f positions are located on the surface and are most
often polar or charged. In coiled-coil notation, a prime indicates
a residue on an opposing chain. For example, positions e and g′
are proximal and can form interhelical salt bridges in parallel
coiled-coil dimers, whereas e/e′ and g/g′ pairs can interact in
antiparallel coiled coils.

The relationship between coiled-coil sequence and structure
is incompletely understood, even after decades of study of
native, mutant and de novo-designed coiled coils. This is partly
due to the many topologies accessible to coiled-coil sequences.
For example, coiled coils can fold into dimers, trimers,
tetramers, and even higher-order oligomers. Additionally,
oligomers can be homo- or heteroassemblies. Lastly, the
orientations (parallel vs antiparallel) and axial alignments of the
constituent helices can vary.7,8 The general problem of
predicting detailed coiled-coil structure from sequence has
not been solved, although progress has been made developing
methods to predict oligomerization state from sequence, and in
particular to discriminate parallel dimers from parallel
trimers.9−14

Coiled coils have been used in a wide range of applications.
They have been applied to the design of artificial transcription
factors and used to manipulate cell-signaling pathways.15,16

They have also been used to build engineered crystals, and to
modulate the charge-transfer properties of electronic devi-
ces.17,18 In many of these studies, controlling the orientation of
the helices in the coiled coil was important. For example,
Shlizerman et al. modulated the conductance between two
monolayers of gold using coiled-coil dimers and showed that
parallel and antiparallel coiled coils differentially impacted the
electronic properties of the system. Coiled coils of different
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orientations have net molecular dipoles of different magnitude
and direction, and can thereby confer different electronic
properties.18

Recently, an exciting strategy was developed to design
polypeptide polyhedra based around coiled-coil dimers.
Gradisǎr et al. used a set of parallel and antiparallel dimeric
coiled coils as building blocks to engineer a nanoscale single-
chain tetrahedron with coiled coils forming each edge.19 The
design strategy involved concatenating a series of 12 sequence
segments coding for different coiled-coil helices into a single
chain. The artificial protein sequence was designed such that
folding of the chain, driven by pairing each coiled-coil helix with
its appropriate intrachain partner helix, would generate a
prespecified three-dimensional structure. A crucial aspect of the
design strategy was the use of coiled-coil components that were
orthogonal to one another, i.e., that had low potential to cross-
interact. The designed tetrahedron was based on 4 parallel and
2 antiparallel coiled-coil dimers previously reported in the
literature.20−23 As part of their work, the authors computed the
number and type of coiled coils that would be needed to build
different polyhedra. Interestingly, they found that most
polyhedra require orthogonal antiparallel and parallel dimers.
For example, of the 6 polyhedra considered by the authors, only
an octahedron could be built without using antiparallel dimers.
Despite the clear benefits of having reagents that allow

manipulation of orientation in a molecular assembly, most
designed coiled coils adopt a parallel orientation. Very few
antiparallel coiled-coil dimers have been characterized or
designed, and none have been tested for orthogonality. In
contrast, dozens of native and synthetic parallel coiled coils
have been tested for interactions and orthogonality.6,23,24 There
are currently two databases maintained for designed coiled
coils, the SYNZIP database, and the Pcomp database.2,3

Currently 96% of the SYNZIP sequences and ∼63% of the
sequences in the Pcomp database form parallel dimers. Between
these two databases, the biophysical properties of only one
antiparallel coiled coil (a heterodimer) are reported.2 Thus,
designing sets of orthogonal antiparallel homodimers would
expand the available coiled-coil parts in a meaningful way.
Because coiled-coil sequences can encode many different

structures, negative design to destabilize undesired states is
crucial when making peptides intended to assemble into a
single topology.25 Several negative design strategies have been
used in the past that involve placing charged, beta-branched or
polar asparagine residues such that they form unfavorable
interactions in undesired states.26−28 A recent study relied on
all three of these strategies to design a parallel homodimer,
homotrimer, and homotetramer.3 The orientations of the
helices were engineered by placing lysines at all e positions and
glutamates at all g positions, which leads to electrostatic
attraction in parallel assemblies but repulsion in antiparallel
states. Oligomerization states were specified by the differential
placement of beta-branched residues in core a and d heptad
positions, a strategy first discovered by Harbury et al., and by
the use of asparagine residues to specify dimer formation, which
was originally reported by Lumb and Kim.27,28 Including
charged residues in core a or d positions has also been observed
to destabilize nondimer states.29

Designing sets of orthogonal coiled-coil homodimers
presents additional challenges related to encoding interaction
specificity. This is due to the increased number of undesired,
off-target states associated with forming hetero-oligomeric
species. The number of possible hetero species increases

dramatically as the number of designed orthogonal coiled coils
grows, such that three orthogonal antiparallel homodimers have
the potential to form six possible off-target parallel or
antiparallel heterodimers; other undesired structures are also
possible. To design sets of orthogonal antiparallel coiled-coil
dimers, we therefore turned to computational methods to keep
track of the numerous desired and undesired structures in this
design problem.
Despite the many successes of structure-based approaches for

modeling and designing protein−protein interactions, treating
multiple states is difficult with these techniques.30,31 The
computational costs of modeling each structure can be large,
and current optimization functions used with structure-based
models do not provide efficient routines for optimizing one set
of states while simultaneously destabilizing many off-target
states. The multistate design framework CLASSY addresses
these issues by carrying out design in protein sequence space,
without the need to explicitly model all protein structures.32,33

By using a transformation of structure-based models to
sequence-based models, CLASSY addresses both the search
and scoring problems of multistate design, and the method has
previously been applied to design parallel coiled coils specific
for binding to a target in preference to closely related off-target
proteins.32,34,35

This paper describes our work applying CLASSY in
conjunction with the DFIRE36 statistical potential to the de
novo design of sets of coiled coils consisting of three
orthogonal antiparallel homodimers. We designed two sets of
three proteins, and used biophysical techniques to determine
the oligomerization state, helix orientation and thermal stability
of structures formed by the designed sequences. Some designed
peptides formed trimers or higher-order assemblies, but we
identified 3 peptides (APH2, APH3, and APH4) that formed
orthogonal antiparallel homodimers. In addition, we showed
that these proteins homodimerize in preference to binding to
APH, a previously reported antiparallel homodimer.21 Thus, we
provide evidence for four sequences that preferentially form
antiparallel homodimers that can be used for protein
engineering applications.

■ MATERIALS AND METHODS
Building and Scoring Structures with DFIRE*. As described in

detail below, side chains were modeled on idealized coiled-coil
backbones using Rosetta and scored using DIFIRE*, a modified
version of the DFIRE statistical potential. To construct libraries of
parallel and antiparallel backbones, a set of 214 canonical coiled coils
(i.e., left-handed coiled coils with uninterrupted heptad registers,
abcdefg) with 2 helices each longer then 20 residues were culled from
the CC+ database as of August 18, 2010.37 Within the parallel and
antiparallel sets, examples were filtered to have ≤50% sequence
identity. This set of structures is referred to as the filtered CC+ set.
Seven geometrical parameters defined by Crick to describe a coiled
coil were fit to each structure using the CCCP Structure Fitter.38,39

This set of backbones was then filtered to give 25 parallel and 23
antiparallel backbones with parameters within one standard deviation
of the average value for each parameter. Averages and standard
deviations are reported in Table S1 (Supporting Information).
Idealized versions of these 48 structures were generated using the
CCCP Structure Generator.39 Coiled-coil sequences to be scored were
modeled on each idealized backbone using the fixed-backbone packing
protocol of Rosetta 3.2.40 The soft-potential flag and expansion of the
first and second dihedral angles of the rotamer library were used, along
with the side-chain minimization flag. All surface heptad positions (b, c,
and f) were modeled as alanine. Structures were scored using a
modified version of DFIRE, a distance-dependent pairwise statistical
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potential based on the distance-scaled, finite ideal-gas reference state.36

Two modifications were made to the published energy function. The
cutoff distance, rcut, was set to 5.8 Å, and interatomic energies were
evaluated only between residues on opposite helices in the coiled coil.
We refer to this modified version of DFIRE as DFIRE*. DFIRE*
outperforms DFIRE on certain interaction prediction tests for parallel
coiled coils (V. Potapov, personal communication). The lowest
DFIRE* energy for each sequence over all 25 parallel or 23 antiparallel
backbones was used as the parallel or antiparallel energy, respectively.
Deriving Cluster Expansion Models. Two cluster-expanded

functions based on DFIRE* were derived to score the propensity of
sequences to form antiparallel and parallel coiled coils. For an outline
of the protocol, see Figure S1, and for an in-depth discussion of
performing cluster-expansion calculations using CLEVER 1.0 see
Negron et al.33 In the present application, the cluster-expanded models
express energy as a sum of terms corresponding to weights for single
amino acids at a, d, e, and g heptad positions and pairs of amino acids
at these positions. As in Grigroyan et al., only pairs of positions within
the same or adjoining heptads were considered.41 Weights were fit to
training data using the CLEVER 1.0 package.33,42 The training data
consisted of DFIRE* energies for a central two-heptad unit within a
six-heptad structure, calculated using the scoring protocol described in
the previous section for 30 000 sequences. Another 8000 sequences,
nonoverlapping with the training set, were generated in the same way
to be used as a test set. Training sequences were 42 residues (six
heptads) long and composed of a repeating two-heptad unit. Training
sequences were generated randomly but with heptad-specific single-
residue frequencies matching those of known coiled-coil dimers (both
parallel and antiparallel). Antiparallel frequencies were obtained from
antiparallel structures in the filtered CC+ set.37 Parallel frequencies
were obtained from the NPS database.14 Once determined, cluster
expansion (CE) weights can be used to score antiparallel and parallel
coiled-coil dimers of arbitrary length.

Orientation Test Set. Examples of parallel and antiparallel coiled
coils were obtained from the filtered CC+ set and further filtered to
exclude those shorter than 28 residues and those that contained non-
natural amino acids. For certain sequences, three residues at the
terminal ends of the two chains were removed so that the two chains
fully overlapped in both the parallel and antiparallel orientations; i.e.,
the coiled coils that were modeled were blunt-ended in both
orientations. The final orientation test set contained 30 antiparallel
complexes (composed of ∼285 heptads) and 48 parallel complexes
(composed of ∼547 heptads). PDB IDs with chain and residue
numbers for the orientation test set are given in Table S2.

CLASSY Peptide Design. A detailed description of how integer
linear programming (ILP) can be applied as part of the CLASSY
multistate design method is given in Negron et al.33 In this work, the
objective function for ILP was the total energy (ET), given by the sum
of the energies of three antiparallel homodimers (ET = E1 + E2 + E3).
All energies were obtained from either the antiparallel or parallel
cluster-expanded models. The ILP solver of the IBM ILOG CPLEX
optimizer was used to minimize this objective function under a set of
constraints.43 The constraints included energy gaps to off-target dimer
states (see Figure 2A,B), as well as constraints on the number of polar
residues allowed at a and d heptad positions (maximum of 2 charged
residues at a, and 1 Lys residue at d per design sequence). A constraint
was included on the energy gap between every antiparallel homodimer
and every off-target state (of those types considered in the calculation)
that the constituent peptide could participate in. The constraints were
of the form EOT − Ex > Δ, where EOT represents the energy of a single
off-target state, of which there were several as shown in Figure 2. Ex

represents the energy of a single antiparallel homodimer, i.e., E1, E2, or
E3. Δ is a user-defined specificity gap, and different values of Δ were
used as shown in Figure 2C,D. A solution, consisting of three
sequences, was obtained for each Δ. Two sets of design calculations
were done, one including glutamate as an option at a positions
(sequence space 1) and one not allowing glutamate (sequence space

Figure 1. Predicting coiled-coil orientation preference and testing cluster-expanded DFIRE*. (A) EAP and EP are the antiparallel (AP) and parallel
(P) DFIRE* energies for each orientation test set coiled coil. Antiparallel or parallel coiled coils (according to PDB structure) are plotted with red
crosses or black diamonds, respectively. The line at EAP − EP = 0.18 AU gives optimal separation of parallel and antiparallel examples. Min_gap was
used to remove examples with small DFIRE* orientation preferences (see text); shading indicates increasing min_gap from the line of optimal
separation. (B) The fraction of antiparallel sequences predicted correctly vs the fraction of parallel sequences predicted correctly, as the cutoff value
for EAP − EP was changed, is plotted for DFIRE* and the CE model of DFIRE*. Curves for data sets with different values of min_gap are shown for
the CE model of DFIRE*. (C, D) DFIRE* energies vs the CE model of DFIRE* energies for randomly generated dimer-like test structures in the
antiparallel (C) and parallel (D) states.
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2). One solution was chosen manually for experimental testing from
each calculation, based on predicted stabilities and specificities.
Cloning, Protein Expression, and Purification. Synthetic genes

encoding computationally designed coiled-coil sequences, and control
sequences, were constructed by PCR amplification from two 258-base
pair oligonucleotides and one 157-base pair oligonucleotide (gblocks)
purchased from Integrated DNA Technologies. DNA sequences were
codon optimized for expression in Escherichia coli using DNAWorks.44

Low-frequency E. coli codons selected by DNAWorks were manually
switched with synonymous high-frequency codons.
Following amplification with primers to provide appropriate vector

overlap, Gibson cloning (New England Biolabs) was used to clone
synthetic genes into pENTR vectors. The products of the Gibson
reactions were then recombined into pMAL (New England Biolabs)
destination vectors using LR Clonase II (Invitrogen) in 2.5 μL
reactions. pMAL encodes MBP followed by a TEV protease cleavage
site (not used), a Gateway linker region, and a C-terminal His6 tag.
The LR Clonase II reaction inserted the synthetic gene between the
Gateway linker region and the C-terminal His6 site. The pMAL vectors
were transformed into BL21 (DE3) cells (Agilent). BL21 cells were
grown in liquid LB cultures (1 L) at 37 °C to an OD600 of ∼0.4−0.6.
Protein expression was then induced with 1 mM IPTG for 4.5−5.5 h.
Cells were pelleted, resuspended, and then lysed by sonication. MBP-
fused proteins were purified from the supernatant using NiNTA
(Qiagen) column purification under native conditions. The elution
buffer contained 0.3 M imidazole, 20 mM Tris base, and 0.5 M NaCl
at a pH of 7.91. The approximate sizes of MBP-fused proteins were
confirmed using protein gels with size ladders.
A second set of constructs was made by amplifying from gblocks

using primers encoding a cysteine either at the N-terminal or C-
terminal end, as well as flanking BamHI/XhoI restriction sites. The
genes were cloned by means of the BamHI/XhoI restriction sites into a
modified version of the pDEST17 vector. This vector encodes an N-
terminal His6 tag as well as a GESKEYKKGSGS linker shown to
improve the solubility of recombinant proteins.34 Cysteine-containing

constructs were expressed in RP3098 cells grown, induced and lysed as
described above for BL21. However, these proteins were purified from
the supernatant using NiNTA (Qiagen) under denaturing conditions.
The elution buffer consisted of 60% acetonitrile (HPLC-grade) and
0.1% trifluoroacetic acid (TFA). Ni-affinity purification was followed
by reverse-phase HPLC with a water/acetonitrile gradient in the
presence of 0.1% TFA. Masses were confirmed by MALDI-TOF mass
spectrometry.

Concentrations of all constructs were determined using the
Edelhoch method, measuring UV absorbance of aromatic residues at
280 nm in 6 M guanidinium chloride.45 Amino-acid sequences of all
constructs are given in Table S3.

Sedimentation Equilibrium Analytical Ultracentrifugation.
Proteins were dialyzed with three changes of reference buffer (40 mM
Tris base, 150 mM NaCl, pH 7.91) over the course of 24 h.
Sedimentation equilibrium runs were performed with a Beckman XL-I
analytical ultracentrifuge using an An-50 Ti rotor at 20 °C. Proteins
were spun at three speeds and at least two protein concentrations.
Constructs fused to MBP were spun at concentrations ranging from 4
to 40 μM at 10 200, 16 300 and 20 400 rpm. These spins were
monitored either using UV absorbance at 280 nm, or with interference
optics when multiple MBP constructs were mixed. For protein
constructs containing cysteine, 1 mM TCEP was added to the
reference buffer prior to dialysis. These constructs were spun at
concentrations of 20 and 40 μM at 28 000, 35 000 and 42 000 rpm and
monitored using interference optics. For each speed, equilibrium was
confirmed by negligible differences between the sample distributions
in the cells over sequential scans. Data sets for each construct were
globally fit to a model for a single ideal species using the program
SEDPHAT.46,47 Values for v-bar, solvent density, and viscosity were
obtained from SEDNTERP.48

Disulfide-Exchange Experiments. Cysteine-containing proteins
in varying states of oxidation/reduction (depending on construct)
were placed in a redox buffer (500 μM reduced glutathione, 250 μM
oxidized glutathione, 40 mM Tris base, 150 mM NaCl, pH 7.91) at 20

Figure 2. Computational design of orthogonal antiparallel homodimers. (A, B) Diagram of target and off-target states included in two design
calculations. Colors represent distinct sequences, and colored circles indicate the N-terminus of each helix. An energetic constraint, Δ, was enforced
between the energy of each target antiparallel homodimer state (E1, E2, E3) and every off-target state that peptide could participate in (examples
shown with gray dashed lines). The sequence space used for each design is indicated. Different numbers of off-target states were included for
sequence space 1 (A) vs sequence space 2 (B). (C, D) The total energy ET = E1 + E2 + E3 vs Δ is plotted for sequence space 1 (C) and sequence
space 2 (D). Each value of Δ led to a set of optimized sequences, and the gray squares mark the solutions chosen for experimental testing.
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μM of each protein at room temperature. Redox reactions were
quenched at different time points using a drop of 6 M hydrochloric
acid. The products of the reactions were then run on an analytical
Vydac C18 reverse-phase column with absorbance monitored at 220
nm using a linear water/acetonitrile gradient containing 0.1% TFA.
Equilibrium was confirmed by monitoring changes in HPLC profiles as
a function of time. Retention times for the reduced proteins and for
the oxidized states for each of the 6 cysteine-containing proteins were
assigned by HPLC analysis of the constructs in TBS (40 mM Tris
base, 150 mM NaCl, pH 7.91) alone, in TBS with TCEP added for an
incubation time of 30 min (to generate the fully reduced species), or in
TBS solution left exposed to air and stirring overnight (to generate the
fully oxidized species). Glutathione adduct peaks were assigned by the
appearance, following incubation in redox buffer, of a peak with a
retention time not consistent with the reduced or oxidized states of
each of the six individual protein constructs. Antiparallel peaks were
assigned by monitoring the appearance of a peak that was only
observed after mixing two constructs that encoded the same coiled
coil, but with cysteine residues at opposing ends.
Circular Dichroism (CD) Spectroscopy. CD spectra and

thermal-denaturation curves were measured on an AVIV 400 CD
spectrometer. Peptides were equilibrated in PBS buffer (137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4)
containing 1 mM of dithiothreitol (DTT) at ∼25 °C for at least 1.5 h
prior to measurement. Measurements were made in a 1 mm quartz
cuvette at a protein concentration of 20 μM using the N-terminal
cysteine-containing constructs. CD spectra were measured at 25 °C.
For each sample, three wavelength scans were measured and then
averaged. For each wavelength scan, data were collected from 190 to
280 nm, in 1 nm steps, averaging for 5 s at each wavelength. Thermal
denaturation curves were generated by monitoring θ222 using a 30 s
averaging time, 3 min equilibration time, and temperature increments
of 2.5 °C from 0 to 98 °C. Melting temperatures, Tm, were obtained by
fitting the change of the CD signal over the change in temperature.32,49

Fitting was performed using the nonlinear least squares method in
Matlab 7.8. The fractional helicity of each design was estimated by
substituting the experimentally measured θ222 into the equation (θ222
− 3000)/(−36 000 − 3000).50

■ RESULTS

Benchmarking DFIRE* on Orientation-Preference
Prediction. Computational design of orthogonal antiparallel
homodimers requires an energy function capable of scoring
antiparallel vs parallel dimers. To assess whether our design
energy function could predict helix orientation for coiled-coil
dimers of known structure, we implemented a test similar to
that in Apgar et al.51 We created a database of 30 antiparallel
and 48 parallel dimer structures based on the CC+ database of
Testa et al.;37 we refer to this database as the orientation test
set (see Materials and Methods). The orientation test set in this
study differed from that used by Apgar et al. due to its higher
stringency on length, ≥28 residues vs ≥18 residues.51 This
more stringent cutoff has the effect of removing examples of
short coiled-coil sequences embedded in large structures, for
which the helix orientation is less likely to be determined by the
sequence of the coiled-coil region alone. Furthermore,
sequence features of antiparallel coiled coils in the PDB are a
function of their lengths; e.g., shorter coiled coils have a 16%
higher frequency of hydrophobic residues at the g position
(Table S4).
A modified version of DFIRE, DFIRE*, which includes only

interchain energy terms, was used for scoring. The orientation
test-set sequences were modeled in both parallel and
antiparallel orientations using Rosetta and scored using
DFIRE*, as described in the Materials and Methods. The
DFIRE* energy gap between the antiparallel and parallel state

for each sequence is plotted in Figure 1A. We report energies in
arbitrary units (AU), as we have no information at this time
about how predicted energies from this procedure correlate
with experimental free energies. The ability of DFIRE* to
predict orientation preference on the test set was measured
using the area under the curve (AUC) when plotting the
fraction of parallel test-set sequences predicted correctly vs the
fraction of antiparallel sequences predicted correctly, as a
function of the score cutoff used to discriminate parallel from
antiparallel sequences. As seen in Figure 1B, DFIRE* predicts
orientation preference in this test with an AUC value of 0.91
(random predictions would result in an AUC of 0.5).

Cluster Expansion of DFIRE*. Cluster expansion (CE) is a
computational method for generating a sequence-based scoring
function that approximates energies calculated using structure-
based techniques.41,42,52 Once generated, a CE model
eliminates the need for computationally costly structure
building in protein design. Two CE models were built to
approximate DFIRE* energies for antiparallel and parallel
coiled-coil dimers, as described in the Materials and Methods,
and the models were used to score 8000 test sequences (Figure
1C,D). Both models showed good correlation with DFIRE*, R2

= 0.90, indicating that the approximation of structure-based
modeling with a sequence-based function introduced relatively
little error within the sequence space explored.
We benchmarked the orientation prediction performance of

the CE DFIRE* models using the orientation test set. Every
pair of sequences in the set was scored with the antiparallel CE
model and the parallel CE model. The energy difference
between the two CE models was used to predict the orientation
preference of each sequence. The AUC value using the CE
approximation of DFIRE* was 0.84 (Figure 1B), demonstrating
that the faster, yet more approximate model gave reduced
performance, as expected. However, the AUC value signifi-
cantly improved as coiled coils with small energy gaps were
removed from the orientation test set. For 44 coiled coils with
the largest predicted differences in CE energy between parallel
and antiparallel orientation (greater than 0.4047), the
prediction performance (0.93) was similar to the performance
of DFIRE* on the entire orientation test set. For 20 examples
with predicted energy gaps greater than 0.8094, prediction
performance was perfect. This information was used to set
energy gap requirements for off-target states during the
sequence-design stage of CLASSY.

Computational Design of Orthogonal Antiparallel
Homodimers using CLASSY. CLASSY is a protein-design
method that uses integer linear programming (ILP) to optimize
a protein sequence using a CE scoring function. Importantly,
the method allows a user to impose numerous constraints on
the designed sequence. These can include constraints on
sequence composition or properties (e.g., total charge). In
multistate design, it is convenient to impose a constraint on the
energy of a designed sequence adopting an undesired structure,
to disfavor formation of that structure.
In our application, the antiparallel and parallel CE models

were combined with ILP to do CLASSY design of six-heptad
antiparallel homodimers. Designed antiparallel coiled coil APH
is also six heptads long, and a four-heptad variant of APH had
low thermal stability.21 On the basis of this, we reasoned that
six heptads should provide ample space to include specificity
elements while maintaining a folded structure. Only residues at
a, d, e, and g positions were designed; these residues are
thought to be most critical for interaction specificity.53,54 The b,
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c, and f surface positions were taken from APH, which is one of
the few characterized antiparallel homodimers reported in the
literature. The surface of APH mainly consists of patterned
glutamine and alanine residues at b and c positions, and lysine
residues at f positions. This surface design has been used for
both parallel and antiparallel coiled coils, and is thought to play
a minimal role in interaction specificity.21,26

We used the CE model of DFIRE* to design the globally
best-scoring antiparallel homodimer in a sequence space
without cysteine, proline, or glycine and found that the
designed sequence was highly charged and contained no
hydrophobic residues in any heptad position. This peptide
would not be expected to fold into a coiled-coil structure. The
unrealistic design sequence is not inconsistent with the good
performance of DFIRE* and the CE model of DFIRE* on the
orientation prediction test above. In the orientation test, each
of two compared structures had the same sequence. In contrast,
without constraints on sequence composition, optimization
using the CE model of DFIRE* had the freedom to build a
sequence entirely from charged pairs that have highly favorable
CE weights. The 20 most favorable weights in the CE DFIRE*
model are all core-to-edge (i.e., a or d to e or g), or core-to-core
charge−charge residue interactions. The weight of the most
stabilizing hydrophobic−hydrophobic interaction is 2-fold
weaker than the most stabilizing charge−charge interaction.
To use CE DFIRE* in protein design, we therefore imposed
constraints on the number of polar residues allowed at core
heptad positions (see Materials and Methods) and restricted
the design calculations to subsets of sequence space, as
described below.
Two separate sequence spaces, sequence space 1 and

sequence space 2, were chosen to search for antiparallel
homodimer sequences (Figure 2A,B). Both sequence spaces
included residues known to influence coiled-coil structural
specificity through mechanisms such as electrostatic attraction/
repulsion and beta-branch residue packing/clashing.26,27

Sequence space 1 differed from sequence space 2 by the
addition of glutamate as a choice at a positions. Statistics from
the coiled-coil databases we analyzed show a 3-fold frequency
enrichment of glutamate in a sites of antiparallel dimers relative
to parallel dimers (Table S5); this difference has also been
noted by Straussman et al.55

To design three noninteracting coiled coils, we optimized the
sum of the CE energies of three antiparallel homodimers using
CLASSY. Constraints were added to allow no more than two
hydrophilic residues at a positions and no more than one at d
positions. This maintained the hydrophobicity of the design

solutions at these positions close to that of known antiparallel
dimers of lengths greater than four heptads. Constraints were
also placed on the predicted energies of competing states. In
particular, all design calculations treated all three possible
antiparallel heterodimer states as undesired states. Without
these constraints, the global energy minimum would corre-
spond to three copies of the lowest-energy antiparallel
homodimer. Constraints on the off-target states were imposed
as an energy gap by requiring the energy of each antiparallel
homodimer to be lower than the energy of each of the off-target
states that sequence could participate in, by a fixed amount
(Figure 2).
CLASSY design was done iteratively, by progressively

increasing the energy gap that was imposed between the target
antiparallel homodimers and off-target antiparallel heterodimer
states. As the gap to off-target states increased, the total
predicted stability of the three antiparallel homodimers
decreased (Figure 2C,D). This type of stability-specificity
trade-off has been observed previously in the case of parallel
dimer design using CLASSY.32 Two sets of solutions, one from
each of the sequence spaces, were rationally chosen based on
good stability-specificity trade-offs. The designs in sequence
space 1 are referred to as APHi, APHii, and APHiii. The designs
in sequence space 2 are referred to as APHiv′, APHv′, APHvi′.
For each set of designed sequences, parallel and antiparallel
homo- and heterodimer states were scored with the original
DFIRE* structure-based model to predict relative energies of
target and off-target structures. For the antiparallel homodimers
designed in sequence space 1, the predicted energies of all
parallel and antiparallel off-target dimers were much higher
than the predicted energies for the antiparallel homodimers.
The smallest gap, of 0.77 AU, was between the antiparallel
homodimer state of APHiii and a parallel heterodimer
consisting of APHiii and APHi (Figure S2A). The APHi
antiparallel homodimer gap to this state was 1.13 AU. At
gaps of this magnitude, DFIRE* predicts the orientation
preference of native sequences with an AUC = 1.0. Thus, no
additional states were added to the optimization protocol for
sequence space 1. For sequence space 2, we observed that one
of the parallel homodimers was predicted to be lower in energy
than the corresponding antiparallel homodimer (Figure S2B).
Furthermore, other parallel homodimer states were closer in
energy to the antiparallel homodimers than when design was
done in sequence space 1. To address this, we added parallel
homodimer states as off-target states in the optimization
protocol used for sequence space 2, and chose a new set of
solutions in that space. The final six designed sequences are

Table 1. Sequences of APH and Candidate Antiparallel Homodimers

aSome sequences have two names, as described in the text. bIndicates the heptad register.
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shown in Table 1, with APHi, APHii and APHiii resulting from
design in sequence space 1, and APHiv, APHv and APHvi from
design in sequence space 2. The two sets of designed sequences
were also scored for cross-reactivity using DFIRE*. Predicted
energies for all parallel and antiparallel heterodimers that could
be formed between sets were significantly larger than predicted
energies for the antiparallel homodimer states, with the smallest
energy gap of 0.61 AU between the antiparallel and parallel
homodimer states of APHiv.
Oligomerization States of Designs. The molecular

weights of complexes formed by designed peptides APHi−
APHvi were determined using sedimentation equilibrium
analytical ultracentrifugation (see Materials and Methods).
We anticipate that the APH coiled coils will be used as fusion
proteins in many applications, so we did two sets of
experiments: one in which the peptides were fused to maltose
binding protein (MBP) and one in which they were not. The
results are shown in Table 2. The data for two designed

peptides, APHiii and APHvi, were consistent with these peptides
forming homodimers. APHi was determined to have a
molecular weight greater than that expected for a dimer, and
no further data were collected on this construct. Single-species
fits to APHii and APHiv gave molecular weights less than and
greater than what was expected for a dimer, respectively. APHii
and APHiv were retested at higher concentrations to stabilize
higher-order states. At 20 μM, APHii formed a homodimer,
whereas APHiv formed a homotrimer. Further experiments
were carried out only on designs APHii, APHiii and APHvi,
which we renamed APH2, APH3 and APH4, respectively (see
Table 2).
Orientation and Orthogonality of Designs. To

determine the helix orientation in complexes formed by
APH2, APH3, and APH4, we performed disulfide-exchange
experiments, and resolved the products of the reactions using
HPLC (see Materials and Methods). Key peaks are labeled in
Figure 3, which shows changes in the chromatograms over
time. For all three designs, starting with a combination of
oxidized parallel species and/or reduced peptides, only one
oxidized peak was detected at the end of 5 h, corresponding to
a disulfide-linked antiparallel homodimer. On the basis of the
smallest detectable peak area, we estimated a minimum 105-fold
preference for forming antiparallel complexes over parallel
complexes for all designs.
The same constructs that were used to measure orientation

preferences were used to determine whether the designs

formed heterodimers. APH peptides were tested in a pairwise
manner (Figure 4). Each design formed a disulfide cross-linked
antiparallel homodimer over time, but we did not detect any
disulfide bond formation between any pairs of designed
peptides. Each design was additionally measured for cross
reactivity with the antiparallel homodimer-forming peptide
APH, in a pairwise manner (Figure 5). No design showed any
detectable cross-reactivity with APH, in either orientation,
extending the number of orthogonal antiparallel homodimers
from three to four.
To determine whether mixtures of more than two APH

coiled coils formed complexes other than the expected dimers,
MBP fusions of all four APH peptides were mixed at 20 or 40
μM of each APH design and analyzed by sedimentation
equilibrium ultracentrifugation (as done for individual MBP
fusion proteins, see Materials and Methods). The ratio of the
fitted mass to the dimer mass was 0.91, with good fit quality
(representative data in Figure S3), indicating that dimers
formed as expected and no higher-order species were present in
a mixture of all four APH fusion proteins.

Helicity and Thermal Stability. We measured the circular
dichroism (CD) spectra of the three designed peptides APH2,
APH3, and APH4, using the N-terminal cysteine constructs in a
reduced state. Each construct contained 65 residues, of which
43 corresponded to the designed coiled-coil sequence (Table
S3). Our APH construct contained 66 residues, of which 44
corresponded to the APH sequence. The CD spectra of all
three designs were characteristic of coiled coils, with distinct
minima at 208 and 222 nm (Figure 6A). The mean residue
ellipticity (MRE) of the designed peptides was similar to that of
APH, which is longer by one residue in the coiled-coil region.
Thermal denaturation experiments established that all designs
unfolded cooperatively, which is a characteristic property of
coiled coils (Figure 6B). The thermal stabilities (Tm) of the
designs at 20 μM ranged from 47.4 °C for APH2, to 59.3 °C for
APH4 and 78.3 °C for APH3, with APH3 being slightly less
stable then APH, which had a Tm of 79.3 °C. All melts were
reversible. Upon recooling, all peptides regained ≥95% of the
original MRE, and fits of refolding curves gave melting
temperatures within 1.5 °C of values obtained from the
denaturing curves.
Estimating peptide helicity from the CD data using the

method of Morrisett et al. indicated that linkers and tags
appended to the designed coiled coil contributed helical signal,
as shown in Figure S4.50 However, most of this “extra” signal
was lost gradually with temperature in the pretransition
baseline, indicating these regions are not part of the cooperative
unfolding event. Furthermore, these linker residues were not
present in the MBP-fusion constructs used in the sedimentation
equilibrium centrifugation experiments, consistent with them
not being necessary for the specific interactions observed in
those experiments. Finally, making APH in the construct that
we used for CD experiments did not change its melting
temperature from the value reported in the literature for only
the coiled coil.21

■ DISCUSSION
An expanded toolkit of coiled-coil interaction parts would be of
great utility in protein engineering. Many papers have reported
the successful design of coiled-coil structures of diverse
topologies, but apart from parallel dimers, the number of
biochemically characterized complexes of any one type is
limited.3,6,56 Designing coiled coils de novo is complicated by

Table 2. Molecular Weights Determined by Analytical
Ultracentrifugation

protein concentration (μM) MW (global fit)/MW (calc.)a

APHi 4, 8, 12 1.7
APHii (APH2) 4, 7.4, 11 0.76
APHii

b (APH2) 20, 40 0.99
APHiii (APH3) 4.5, 9, 14 0.94
APHiii

b (APH3) 20, 40 1.16
APHiv 7.7, 15.3 1.23
APHiv

b 20 1.58
APHvi (APH4) 4, 7.4, 12 0.96
APHvi

b (APH4) 20, 40 1.08
aMW(calc.) is the expected dimer mass of each designed coiled coil.
bData collected using interference optics, and a construct not fused to
MBP.
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the fact that different coiled-coil topologies have similar

sequence requirements, and small sequence changes can alter

coiled-coil structure. For these reasons, it is often necessary to

explicitly consider competing states in the design process.25,28,32

Treating off-target states in computational protein design can
be costly, particularly when there are many such states that
must be modeled. One strategy is to incorporate a design
element known to strongly destabilize a set of off-target
topologies, to reduce the number of off-target states that must

Figure 3. Designed peptides APH2, APH3, and APH4 adopt an antiparallel helix orientation. (A) Schematic of the assay. Arrows indicate helix
direction from N to C terminus. The wavy line indicates two amino acids added to the designed sequence to change peptide retention times (APH2
= YY, APH3 = QW, APH4 = YY). S represents the sulfur atom in cysteine residue(s). (B, C, D) HPLC chromatograms show the results for the
disulfide-exchange reactions upon mixing equimolar amounts of N-terminal and C-terminal cysteine variants of each design sequence (20 μM each).
The reactions were quenched at 0 min (red), 15 min (black), or 5 h (blue). Peaks are labeled according to the scheme shown in panel A, with G
indicating a glutathione adduct.

Figure 4. Designed peptides APH2, APH3 and APH4 do not form heterodimers. (A) Cartoon showing four cysteine-containing peptides, two for
each of two designs, which were included in the disulfide-exchange cross-reactivity assay. (B, C, D) HPLC traces for all pairwise mixtures of designed
peptides after equilibration for 15 min. The blue and red traces are for reactions with equimolar amounts of N- and C-terminal cysteine variants of a
single designed peptide (20 μM each). The black trace is for a reaction with equimolar amounts of all four peptides in panel A (20 μM each). (B)
APH2 + APH3, (C) APH2 + APH4, (D) APH3 + APH4.
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be modeled. For instance, Thomas et al. observed that the de
novo design of parallel heterodimeric coiled coils composed
entirely of isoleucine and leucine cores did not reliably
destabilize higher-order states.56 But the same design strategy
in the background of a single asparagine−asparagine
interaction, which was known from prior work to favor parallel
dimer states over higher-order states, consistently gave dimeric
assemblies.28 Unfortunately, incorporating simple design

elements that reliably destabilize all off-target topologies, in
all sequence contexts, is not feasible. Exceptions have been
reported for even the most thoroughly studied coiled-coil
structural specificity determinants,3,56 and for many coiled-coil
topologies, the sequence-structure relationship is not well
understood.
Of relevance for this work, there are few sequence features

known to favor antiparallel over parallel helical alignments.
Oakley et al. showed that, in analogy to the role of asparagines
favoring dimers over higher-order states, paired asparagines can
be introduced at opposing a and d′ positions to favor an
antiparallel helix alignment.57 McClain et al. demonstrated that
charge−charge interactions at e and g positions across the
interface can impart an antiparallel vs parallel preference.58

Gurnon et al. placed an isoleucine at a d heptad position and an
alanine residue at an opposing a′ heptad position to favor an
antiparallel homodimer state over a parallel homodimer state in
the designed sequence APH.21 Further evidence supporting this
interaction as an orientation specificity determinant was
obtained via thiol-thioester exchange studies by Hadley et
al.59 Although simple rules do have some utility for design,
Hadley et al. showed that residue−residue interactions in
antiparallel coiled coils can also be highly context dependent,
helping explain why rules extracted from studies of model
systems do not satisfactorily explain the orientations of native
coiled coils.51,60

Modeling off-target states explicitly and including them in the
design process provides a broadly applicable mechanism for
engineering specificity. In this work, we used explicit negative
design to disfavor antiparallel heterodimer states by imposing
energy gaps between antiparallel homo and heterodimers. Most
of the sequence elements in our APH designs that disfavored
antiparallel heterodimerization within a design set involved
charged residues predicted to participate in repulsive
interactions in heterodimer states. For example, all antiparallel

Figure 5. Designed peptides APH2, APH3, and APH4 do not heterodimerize with APH. (A, B, C) HPLC traces for all pairwise combinations of
APH with the designed coiled coils, with experimental conditions as for Figure 4. The blue and red traces are for equimolar mixtures of N- and C-
terminal cysteine variants of APH (blue) or APH2, APH3 or APH4 (red) (20 μM each). The black trace is for a mixture of four peptides, APH and
the indicated design, each modified at the N- or C-terminus with a cysteine residue (20 μM each). (A) APH + APH2, (B) APH + APH3, (C) APH +
APH4.

Figure 6. Circular dichroism spectra and thermal denaturation curves.
(A) CD spectra and (B) thermal denaturation curves measured at 25
°C in PBS with 1 mM DTT. APH (red), APH2 (blue), APH3 (green)
and APH4 (orange).
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heterodimer states contained a-to-e′ and d-to-g′ charge−charge
repulsions between lysine or arginine residues. Designs from
sequence space 1 additionally contained a-to-e′ charge−charge
repulsions between glutamate residues. These core-to-edge
charge−charge repulsions were the most destabilizing weights
available to the antiparallel CE DFIRE* model in the design
sequence spaces chosen, with lysine at d to arginine at g′ being
the most destabilizing.
The design strategies that led to destabilization of parallel

homodimers differed in sequences spaces 1 and 2. In sequence
space 1, we allowed glutamate at a positions, and all designed
sequences included this element. In fact, we identified a motif
consisting of two glutamate residues at a and g, and a lysine at
d′ with an arginine at e′ on the opposing helix that was present
in all of the sequence space 1 designs (Figure S5). Interactions
between residues in this motif contain the first and fourth most
favorable weights available in the CE DFIRE* model in
sequence space 1, such that the motif is predicted to contribute
strongly to antiparallel homodimer stability. Interestingly, in a
parallel homodimer, the residues of this motif form unfavorable
interactions sufficient to provide a large energy gap between
parallel and antiparallel states. Certain unfavorable weights are
shown in Figure S5, and this can be further demonstrated by
modeling an artificial homodimer that includes the motif
embedded in a poly-alanine sequence. Because of the symmetry
of the homodimer, this results in two copies of the motif in the
structure. Scoring parallel and antiparallel homodimeric
structures with this sequence using DFIRE* revealed a
significant preference of 1.64 energy units for the antiparallel
state (poly alanine alone has a preference of 0.14 energy units
for the antiparallel state using this model). Thus, in sequence
space 1, charge networks predicted to stabilize the antiparallel
state led to substantial destabilization of parallel homodimers,
without explicit negative design. The situation was different in
sequence space 2, which did not include glutamate residues at a
positions. In this sequence space, designing antiparallel
homodimers while disfavoring heterodimers did not automati-
cally lead to large energy gaps to parallel homodimer states for
all sequences (see Figure S2B); it was necessary to include
parallel structures as off-target states in the optimization
problem. Doing so led to sequences that placed more
isoleucines at d heptad positions to favor antiparallel over
parallel homodimers. For example, of the three sequences
originally chosen in sequence space 2, two sequences had one
isoleucine residue at a d position, while one sequence had no
isoleucine residues at all. After placing constraints on the
energies of the parallel homodimer states, all design sequences
contained one or two isoleucine residues at d heptad positions.
Each designed isoleucine at a d position introduced a d−d′
isoleucine pairing across the coiled-coil interface in the parallel
homodimer state. As previously mentioned, this interaction
destabilizes parallel dimers. The effect is captured in our
models: isoleucine at d−d′ is the fourth most destabilizing
weight for parallel dimers in sequence space 2.
Explicit consideration of off-target states requires enumerat-

ing and modeling the relevant competing states. We
successfully used this strategy to destabilize antiparallel
heterodimer states in sequence spaces 1 and 2, and to
destabilize parallel homodimers when designing in sequence
space 2. But we did not explicitly model formation of higher-
order assemblies, and as a result, oligomers larger than dimers
were formed by designs APHi and APHiv. Modeling higher-
order coiled coils is challenging due to the many different

topologies that are possible. Each helix pair can be antiparallel
or parallel, heteroassemblies can form with different stoichio-
metries, and the geometry of helix associations can vary in
subtle ways.61,62 It is therefore difficult to include a
comprehensive set of competing states and, even if such a set
could be generated, the computational modeling costs for
considering all possibilities explicitly would be high.
One approach to disfavoring higher-order states could be to

include just a small number of trimer and tetramer topologies
in the calculations. Adding representative off-target structures
would minimally alter the computational complexity of the
design framework, yet might lead to broader destabilization of
additional higher-order states. Indeed, our study provided an
example where specificity was obtained against states that were
not explicitly modeled, possibly due to constraints on specificity
against related states. The design solutions from sequence space
1 were predicted not to form heterodimers with design
solutions from sequence space 2, despite these interactions not
being explicitly constrained during optimization. We hypothe-
size that this occurred because the consideration of many off-
target dimer states gave rise to interfaces with charge patterns
low in symmetry, as well as hydrophobic cores with unique
geometries due to the placements of beta-branched residues in
the core. As a result, the probability of cross-reacting with
another sequence to form dimers was low.
Considering just a few higher-order states may also have the

effect of reducing or removing design features known to favor
higher-order states generally. For example, isoleucines at d
heptad positions are known to favor parallel trimer and
tetramer states in preference to parallel dimer states.3,27 Yet
isoleucines at d heptad positions also favor antiparallel dimers
over parallel dimers, and were included in many of our designs
for this reason, as discussed above (also see Table 1).
Interestingly, in native coiled coils isoleucines are approximately
4-fold more common in antiparallel dimers than in parallel
dimers (Table S5). Isoleucines at d heptad positions that were
included in the design to favor antiparallel dimers might have
promoted the formation of higher-order assemblies, which were
not treated in the model. A constraint to disfavor just a few
trimers or tetramers might be sufficient to limit the use of this
sequence element, or to drive inclusion of compensating
elements that are poorly accommodated in higher-order
assemblies.
A significant obstacle to including even a few higher-order

states in design is the small amount of structural data available
for coiled-coil trimers and tetramers of a specific toplogy.37

Benchmarking the predictive power of models using exper-
imental data is important for assessing performance, and is
useful for setting meaningful energy cutoffs in design
calculations. However, very few known structures of higher-
order states of any specific topology passed our orientation test
set filters of ≤50% sequence identity and >27 residues (0
antiparallel trimers, 6 antiparallel tetramers, and 9 parallel
tetramers in the August 18, 2010 CC+ database). For these
reasons, we did not benchmark DFIRE* on the problem of
predicting oligomerization state, and we did not attempt to use
it for this purpose.
We examined the structure-prediction power of other

methods when applied to our antiparallel coiled coils.
LOGICOIL is a computational predictor trained on coiled-
coil sequences in the CC+ database to discriminate parallel
dimers, antiparallel dimers, trimers and tetramers.9 For APH2,
APH3, and APH4, LOGICOIL assigned very similar scores for
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each of the four topologies. The challenge the APH sequences
present to LOGICOIL is not surprising. LOGICOIL makes
predictions based on a single-chain sequence, without
information about interchain interactions that are crucial design
elements in the APH designs. Additionally, the APH sequences
are de novo designed sequences, with intrachain pairwise
frequencies that may not resemble those in native sequences.
CCBuilder is a new web-based application that generates
coiled-coil structures and can be used for predicting coiled-coil
topology. CCBuilder can model parallel dimers, antiparallel
dimers, parallel trimers, and parallel tetramers, and the program
computes the stability of coiled-coil complexes using two
energy functions: Rosetta and BUDE.63 Both energy functions,
used with default settings provided by the Web site, correctly
predict that APH2, APH3, and APH4 favor the antiparallel
dimer state over the parallel dimer state. When higher-order
states are considered, both energy functions predict that APH2
and APH4 favor the trimer state, and Rosetta also predicts that
APH3 will form a trimer. BUDE however correctly predicts that
APH3 will favor the antiparallel dimer state. Better methods for
oligomerization state prediction are needed and, if developed,
could be incorporated into our design framework.
The rankings of the thermal stabilities (Figure 6) are not

predicted well by DFIRE*. DFIRE* instead predicts that APH3
is the most stable complex, followed by APH2, APH4, and
APH. These predicted ranking are consistent with the favorable
weights that the CE of DFIRE* assigns between core and edge

positions. But the relative thermal stabilities of the APH coiled
coils appear to be related to the number of charged residues in
the central two heptads of the designed coiled coils (Figure 7).
APH2, which has the greatest number of charged residues in
the central two heptads, is the least stable. In contrast, both
APH and APH3 contain no charged residues in the central two
heptads and are the most thermally stable. This is consistent
with many studies showing coiled-coil destabilization by polar
residues in the core.59,60,66 It should be noted that CCBuilder
accurately predicts the thermal stability rankings using Rosetta
or BUDE scores, if all structures are scored as antiparallel
dimers.
The new APH designs have many desirable properties for

synthetic biology and materials science. First, the surface
residues of all APH designs were engineered to be passive and
may provide useful positions for adding novel functions or
modulating stability.52,64,65 The designed structures also
provide users with a range of thermal stabilities, and it may
be possible to tune the dimer stabilities using mutations of the
surface residues, as needed. Finally, the designs are orthogonal
to each other when used in pairwise or higher-order
combinations. Proteins with this property have been sought
for many applications in synthetic biology and are thought to
be one of the limiting reagents slowing progress in this
field.19,67 It should also be noted that heterodimers involving
the APH proteins could be included as off-target states in future
design studies using the CLASSY framework, allowing for the

Figure 7. Helical-wheel diagrams of APH, APH2, APH3, and APH4 as antiparallel homodimers. Positively and negatively charged amino acids are
shown in blue and red, respectively, with noncharged polar residues in orange and hydrophobic residues in gray. Potentially attractive salt bridges are
shown as dashed lines. Sequences start at an f position and end at an e position. Diagrams were generated using DrawCoil 1.0, http://www.
grigoryanlab.org/drawcoil.
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extension of this set. In conclusion, the antiparallel homodimer
sequences represent a significant expansion to the coiled-coil
toolkit, which is currently dominated by parallel dimers, and
thus may find application in many molecular engineering
projects.
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