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In silico protein target deconvolution is frequently used for mechanism-of-action
investigations; however existing protocols usually do not predict compound functional
effects, such as activation or inhibition, upon binding to their protein counterparts.
This study is hence concerned with including functional effects in target prediction. To
this end, we assimilated a bioactivity training set for 332 targets, comprising 817,239
active data points with unknown functional effect (binding data) and 20,761,260 inactive
compounds, along with 226,045 activating and 1,032,439 inhibiting data points from
functional screens. Chemical space analysis of the data first showed some separation
between compound sets (binding and inhibiting compounds were more similar to
each other than both binding and activating or activating and inhibiting compounds),
providing a rationale for implementing functional prediction models. We employed three
different architectures to predict functional response, ranging from simplistic random
forest models (‘Arch1’) to cascaded models which use separate binding and functional
effect classification steps (‘Arch2’ and ‘Arch3’), differing in the way training sets were
generated. Fivefold stratified cross-validation outlined cascading predictions provides
superior precision and recall based on an internal test set. We next prospectively
validated the architectures using a temporal set of 153,467 of in-house data points
(after a 4-month interim from initial data extraction). Results outlined Arch3 performed
with the highest target class averaged precision and recall scores of 71% and 53%,
which we attribute to the use of inactive background sets. Distance-based applicability
domain (AD) analysis outlined that Arch3 provides superior extrapolation into novel areas
of chemical space, and thus based on the results presented here, propose as the
most suitable architecture for the functional effect prediction of small molecules. We
finally conclude including functional effects could provide vital insight in future studies,
to annotate cases of unanticipated functional changeover, as outlined by our CHRM1
case study.

Keywords: target prediction, activation, inhibition, cheminformatics, functional effects, mechanism-of-action,
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INTRODUCTION

Target deconvolution is an important step in the subsequent
analysis of data gleaned from phenotypic screenings, to identify
the modulated targets of active compounds and enable the
continued dissection of the biological processes involved in a
system of interest (Terstappen et al., 2007; Raida, 2011; Kotz,
2012; Lee and Bogyo, 2013). One important additional parameter
of consideration is the functional modulation of targets, since
its activation or inhibition (in the simplest case of allowing only
for two types of functional effects) may positively or negatively
modulate a pathway, which in turn may relate in different ways to
an observed phenotype (Parker et al., 1993; Bauer-Mehren et al.,
2009; Dosa and Amin, 2016).

One example of this is Bone morphogenetic protein 1 (BMP1),
which was identified as a key target linked to cytostaticity
from a screening cascade discerning the cytotoxic and cytostatic
tendencies of compounds (Mervin et al., 2016). In the absence
of functional information for the respective target, and since
activation of BMP signaling in prostate carcinoma cells is known
to be cytostatic (hence its inactivation would not explain the
observed phenotype) (Wahdan-Alaswad et al., 2012), the authors
were forced to hypothesize that cytostatic agents may activate
BMP1. Another study rationalized the polypharmacology of
sleep-inducing compounds in rat, (which, without functional
annotation) were forced to stipulate that bioactive compounds
with multi-target activity may elicit their synergistic sleep
parameter activity through inhibition of Histamine Receptor H1
(HRH1) and activation of Cholinergic Receptor Muscarinic 4
(CHRM4) (since the biological evidence at hand for both targets
advocates this rationalization) (Drakakis et al., 2017). Sertindole,
a withdrawn approved drug, was also experimentally determined
within the study to changeover functional activity. Despite
profiles linked to prolonged sleep bouts, the compound was
linked to hyperactivity, not inhibition, at key targets implicated
with increased bouts of sleep, which further demonstrates
how the functional behavior of compounds needs to be
considered to understand phenotypic response in biological
systems.

One approach to target deconvolution is in silico target
deconvolution, which is a well-established computational
technique capable of inferring compound MOA by utilizing
known bioactivity information (Koutsoukas et al., 2011; Wang
et al., 2013; Lavecchia and Cerchia, 2016). This technique
is well established in the areas for the deconvolution of
phenotypic screens (Poroikov et al., 2001; Geronikaki et al.,
2004; Liggi et al., 2014) and the identification of compound-
side effects via bioactivity profiling of off-targets (Lounkine
et al., 2012; Barton and Riley, 2016). The characterization
of the functional effects of compounds is often a principle
shortcoming for current in silico methods, since many protocols
only provide probability for compound affinity at a target
(Drakakis et al., 2013; Koutsoukas et al., 2013; Mervin et al.,
2015).

Existing protocols, such as the Similarity Ensemble
Approach (SEA) (Keiser et al., 2007) and Prediction of
Activity Spectra for Substances (PASS) (Lagunin et al., 2000),

provide functional annotation by training on a compound
set extracted from the MDL Drug Data Report [MDDR]
(2006). These implementations however only utilize active
bioactivity data (experimentally validated negative bioactivity
data are disregarded), which has been shown to hinder
performance. Additional problems with MDDR are inconsistent
annotation, since many activity classes are not on the target
level (for example the activity class ‘anti-helminthic activity’)
and relatively small numbers of compound-target pairs are
available for modeling, compared to other current databases
(Lagunin et al., 2000). Other cheminformatics approaches
discriminate between agonist from antagonist classifications
of ligands at nuclear receptors across targets simultaneously
(within a single-model architecture) (Lagarde et al., 2017).
This architecture could negatively affect performance due
to the imbalance between the functional data and the
requirement to assign probability scores across all target
proteins.

We have in this work explored various cascaded approaches
to predict the functional effects of orphan compounds and
contrasted these with a single-model architecture (similar to
previous approaches). To this end, we have assimilated a
dataset of 22,836,983 compound-target annotations available
in the Chemistry Connect (Muresan et al., 2011) repository
across a range of G-protein-coupled receptors (GPCRs), Nuclear
Hormone Receptors (NHRs), ion channels and transporters.
The dataset comprises 817,239 binders (unknown if activating
or inhibiting) and 20,761,260 non-binding compounds from
binding assays, as well as 226,045 activating and 1,032,439
inhibiting compounds from functional assays, spanning a total
of 332 protein targets.

This work explores three different in silico architectures for
functional target prediction which are summarized in Figure 1.
Figure 1A outlines Architecture 1 (Arch1), a Random Forest
(RF) algorithm trained with all functional labels across all targets
within a single model [hence, an approach using only active
(functional) data], which serves as a baseline to compare the
cascaded, and hence more complex, architectures. Architecture
2 (Arch2), outlined in Figure 1B, is the first of two cascaded
approaches, combining stage 1 target prediction with subsequent
stage 2 functional prediction, which we rationalize could improve
performance due to the cascaded nature of models. Stage 2 of
Arch2 includes a single RF model trained on both activating
and inhibiting compounds during stage 2. In comparison,
Figure 1C depicts Architecture 3 (Arch3), which is based
on an ensemble of two independent RFs trained on either
activating or inhibiting compounds separately versus an inactive
background set.

To establish the optimal model architecture, we conducted
fivefold stratified cross validation for the three different modeling
approaches. Models were also prospectively validated using an
external testing set of 153,467 compounds, spanning 306 targets
extracted from all functional in-house AstraZeneca data after a
4-month interim from initial training set extraction. The cross
validation and time-split performance of the approaches has
provided guidance into the choice of architecture to be deployed
in-house for future triage processes.

Frontiers in Pharmacology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 613

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00613 June 7, 2018 Time: 17:38 # 3

Mervin et al. Target Prediction Including Functional Effects

FIGURE 1 | Different architectures employed for functional target prediction in this work. (A) Architecture 1 (Arch1). A single random forest (RF) algorithm is trained
with the activating and inhibiting compounds across all targets. Model output is a list of functional predictions across all targets, ranked by probability for a target and
corresponding functional label, ‘p(target_outcome)’. A probability threshold is employed to generate activating and inhibiting predictions. The functional label with the
highest probability is selected if a compound is predicted as both activating and inhibiting, i.e., ‘Target 2’ (line b) is assigned the activating label if using a probability
cut-off of 0.092. (B) Architecture 2 (Arch2). Stage 1 target prediction utilizes RF target prediction models trained using active (activating, inhibiting or binding only)
and inactive compounds on a per target basis. Compounds predicted inactive during Stage 1 (line a) are removed from further cascading and annotated as inactive.
Compounds predicted to be active during Stage 1 are subsequently profiled using Stage 2 functional prediction (line b), comprising RF models trained on the
activating and inhibiting compounds on a per-target basis. Compounds are annotated as ‘activating’ (line c) if the probability of activation is greater than inhibition
(line c), or ‘inhibiting’ if the probability of inhibition is greater than activation (line d). (C) Architecture 3 (Arch3). Stage 1 target prediction is employed in the same
manner as Arch2. Compounds predicted to be active (line b) are subsequently profiled at Stage 2 using two independent RF models, trained using either activating
or inhibiting compounds and an inactive compound set, and which are Platt scaled to ensure they are directly comparable. The probabilities of activation or inhibition
generated by the two models and compared to deduce a functional prediction. A compound is annotated as ‘activating’ if the likelihood of activation is greater than
inhibition (line c), or as ‘inhibiting’ if the probability of inhibition is greater than activation (line d). Although Arch2 and Arch3 enforce functional prediction in cases of
both low activating and inhibiting probabilities, this is preferred for this study rather than the addition of an extra label (e.g., predicted binding only).
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MATERIALS AND METHODS

Sources of Compound Training Data
AstraZeneca bioactivity data from Chemistry Connect (Muresan
et al., 2011) was mined for functional data with bioactivities
(IC50 and EC50) better than or equal to 10 µM and annotated
with functional terms based on BioAssay Ontology (BAO) assay
classifications (Vempati et al., 2012; Abeyruwan et al., 2014).
The resulting dataset was filtered for the GPCR, NHR, ion
channel and transporter targets, since they are considered to
have the highest functional annotation accuracy (in-house) and
encompass large numbers of activators which are not given in the
case of enzymes.

The full complement of functional annotations includes
various mechanisms, such as ‘activation,’ ‘antagonism,’ ‘inverse
agonism,’ ‘opening,’ ‘closing’ and ‘modulation’ (full list shown in
Table 1), which were chosen by BAO as the appropriate units to
describe what each assay measures from assay endpoints. As a
simple example, the unit EC50 was linked to ‘activation,’ whilst
IC50 was annotated with ‘inhibition.’ More complex endpoints
were assigned such that the measured activity of NHRs, GPCRs
and ligand-gated ion channel mechanism-of-action (MOAs)
were annotated as ‘agonist,’ ‘antagonist,’ or ‘partial antagonist,’
whilst voltage-gated ion channel MOAs were assigned ‘opening’
or ‘closing’ annotations.

In this study, we classified all compounds into the more
simplified binary labels of ‘activating’ or ‘inhibiting’ endpoints
using an internal mapping scheme (Table 1). Although imposing
only two (activation and inhibition) functional labels may be
an over-simplification, this is preferred to the complex situation
resulting from the original complex BAO labeling, since it reduces
training data into a binary problem per protein target, ensures
larger numbers of compounds are retrained within each MOA,
and that generated predictions are easily compared between the
complete spectra of functional predictions between targets. It is
also less algorithmically difficult to build classification models
compared to regression, thereby usually improving performance.

Compounds with conflicting activating and inhibiting
annotations were removed from the training data. The resulting
functional data set provided 226,045 activating and 1,032,439
inhibiting compounds spanning 320 different targets, the

TABLE 1 | Functional mapping schema employed in this study.

Original BAO label Simplified label

Activation Activator

Agonism Activator

Antagonism Inhibitor

Blocking Inhibitor

Closing Inhibitor

Inhibition Inhibitor

Inverse agonism Inhibitor

Opening Activator

The functional labels of biological screens were reduced into the binary
classifications of ‘activating’ or ‘inhibiting’ to reduce the complexity of the modeling
in this study.

FIGURE 2 | Distribution of training data across individual models in the four
target protein classes modeled. (A) Number of targets modeled. (B) Ratio
between inhibiting and activating compound-target data points.
(C) Distribution of activating and inhibiting compounds available for training.

distribution of which is shown in Figure 2A, with a median of
186± 1,526 activating-target compound pairs and 1,190± 5,123
inhibiting-target compound pairs per target. The distribution
of ratios between the functional labels (overall median ratio of
5.0 ± 27.4 inhibiting:activating compounds) and distribution
of functional set sizes (overall median of 163 ± 1,462 and
948± 4,955 for the activating and inhibiting classes, respectively)
are shown in Figures 2B,C.

Bioactivity data was also extracted from the same database, for
compounds with binding activity (Ki or Kd) better than or equal
to 10 µM, as a supplementary source of training data for cascaded
Stage 1 target prediction (Arch1 does not cascade predictions
and so does not utilize binding information). The resulting data
provided 817,239 binding compound-target pairs spanning 300
different targets, comprising a median and standard deviation of
752± 4,954 active compounds per target.

Non-binding (inactive) compounds were extracted from
PubChem in a same manner as described in Mervin et al.
(2015) which involved mapping to NCBI Gene IDs (GIDs) and
Protein IDs (PIDs) to the Bioactivity Assay IDs (AIDs) held in
the PubChem BioAssay repository for compounds annotated as
‘inactive’ in deposited bioactivity screens, using the PubChem
REST (Kim et al., 2016) and PubChem PUG resources (NCBI,
2007). AstraZeneca high-throughput screens deposited in the
HTS DataMart (an internal database of HTS information) were
also mined for non-binding compounds from bioactivity screens
with bioactivities (Ki, Kd, IC50, and EC50) greater than 10 µM.
Compounds with conflicting non-binding annotations were
removed from the training data.

To compile additional non-binding compounds for proteins
not covered in the internal database or PubChem (hence, for
cases where insufficient numbers of confirmed negatives were
available), additional putative inactive compounds were sampled
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from PubChem using a sphere exclusion algorithm. In this
protocol, compounds with a Tanimoto similarity coefficient
(Tc) value of less than or equal to 0.4 are sampled as a
background of putative inactive chemical space. Although sphere
exclusion selection leads to artificially inflated performance,
this is a necessary step to ensure the existence of a putative
negative bioactivity class with sufficient coverage of inactive
space to conduct target prediction. The resulting dataset includes
20,761,260 non-binders with a median of 32,320 ± 84,491 non-
binding compound-target pairs per protein target.

Training compounds were subjected to pre-processing and
filtered to retain targets with a minimum 10 activating and
inhibiting compounds, to ensure only targets encompassing
sufficient functional chemical space are retained for training.
Although not essential for Stage 2 model training, binding data
was also filtered for five or more compounds, to ensure the
minimum number of binding data is equal to the number of folds
used for cross validation. Supplementary Figure 1 shows a Venn
diagram of the bioactivity data available for training, comprising
332 models. Overall, the training set includes 20,761,260 non-
binding compounds, 817,239 binders, 226,045 activating and
1,032,439 inhibiting data points.

Compound Pre-processing and
Fingerprint Generation
RDKit (Landrum, 2006) (Version 2016.09.1) was employed to
remove structures not containing carbon from the dataset, and
to retain only compounds with atomic numbers between 21–32,
36–52, and greater than 53, as well as with a molecular weight
between 100 and 1000 Da, to retain a more ‘drug-like’ (in the
widest sense) chemical space. Compounds were standardized
using an in-house (OEChem Toolkits, 2017) script, and RDKit
was used to generate 2,048-bit (circular) Morgan fingerprints
(Morgan, 1965), with the radius set to 2.

In Silico Modeling
Single Model Functional Prediction (Arch1)
The first model architecture, Arch1 (shown in Figure 1A), utilizes
a single RF trained using the activating and inhibiting data across
all available targets, which is intended to serve as a baseline
comparison against similar online web-based approaches such as
SEA and PASS, which do not necessarily consider (non-)binding
information or consider multiple functional labels within one
model.

A RF classifier of 100 trees, with the number of features
set to ‘auto’ and max depth set to ‘20,’ was implemented
in Scikit-learn (Pedregosa et al., 2011), and trained using
the binary matrix of activating and inhibiting compound
fingerprints across all targets. The single-model provides a
RF (class) probability (computed as the mean predicted class
probabilities of the trees in the forest) of activating or inhibiting
a target on an individual compound basis, when considering
all other functional predictions for available targets. Generated
probabilities are subsequently converted into binary predictions
based on a probability cut-off [for example above 0.2 (line a)
and 0.09 (line b) in Figure 1A], which is described in-depth

throughout the next paragraph. The functional label with the
highest probability is selected in situations when a target is
considered both activating and inhibiting labels. For example,
Target 2 would be considered activated when using a cut-off of
0.092 (as indicated by line ‘b’ in Figure 1A).

In order to compare Arch1 to the cascaded methods, a
probability cut-off was applied to generate a final set of functional
predictions from the probabilities generated. This threshold
was defined as the probability providing the optimal F1-score
performance (i.e., target or class performance averaged across
the inactive, activating and inhibiting labels) from one percentile
increments across the distribution of all scores obtained during
cross validation and prospective validation, in a similar procedure
to Perezgonzalez (2015). This is an important step since a robust
method to fairly compare the different approaches is required, a
topic which will be discussed in more detail in the section entitled
“Precision and recall versus. BEDROC and PR-AUC.”

Stage 1 Target Prediction (Arch2 and Arch3)
Both Arch2 and Arch3 use Stage 1 target prediction. Here, input
compounds are subjected to Stage 1 prediction and predicted as
binding (or otherwise non-binding) based on the condition that
the output probability of binding is greater than non-binding.
Compounds predicted non-binding at this point are removed
from the further cascaded profiling, whilst compounds predicted
to bind are retained for Stage 2 functional prediction.

Stage 1 target prediction employs a similar target prediction
protocol to the one described previously by Mervin et al.
(2016) utilizing large scale inactive chemical space and active
compounds from binding and functional assays. A RF classifier
of 100 trees, with the number of features and max depth set to
‘auto’ and the ‘class_weight’ set to ‘balanced’ was implemented
in Scikit-learn. The RF was trained using the binary matrix of
inactive and active compound fingerprints on a per target bases,
whilst supplying the ‘sample_weight’ parameter within the ‘fit’
method with the ratio of active and inactive training compounds.
The implementation of stage 1 target prediction does not differ
between Arch2 and Arch3.

Stage 2 prediction (Arch2)
Stage 2 prediction is employed in two different way between
the different model architectures of Arch2 and Arch3. Both
techniques aim to assign an activating or inhibiting functional
prediction to input compounds predicted as active for a particular
target during stage 1 prediction.

As visualized in Figure 1B, Arch2 employed two cascaded
RF models overall (one RF for Stage 1 and one RF for Stage 2).
The RF for Stage 2 used the same hyper-parameters as Stage 1,
and was trained using the activating and inhibiting compound
fingerprints on a per-target basis. This RF was calibrated using
Platt Scaling using the Scikit-learn ‘calibrate_classification_cv’
method, with the number of calibration and validation folds set
to ‘3’. Thus, the predictions generated by the Stage 2 RF can be
directly interpreted as a likelihood that an input compound is an
activator or inhibitor.

A functional prediction is made for the functional label
with the largest probability output from the second cascaded
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model, i.e., if the probability of activation is higher than that
for inhibition, then the compound is classified as an activator
(and vice-versa). Thus, this procedure does not distinguish for
instances when no confident prediction can be made for the
second cascaded prediction. This behavior is preferred for the
purpose of this study, since enforcing a prediction for the highest
label regardless of confidence ensures the output between Arch1,
Arch2, and Arch3 can be compared within this study.

Stage 2 prediction (Arch3)
Figure 1C illustrates Arch3, which employed three RF models
overall (one for Stage 1 and two independent RF models for Stage
2). Both Stage 2 RFs utilize the same parameters as in Stage 1, and
are trained separately for activating and inhibiting compounds,
respectively, versus a set of inactive compounds. Probabilities
generated by both algorithms were calibrated using Platt Scaling
via the Scikit-learn ‘calibrate_classification_cv’ method, with the
number of calibration and validation folds set to ‘3’. Scaling the
independent probabilities in this manner enables the comparison
between the activating and inhibiting probabilities from both
algorithms, even though the two are distinct models. Functional
predictions are made for input compounds by selecting the
activating or inhibiting label with the largest probability.

Performance Measures: Precision and
Recall versus BEDROC and PR-AUC
Although the Boltzmann-Enhanced Discrimination of the
Receiver Operating Characteristic (BEDROC) (Truchon and
Bayly, 2007) and Precision-Recall Area Under the Curve (PR-
AUC) scores are frequently used to describe virtual screening
performance, this is not an appropriate metric to compare the
outputs between all the models benchmarked in this study.
Such metrics are based on the distribution of probabilities for
the classes for each method; however these are not comparable
between the three architectures explored, since they are on
different scales, represent different likelihoods, and are processed
to generate an overall functional prediction in different ways.

For example, Arch1 is a single model with multiple labels
hence the generated scores are low, since they are distributed
over all 664 target-function effects which overall must sum to
‘1.0’. In comparison, Arch2 uses a binary classifier on a per-target
basis for Stage 2, with hence only two probabilities are produced
for activating or inhibiting, whose output sum to ‘1.0’. Thus,
these values comprise comparatively higher values since they are
shared between two output labels. Furthermore, Arch3 uses two
different binary classifiers to deduce a final prediction in Stage
2, using the activating and inhibiting labels normalized with a
background of inactive compounds. Thus, the probabilities of
these activating and inhibiting labels do not sum to ‘1.0’, since
they are distinct models. Therefore, we considered that precision,
recall and F1-score (i.e., the actual output expected from the
deployed models) are the most suitable and robust metrics to
compare the performance of methods in the current situation.

Cross Validation Methodology
Fivefold stratified cross validation was employed in Scikit-learn
using the ‘StratifiedKFold’ method, ensuring training data is

randomly shuffled and seeded. In this procedure, the non-
binding and binding (only available for Arch2 and Arch3), and
activating and inhibiting training data is split into five folds,
whilst maintaining the ratio between compounds with different
labels in each split. Each fold is used as a test and train set for
cascaded Stage 1 and Stage 2 training and prediction. Binding
data is only utilized within training sets for Stage 1 in the cascaded
approaches, since it is only used to supplement Stage 1 training
data and not employed during Stage 2.

The ranked list of functional compound predictions is used
to calculate the optimal threshold for Arch1 (as discussed
above) and used to generate precision, recall, and F1-score for
Arch1, whilst the predicted outcome for the activating and
inhibiting compounds from each test set is used to calculate the
corresponding performance of the cascaded models. Figure 2
gives details into the size of targets in terms of the data points
available for modeling and ratio of inhibiting to activating
compounds, which is known to influence the predictivity of target
prediction models (Koutsoukas et al., 2013).

Prospective Validation Data Set
AstraZeneca bioactivity data was mined in the same manner as
described above after a 4-month interim (exactly the 4 months
after extracting training data) to obtain an external dataset of
compounds to prospectively validate the models. Compounds
with affinities better or equal to 10 µM were extracted and
employed for cascaded Stage 1 and Stage 2 prediction. The
dataset includes a total of 63,640 activating and 89,827 inhibiting
compounds for 306 targets (with the number of compounds per
target classification shown in Supplementary Table 1), spanning
both similar and dissimilar chemical space compared to the
training set (prospective validation chemical space analysis
shown in Supplementary Figure 2), with overall median Tc
values of 0.51 ± 0.21 and 0.62 ± 0.19, respectively. Class-
averaged precision, recall and F1-score were calculated for
each architecture during temporal validation, since some targets
comprise only very few test set compounds, which would hence
produce unreliable performance metrics.

RESULTS

Functional Data Available in AstraZeneca
We first analyzed the nearest-neighbor similarity distribution
per-target for each classification, to explore the chemical space
of the functional dataset and to rationalize to what extent the
different sets of compounds can be distinguished in chemical
similarity space and thus a rationale for implementing and
evaluating functional target prediction models.

Figure 3 shows the results of the nearest-neighbor similarity
distribution per-target for each classification. The overall
distributions highlight that binding (active) and inhibiting
compounds (“B-I”) are more similar to each other (median of
0.958) than both binding and activating (“B-A”) and activating
and inhibiting (“A-I”) compounds (median similarities of 0.841
and 0.835, respectively). Overall, this analysis indicated there is
some separation between the activating and inhibiting classes
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FIGURE 3 | Nearest-neighbor Tanimoto similarity of active, activating and inhibiting compounds. ECFP_4 fingerprint similarity of the compounds to compare the
three different bioactivity types, including comparison between activating versus inhibiting compounds (A-I), ligand binding-only (active) versus activating (B-A) and
binding-only (active) versus inhibiting (B-I). The most similar compound was retained per-compound, per-target to indicate the nearest neighbor similarity. The overall
distribution indicates that inhibiting compounds are more similar to their binding counterparts (B-I), in comparison to the other A-B and B-A comparisons.

of compounds in chemical space, giving us a rationale for
implementing and evaluating functional target prediction models
(statistical analysis of chemical similarity between the target
classes shown in Supplementary Table 2).

The GPCR class comprises the highest median NN similarity
between the activating and inhibiting compounds of 0.905 (and
an overall median of 0.923 between the three sets), a finding that
is corroborated in literature since small structural modifications
to GPCR-targeted ligands are known to convey major changes in
their functional activity, converting agonists into antagonists and
vice-versa (Dosa and Amin, 2016). Changes in certain moieties
are shown to affect binding outcome more than others; for
example, one study highlighted that steric modifications near
a basic nitrogen, methylation of indoles, and aniline nitrogen
substitutions appeared to play important roles in determining
functional activity while keeping overall structure (as captured
in the fingerprints employed in the current work) rather similar
(Dosa and Amin, 2016). The close proximity between functional
labels may be reflected in the performance of the models, since the
overlap of features present in both sets confounds the separation
between labels (Koutsoukas et al., 2013).

Nuclear hormone receptors are ranked as the second most
similar target class based on the NN similarity between
activating and inhibiting compounds, with a median Tc of 0.883.
A range of ligand modifications can inter-convert functional
activity due to changes in the directions in which these ligand
R-groups are positioned within the ligand-binding domains
(LBDs) of NHR cores (Huang et al., 2010). For example, one
study explicitly outlined which ring system extensions alter
the functional effects of activating compounds at the NHR
estrogen receptor (ER), due to the protrusion of additional
groups displacing the agonist conformation of α-helices in

the LBD (Parker et al., 1993). In comparison, ion channels
and transporters comprise comparatively dissimilar chemistry
between compound sets, with median Tanimoto similarities
of 0.774 and 0.779, respectively, between the activating and
inhibiting compounds, giving rise to the expectation of better
classification performance for those datasets.

Cross Validation Results
We next performed stratified fivefold cross-validation (as
described in the section “Materials and Methods”) and calculated
precision, recall and F1-score metrics for 332 targets averaged
over the fivefolds. Overall performance for each of the
architectures was next calculated using the class-average
precision and recall for the three functional labels (namely non-
binding, inhibiting and activating) obtained over the 332 targets,
the results of which are shown in Table 2.

It can be seen that the Arch1 architecture optimized for
F1-score performed with overall class-averaged precision and
recall performance of 84.5 ± 12.1 and 68.7 ± 17.5, respectively,
which provides a baseline performance for what we expected
to be superior (or certainly more complex) model architectures.
This was indeed found to be the case, since Arch2 and
Arch3 performed with target averaged precision and recall
scores of 89.4 ± 9.8 and 79.2 ± 11.4, and 92.0 ± 9.1 and
82.9 ± 11.6, respectively (using a cut-off for the label with the
largest probabilities as described in the section “Materials and
Methods”).

In order to understand the performance distribution across
different protein class labels, we next averaged precision, recall
and F1-scores across the three functional labels for each of the
GPCR, NHR, Ion Channel and NHR target classifications, as
illustrated in the second row of Table 2. Overall, results from
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TABLE 2 | Target-averaged and class-averaged performance across the inactive, activating and inhibiting labels.

Arch1 (optimal F1-score cut-off) Arch2 Arch3

Precision Recall Precision Recall Precision Recall

Cross validation Target averaged 84.5 ± 12.1 68.7 ± 17.5 89.4 ± 9.8 79.2 ± 11.4 92.0 ± 9.1 82.9 ± 11.6

Class averaged 76.1 ± 0.2 68.6 ± 0.9 89.3 ± 1.9 79.5 ± 2.7 91.9 ± 1.7 82.9 ± 3.4

Prospective validation Class averaged 59.5 ± 3.2 48.1 ± 1.3 70.9 ± 4.0 52.9 ± 3.6 70.8 ± 3.5 53.1 ± 3.6

Class averaged
(Correct at Stage 1)

– – 72.4 ± 3.3 71.0 ± 2.0 72.3 ± 2.8 71.3 ± 2.5

Performance metrics are calculated by averaging the scores obtained over all targets or classes, for each of the three labels (inactive, activating, inhibiting), which are then
averaged.

FIGURE 4 | Inhibiting and activating class averaged performance of the three
architectures during cross validation. The inactive, activating and inhibiting
label performance for Arch1 (red), Arch2 (yellow) and Arch3 (blue) are shown.
The performance profile of the three models illustrate that the two cascaded
models outperform the single-model architecture. Arch3 is also shown to
outperform Arch2, which is particularly evident for the activating recall and
precision labels. Arch1 performance was calculated using the threshold
comprising the highest overall F1-score.

this analysis outlined that the baseline model performed with the
lowest class averaged precision and recall scores of 76.1± 0.2 and
68.6 ± 0.9, whilst Arch2 performed with target class averaged
precision and recall of 89.3 ± 1.9 and 79.5 ± 2.7, and Arch3
performed with the best scores of 91.9 ± 1.7 and 82.9 ± 3.4,
respectively.

A detailed breakdown of the protein target class averaged
performance for the activating and inhibiting labels is shown
in Figure 4. Overall, the inhibiting (more often majority) label
performed with an overall class-averaged precision and recall of
75.5 and 67.3 for Arch1, 89.5 and 72.0 for Arch2 and 91.0 and 74.5
for Arch3. In comparison, the activating (more often minority)
label performed with precision and recall scores of 84.2 and 65.8
for Arch1, 79.6 and 66.7 for Arch2, and 86.1 and 74.4 for Arch3,
respectively. Hence, we conclude that Arch3 provides the optimal
performance across the architectures assessed here.

Our results indicate models frequently perform with higher
precision than recall (i.e., they are more certain about positive

predictions they do make, than being able to identify compounds
with the respective label across all of chemical space). Although
Arch2 and Arch3 provide overall superior performance profiles,
Arch1 exhibits superior activating precision (84.2) over Arch2
(79.6). We attribute this to the fact that Arch1 relies solely on
activating or inhibiting compounds, and hence a more simplistic
input space compared to Arch 2 and Arch3, which results in
a larger number of incorrectly predicted activating compounds
with fewer positive predictions with a greater propensity to be
correct.

Arch2 and Arch3 also exhibit lower recall compared to
precision, which is a consequence of the two-stage functional
prediction, when false-negative binding predictions from Stage
1 are not used as input for Stage 2 prediction. Our findings
also indicate that Arch3 can best handle the imbalance between
inhibiting and activating labels compared to Arch2, to obtain
higher activating recall and precision performance, a trend which
will be discussed in more detail in the following.

In order to test if the activating and inhibiting performance
of Arch3 models lie above that of the Arch2 approach (and
hence there is statistical value in normalizing the models using a
background of inactive compounds when cascading predictions),
we next conducted a two-sample Kolmogorov–Smirnov (KS) test
for the precision, recall and F1-score values obtained for Arch2
and Arch3 (overall results are summarized in the following, more
detailed results are shown in Supplementary Table 3). The KS test
produces p-values less than 0.05 (5% confidence threshold) for
the activating precision, recall and F1-score (3.96E−04, 7.90E−05,
and 1.95E−05, respectively) and inhibiting F1-score (4.93E−03),
indicating that Arch3 performance is statistically improved for
these performance parameters, compared to the Arch2 model
architecture.

Overall, ∼50% (166) of the Arch2 and ∼64% (214) of the
Arch3 models performed with precision and recall values greater
than or equal to 0.8, as shown in Figure 5. Thus, functional effects
of compounds can be predicted with respectable performance for
over half the target modeled. Conversely, only ∼40% (133) of
the Arch1 models performed with equivalent precision and recall
values above 0.8, as shown by the lower distribution of scores.

In total, eight targets failed to predict activating or inhibiting
molecules using Arch2 and hence received precision and recall
values of ‘0’ (shown as outliers in Figure 5). Seven of the
eight targets were assigned such scores since no predictions
were generated for the activating label, with five of these targets
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FIGURE 5 | Pairwise distribution of the relationship between precision and
recall scores for each architecture. Subplot grids in the upper right and lower
left cells visualize a scatter plot of the relationship between recall and precision
along with F1-score boundaries (f ). Diagonal plots in upper left and lower right
show stacked histograms of the precision or recall scores achieved by the
Arch1 (red), Arch2 (yellow), and Arch3 (blue) architecture. Our results show
that Arch3 provides the highest performance, for models with both high
precision and recall, with a higher distribution of scores above the F1-score
0.9 boundary line.

comprising fewer than 25 activating training instances and
an average of 92.7 inhibiting compounds for every activating
compound (92.7:1 ratio). In comparison, there was an equivalent
ratio of 15.6:1 for the models that worked, with F1-score above
0.8. Hence, we conclude here that the poor performance in these
situations was due to the domination of the inhibition class
and lack of sufficient data points for the minority (activating)
class, and conclude that datasets comprising 25 compounds
constitute the minimum to generate bioactivity models with the
architectures employed here.

We next analyzed how the Arch3 architecture handles
class imbalance with superior class averaged precision, recall
and F1-score performance, which is shown in Supplementary
Figure 3. It can be seen that this architecture performs with
superior performance than Arch2 and Arch1, with all models
comprising one or more inhibiting predictions, and only one
model with relatively few activators (18) failing to predict any
activating molecules. Since this observation is likely a result of the
independent comparison of activating or inhibiting compounds
with an inactive background set and the subsequent comparison
of Platt scaled probabilities, our most likely explanation is that
this, combined with the Platt scaling, enables the minority (more
often activating) class to assign higher confidence to predictions
to surpass the majority (more often inhibiting) functional label
predictions.

We next sought to identify the performance of the activating
and inhibiting labels for the Arch2 and Arch3 architectures
separated by the individual target classifications, as shown
in Supplementary Figure 4. Our results demonstrate that the
distribution of performance differs between classes, where the

high performance of the GPCRs and NHRs (averaged median
F1-scores of 86.8 and 84.3, respectively) can be contrasted
with transporters, and comparatively poorly performing ion
channels (with averaged median F1-scores of 77.5). Although
the poor performance for ion channels and transporters may be
unexpected due to the overall rather high separation in chemical
space between activating and inhibiting training compounds
(Figure 3), the large imbalance between the labels (as previously
outlined by the median activating versus inhibiting ratios of 6.95
and 6.58, highlighted in Figure 2B) is likely one reason for the
poor performance of these classes, particularly when considering
activating label performance.

In order to identify further factors influencing performance of
the predictivity of models, we next explored the impact of training
set size of data points with functional annotations, the similarity
of the five nearest intra-target neighbors and overall cross-
validation F1-score performance as depicted in Supplementary
Figure 5. The figure demonstrates both increasing nearest-
neighbor similarity within activating and inhibiting compounds
and overall model size are shown to improve model performance,
with a large proportion of data points clustered toward the top
right hand corner of the 3D plot. The intra-target similarity of
the models is shown to increase in accordance with training set
size, with increased likelihood to cover similar compounds in the
train and test set (which hence leads to increased performance).
In comparison, small models (with fewer than 100 compounds)
perform with more diverse performance (standard deviation of
18), due to the decreased chance of retaining similar compounds
throughout the cross validation.

The models also exhibit higher variance in nearest neighbor
similarity due to the reduced coverage of chemical space (as
previously shown in Supplementary Figures). Smaller target
models below 100 compounds with similar nearest neighbors
(Tanimoto similarity above 0.6) are shown to perform better,
supporting the view that targets with few activating or inhibiting
compounds can be reliably utilized in functional target prediction
models, providing similar chemistry to the compounds which
predictions are made for is represented within the training set.
These findings are at least partly due to the nature of cross-
validation, and the fact that data is comprised from a single source
and that in larger classes there is greater chance to have analogs
(which are then easier to predict).

This analysis (Supplementary Figure 5) also highlights the
influence of the modeling approach on the cross validated
performance of the models, with blue and red markers denoting
the Arch2 and Arch3 approaches, respectively. 97 (∼30%) of
the cascaded models have an F1-score greater than 0.95, with
63 (∼65%) of these originating from the Arch3 approach,
illustrating the superior performance of this method compared
to the Arch2 method. The figure illustrates both Arch2 and Arch3
approaches perform erratically in situations with low intra-target
similarity and small size.

Prospective Validation
The performance of the functional prediction protocols was next
analyzed using an external data set extracted from functional
screens available at AstraZeneca after a 4-month intermission
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from the initial date of training data mining. The overall class
averaged precision and recall results for the non-binding, binding
and inhibiting labels achieved during prospective validation
are shown in Table 2. Arch1 performed with a class-averaged
precision and recall of 59.5 ± 3.2 and 48.1 ± 1.3. In agreement
with cross-validation results, the cascaded models performed
with superior precision and recall, where Arch2 achieved a
precision and recall of 70.9 ± 4.0 and 52.9 ± 3.6, whilst
Arch3 performed with values of 70.8 ± 3.5 and 53.1 ± 3.6,
respectively. Therefore, a cascaded model architecture produces
more predictive models both during cross validation, as well as
when applied to a prospective data set comprising novel areas of
chemical space (Supplementary Figure 2).

The class-averaged precision, recall and F1-score performance
split between functional labels for prospective validation is
shown in Figure 6. Our findings show that although the Arch1
architecture outperforms Arch2 and Arch3 based on activating
precision (by a margin of ∼0.90 and ∼0.12 respectively), the
cascaded models far outperform the inhibiting precision score
obtained by Arch1, by a margin of ∼0.35 for both architectures.
The inhibiting and activating recall are also higher for the Arch2
and Arch3 models, and hence produce higher F1-scores for both
cascaded architectures compared to Arch1, with scores of ∼0.19
and ∼0.26 for the activating label and ∼0.47 and ∼0.46 for
the inhibiting compounds, respectively. These findings are likely
due to the single model architecture of Arch1, since the single-
model architecture creates many false inhibiting predictions due
many large classes with inhibiting data, which hence dominate
the model with higher probabilities.

In comparison to cross validation, the difference in Arch2 and
Arch3 precision, recall and F1-score performance is narrowed
for prospective validation. For example, cross validation results
showed a margin of ∼0.40 and ∼0.51 between activating and
inhibiting target class averaged precision and recall values, which
are reduced to ∼0.19 and ∼0.20 during external validation
testing.

The cascaded models have fewer compounds for Stage 1,
with hence less chemical space, and hence more false negatives.
This is shown via the striking distribution of poor Arch2 and
Arch3 recall, particularly for the activating compounds, where
87 targets (∼59% of these belong to the GPCR class) failed to
predict true-positive active compounds (i.e., ‘predicted to bind’)
during Stage 1 target prediction. The removal of testing instances
are consequently assigned recall scores of ‘0’. This problem is
further exacerbated by the imbalance of the external testing set
between functional compounds, as indicated by the ratio between
prospective validation compounds, which is applied to already
imbalanced models.

Given this observation, we next assessed only the fraction of
active compounds predicted to be positives at Stage 1 for Arch2 and
Arch3 (according to the protocol outlined in Figure 1), to give
a better indication for the benchmarked performance between
the two different cascaded methods of Stage 2 prediction (i.e.,
only compounds predicted active at line b in Figures 1B,C were
considered for this part of the analysis). As shown in Table 2,
this analysis produces class averaged recall scores for Arch2
and Arch3 of 72.4 ± 3.3 and 71.0 ± 2.0 versus 72.3 ± 2.8

FIGURE 6 | Inhibiting and activating class averaged performance during
prospective validation. Arch1 (red) generates a distinct performance profile
separate from the cascaded architectures, where Arch2 (yellow) and Arch3
(blue) exhibit significantly reduced class averaged inhibiting precision (and
hence markedly lower F1-score these labels). This is likely due the inability of
the single model architecture to counter for the imbalance between the
majority (inhibiting) and minority (activating) labels, since Arch1 is forced to
consider all functional labels across all targets at once. This factor ranks
inhibiting labels higher within the ranked list of predictions, producing higher
numbers of false positive inhibiting predictions, and thus reduces the precision
of the inhibiting label for this architecture.

and 71.3 ± 2.5, respectively, indicating the recall and F1-
score performance of is higher for Arch3 than Arch2 when
benchmarking cascaded Stage 2 performance by considering only
true positives from Stage 1 predictions.

To further explore in more detail the performance of different
target classifications between Arch2 and Arch3, we analyzed
the distribution of F1-score prospective validation performance
when only active compounds predicted to be positives at Stage 1
are considered. Supplementary Figure 7 also shows, in a similar
trend to cross validation, that the ion channels and transporter
class have a distribution of activating scores lower than the GPCR
and NHR classes due to the imbalance between the activating and
inhibiting compounds also represented in the external testing set,
whilst there is higher performance for the inhibiting classification
of compounds due to the domination of this label.

We finally assessed the applicability domain (AD) of all model
architectures using ‘distance to the training set’ as a method
(Gadaleta et al., 2016; Hanser et al., 2016), the results of which are
shown in Figure 7. The averaged five nearest neighbors (k= 5) in
the training set and the true positive rate (TPR) (defined by the
frequency of correct predictions within activating and inhibiting
testing compounds) are shown for Arch1, Arch2 and Arch3.
We see that the TPR decreases in accordance with increasing
dissimilarity from the nearest compound in the respective label
of training data across all architectures, as expected, with Arch3
performing with the highest area under the applicability domain
curve (AD-AUC) of 0.30. This analysis enables us to assign
confidence to novel predictions as follows; for example, an input
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FIGURE 7 | Prospective validation distance-based applicability domain (AD)
analysis. AD curves are shown for Arch1 (red), along with Arch2 (yellow) and
Arch3 (red). Each line performs with AUC scores of 0.22, 0.29, 0.30,
respectively, indicating that Arch3 performs with overall superior AUC when
considering the true positive rate achieved and increasing distance between
training and prospective validation compounds. The Arch1 architecture
produces similar true positive rates to the cascaded architectures for
distances beyond 0.6, indicating that all three model architectures have
difficulty in extrapolating into novel areas of the chemical space. True positive
rate is defined as the recall of the activating and inhibiting data points for each
distance bin.

compound with a near neighbor similarity between 0.8 and 0.85
would have an anticipated true-positive rate of ∼35% for Arch1,
∼78% for Arch2 and ∼81% for Arch3. We can also see that
although Arch1 performs with a comparatively low AD-AUC
of 0.22, all architectures obtain comparatively similar TPR rates
throughout increasing dissimilarity scores from 0.6 onward, and
hence models are unable to extrapolate into these dissimilar areas
of chemical space.

In a final case study, we analyzed the aforementioned study
of Drakakis et al. (2017), to illustrate a scenario where functional
prediction would have added value to a computational study. In
this work, target prediction profiles were related to prolonged
sleep bouts, where changing functional effects on receptors was
related to the change on the sleep effect of compounds. Contrary
to the reasoning gained from the in silico mechanism-of-action
analysis, Sertindole, which was expected to increase sleep bouts,
actually increased wakefulness by 44.9 min. In the absence
of functional prediction, the authors hypothesized that the
compound switched functional activity at one of the key receptors
(CHRM1), compared to the other sleep inducing compounds
(Alcaftadine, Ecopipam, Cyproheptadine, and Clopenthixol),
leading to hyperactivity and promoted wakefulness. We hence
suggest that our method could improve similar analyses by
providing vital insight into cases of unanticipated functional
changeover.

To illustrate this, we profiled the functional activity of
Sertindole at the CHRM1 receptor using Arch1, Arch2, and

Arch3. Arch2 and Arch3 predictions both indicate target specific
activation of CHRM1, compared to the four sleep inducing
compounds above. Arch1 however, did not predict CHRM1
activation or inhibition, and thus would not have predicted any
functional activity against the CHRM1 receptor.

We conclude that this case study highlights how cascaded
functional models provide vital insight into this previous work,
and that the unanticipated functional activity could have helped
to direct resources toward the experimental functional testing of
CHRM1, which was not conducted in the original study.

DISCUSSION

In this study, we present an in-depth analysis of functional
bioactivity data available in-house. We first analyzed the chemical
space of functional data, to rationalize whether the functional sets
of compounds can be distinguished using chemical similarity.
Binding and inhibiting compounds were more similar to each
other [median Tanimoto Similarity (Tc) of 0.958] than both
binding and activating or activating and inhibiting compounds
(median Tc of 0.841 and 0.835, respectively). There was
separation between functional sets giving us a rationale for
implementing and evaluating functional prediction models. We
first generated Architecture 1 (Arch1), which uses a simplistic
RF similar to existing approaches, and contrasted this with
two forms of cascaded models, namely Arch2; comprising a
Stage 2 model trained directly on the activating and inhibiting
compounds, and Arch3; comprising two independent Stage 2
models trained on either activating or inhibiting compounds,
and a set of inactive compounds, respectively. Fivefold cross
validation and temporal validation was performed using data
available at AstraZeneca after a 4-month interim. Cross validation
highlighted Arch3 achieved the highest precision, recall and
F1-scores, which we attributed to the independent comparison
of activating or inhibiting compounds with the inactive
background sets, and the subsequent comparison of Platt scaled
probabilities. In comparison, Arch1 had the lowest precision
and recall performance which we attributed to the single-model
architecture. Prospective validation indicated that Arch2 and
Arch3 outperform the Arch1 overall and hence outlined there
is benefit in cascading predictions using a more complex model
architecture. Distance-based applicability domain (AD) analysis
outlined Arch3 achieved superior AD-AUC (area under the
AD curve) and hence superior extrapolation into novel areas
of chemical space. Models will be deployed in-house to aid
with future phenotypic screening analyses. We conclude that
predicting functional effects could provide vital insight for future
studies, to annotate cases of unanticipated functional changeover,
as outlined by our CHRM1 case study.
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