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How neurons are connected in the brain to perform computation is a key issue in

neuroscience. Recently, the development of calcium imaging and multi-electrode array

techniques have greatly enhanced our ability to measure the firing activities of neuronal

populations at single cell level. Meanwhile, the intracellular recording technique is able

to measure subthreshold voltage dynamics of a neuron. Our work addresses the issue

of how to combine these measurements to reveal the underlying network structure.

We propose the spike-triggered regression (STR) method, which employs both the

voltage trace and firing activity of the neuronal population to reconstruct the underlying

synaptic connectivity. Our numerical study of the conductance-based integrate-and-fire

neuronal network shows that only short data of 20 ∼ 100 s is required for an accurate

recovery of network topology as well as the corresponding coupling strength. Our

method can yield an accurate reconstruction of a large neuronal network even in the

case of dense connectivity and nearly synchronous dynamics, which many other network

reconstruction methods cannot successfully handle. In addition, we point out that, for

sparse networks, the STR method can infer coupling strength between each pair of

neurons with high accuracy in the absence of the global information of all other neurons.

Keywords: spike-triggered regression, network reconstruction, neuronal dynamics, coupling strength inference,

inference invariance

1. INTRODUCTION

Activities of neurons are central to information encoding and processing in the brain. There have
been advances in recording neuronal population activity with single cell resolution. For instance,
calcium imaging can capture the firing activity of each individual neuron in a population (Stosiek
et al., 2003; Grewe et al., 2010). Multielectrode array (MEA) can be deployed to directly measure
extracellular signals to obtain spikes of individual neurons in a population through spike sorting
(Litke et al., 2004; Field et al., 2010; Shimono and Beggs, 2015). Meanwhile, the intracellular
recording can track the membrane potential to reveal the integration of synaptic inputs. Given
spike information of a neuronal population obtained from calcium imaging or MEA and the
membrane potential traces via intracellular recording of neurons, we ask the question of how
to combine these two types of measurement to capture the underlying network structure. In

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00101
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00101&domain=pdf&date_stamp=2017-11-08
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zdz@sjtu.edu.cn
mailto:cai@cims.nyu.edu
https://doi.org/10.3389/fncom.2017.00101
https://www.frontiersin.org/articles/10.3389/fncom.2017.00101/full
http://loop.frontiersin.org/people/167107/overview
http://loop.frontiersin.org/people/167124/overview
http://loop.frontiersin.org/people/85067/overview
http://loop.frontiersin.org/people/72237/overview


Zhang et al. Spike-Triggered Regression for Synaptic Connectivity Reconstruction

this work, we provide an answer by presenting our spike-
triggered regression (STR) method by taking advantage of the
common properties of a neuron: (i) the subthreshold dynamics
is nearly linear; (ii) the nonlinear suprathreshold dynamics
involves a stereotypical spike profile; (iii) neurons interact with
one another through spikes. By establishing a linear regression
model of the postsynaptic neuron’s voltage trace, STR captures
statistically the subthreshold voltage response of the postsynaptic
neuron triggered by the presynaptic neuronal spikes. In this
framework, the regression parameters can describe the dynamical
influence between neurons, thus enabling us to reconstruct the
underlying connectivity of the network. We demonstrate there
is an invariant relation between a regression parameter and the
coupling strength for all neuron pairs over different network
topologies and dynamical regimes. This allows us to recover
coupling strengths between neurons robustly for a neuronal
network in general.

To reconstruct neuronal networks, macroscopically, diffusion
tensor imaging can be used to study connections across cortical
areas but not on the cellular level due to its limited spatial
resolution (Le Bihan et al., 2001; Jones and Leemans, 2011).
Microscopically, tracing techniques can reveal how a neuron
projects its axon to other neurons (Callaway, 2008; Wall et al.,
2010), but still limited to a small number of neurons. Meanwhile,
many linear statistical methods, such as Granger causality
(GC) analysis (Ding et al., 2006), partial directed coherence
(Sameshima and Baccala, 1999; Baccala and Sameshima, 2001)
and directed transfer function (Kaminski and Blinowska, 1991;
Kaminski et al., 1997), have been attempted to tackle the problem
of reverse engineering network connectivity from measured
activities of neurons. For example, it has been demonstrated
that, under certain conditions, the GC connectivity of integrate-
and-fire (I&F) neuronal networks coincides with the underlying
network topology by using long (~20min) time series of spike
train or voltage trace (Zhou et al., 2013b, 2014). However, since
neuronal networks possess nonlinear dynamics, whether these
linear-based methods can be in general applied to reconstructing
connectivity is yet to be fully addressed. One can in principle
employ the information-theoretic measure of transfer entropy,
which makes no assumption of the underlying dynamics
(Schreiber, 2000; Vicente et al., 2010). Unfortunately, this
approach often suffers greatly from the “curse of dimensionality,”
i.e., required data length growing exponentially with the network
size and the order of memory in time.

To examine the efficiency of our STR method, we use
synthetic data generated from conductance-based I&F networks.
In contrast to those methods above, our STR only requires
relatively short data of 20 ∼ 100 s to accurately reconstruct the
I&F network topology and the reconstruction also succeeds
for nearly synchronous networks or densely connected
networks. Furthermore, we show that the accuracy of our
STR reconstruction can be improved by increasing data length or
sampling rate. Finally, we illustrate an example of recovering the
connection to a target neuron using the data type, for example,
the voltage trace of the target neuron is measured by intracellular
recording and other neurons’ spike trains are measured through
calcium imaging or MEA.

2. MATERIALS AND METHODS

2.1. Conductance-Based I&F Dynamics
In this work, we investigate the network reconstruction of the
conductance-based integrate-and-fire (I&F) neuronal network.
Experimentally, it has been shown that the I&F models
can capture linear subthreshold properties as well as firing
statistics of a real neuron (Carandini et al., 1996; Rauch et al.,
2003; Burkitt, 2006). Theoretically, the conductance-based I&F
neuronal models have been widely applied in large-scale neuronal
network modeling and simulations to investigate information
processing in various brain areas (Somers et al., 1995; Troyer
et al., 1998; McLaughlin et al., 2000; Tao et al., 2004; Cai et al.,
2005; Rangan et al., 2005; Zhou et al., 2013a). The I&F neuronal
dynamics is governed by the following equation,

dV i

dt
= −GL(V

i − ǫL)− Gi
E(V

i − ǫE)− Gi
I(V

i − ǫI), (1)

where V i is the membrane potential for the ith neuron in
the network, Gi

E and Gi
I are its excitatory and inhibitory

conductances, respectively. GL is the leakage conductance, ǫL
is the resting potential, ǫE and ǫI are the excitatory and
inhibitory reversal potentials, respectively. When the membrane
potential of a neuron is below the threshold Vth, the neuronal
dynamics is described by Equation (1). When the membrane
potential of a neuron reaches the threshold Vth, it is reset to
the resting potential ǫL for a refractory period τref, and evolves
again following Equation (1). An action potential of a real
neuron is signified by the event of the threshold crossing and
voltage resetting in the I&F model. This threshold-reset event
is referred to as a firing event (spike) of a neuron. The time
evolution of conductances can be explicitly expressed as Gi

E =
∑

j 6=i

∑

k s
+
ij α(σGE, σHE, t − Tj,k) + f

∑

l α(σGE, σHE, t − TP
i,l
)

and Gi
I = ∑

j 6=i

∑

k s
−
ij α(σGI, σHI, t − Tj,k), where Tj,k is

the firing time of the kth spike of the jth neuron, TP
i,l

is the
arrival time of the lth spike of the external Poisson input to
the ith neuron with strength f and rate µ. The alpha function
α(σd, σr, t) = σrσd

σr−σd

[

exp (−t/σr) − exp (−t/σd)
]

2(t), where

2(t) is the Heaviside function, has rising time constant σr and
decay time constant σd. The nonnegative values s+ij and s−ij are

the excitatory and inhibitory coupling strengths from neuron j
to neuron i, respectively. For the sake of convenience, we unify
the notation of excitatory coupling strength s+ij and the inhibitory
coupling strength s−ij into sij, which is defined as sij = s+ij if neuron
j is excitatory and sij = −s−ij if neuron j is inhibitory. Therefore, a

positive sij indicates an excitatory coupling whereas a negative sij
an inhibitory coupling.

In our work, we use dimensionless unit for membrane
potentials, in particular, Vth = 1, ǫL = 0, ǫE = 14

3 , ǫI = − 2
3 . The

corresponding unscaled physiological values are Vth = −55mV,
ǫL = −70mV, ǫE = 0mV, ǫI = −80mV (McLaughlin
et al., 2000; Cai et al., 2005; Rangan et al., 2005; Zhou et al.,
2013a). Time constants retain their dimension with the unit
ms. We set τref = 2ms and the conductance time constants
σGE = 2ms, σHE = 0.5ms, σGI = 5ms, σHI = 0.8ms.
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Conductance has the unit ms−1. In our simulation, GL =
0.05ms−1, which corresponds to the physiological membrane
time constant 20ms. The numerical method we use to evolve the
system (Equation 1) is a fourth order Runge-Kutta method with
spike-spike corrections (Rangan and Cai, 2007; Zhou et al., 2009,
2010).

2.2. Spike-Triggered Regression and
Synaptic Connectivity Reconstruction
2.2.1. The Method
To optimally predict the subthreshold voltage trace of neuron i
using its own voltage history and the spike train history of other
neurons, we establish the following regression model

V i
t = β0

i +
p1

∑

k=1

βk
i V

i
t−kτ +

∑

j 6=i

p2
∑

l=1

αl
ijS

j

t−lτ
+ ǫit for t ∈ Ji, (2)

for the voltage time series V i
t of the ith neuron in a network of

N neurons, where S
j
t is the binary spike train time series of the

jth neuron. S
j
t = 1 when the jth neuron generates a spike in the

time interval [t, t + τ ] and S
j
t = 0 otherwise. The sampling time

interval length τ is set to a typical value 0.5ms in the following
(See Results for discussion). The parameters p1 and p2 are the
regression orders of V i

t on its own history and on the history of
spike trains of other neurons, respectively. The value of p1 and
p2 can be determined using the Bayesian information criterion
(Schwarz, 1978). The complication of nonlinear threshold-reset
dynamics is excluded in the linear regression through choosing
t from the subthreshold region Ji, such that neuron i does not
spike or stay refractory in the time interval [t − p1τ , t] for
t ∈ Ji. Clearly, in all such time intervals

[

t − p1τ , t
]

with
t ∈ Ji, the membrane potential of the ith neuron remains in
the subthreshold region. Parameters βk

i and αl
ij are determined

through the least-square linear regression (Weisberg, 2013). The
parameter βk

i represents the contribution to the prediction of
V i
t from the subthreshold voltage history of neuron i at time

lag k while the parameter αl
ij represents the contribution to

the prediction of V i
t from the spike train history of neuron j

at time lag l. ǫit is the residual in regression models indicating
the prediction error of the ith neuron’s voltage at time t by
incorporating the history of the ith neuron’s own voltage and
other neuron’s spike trains.

The regression problem of Equation (2) can be
explicitly solved from data as follows. By defining
ai ≡ [ Eβi, Eαi1, · · · , Eαij, · · · , EαiN]

T , j 6= i, where Eβi = [β0
i , · · · ,β

p1
i ],

Eαij = [α1
ij, · · · ,α

p2
ij ], (·)T denotes matrix transpose,

and xit ≡ [ EV i
t , ES1t · · · , ES

j
t , · · · , ESNt ]T , j 6= i, where

EV i
t = [1,V i

t−τ , · · · ,V i
t−p1τ

], ESjt = [S
j
t−τ , · · · , S

j
t−p2τ

], we
can cast Equation (2) into the following form

V i
t = aTi x

i
t + ǫit for t ∈ Ji.

The least-square regression yields

ai = argmin
(

∑

t∈Ji
(

V i
t − aTi x

i
t

)2
)

with an explicit expression

for ai

ai =





1

ni

∑

t∈Ji
xit

(

xit
)T





−1 



1

ni

∑

t∈Ji
V i
tx

i
t



 ,

where ni is the number of discrete time point in Ji. By the
central limit theorem, ai is asymptotically Gaussian when ni
becomes sufficiently large, i.e., the length of time series becomes
sufficiently long. The covariance of ai can be estimated as

cov (ai) =





1

ni

∑

i∈Ji
xit

(

xit
)T





−1 



1

ni(ni − 1)

∑

i∈Ji
ǫi2t x

i
t

(

xit
)T









1

ni

∑

i∈Ji
xit

(

xit
)T





−1T

, (3)

which quantifies the uncertainty of the corresponding parameters
obtained through regression. By Equation (3), the covariance
of regression parameters is proportional to the variance of the
regression residual ǫit . In general, the source of noise, e.g., the
measurement error on voltage or spike timing, can influence the
quality of synaptic inference.

2.2.2. Significance Test
To reconstruct the connectivity between neurons, we borrow the
idea of Granger causality (GC), which identifies causal influence
from time series Xt to Yt if a better prediction of Yt can be
obtained by incorporating the history of Xt (Granger, 1969;
Geweke, 1982; Ding et al., 2006). It can be seen from Equation (2)
that if αl

ij vanishes for all l for a certain pair of neuron i and

neuron j, the past information of S
j
t has no utility in reducing

the prediction error ǫit of V
i
t , then neuron j does not causally

influence neuron i. In contrast, if αl
ij 6= 0 for some l, neuron j

influences neuron i. Therefore, we formulate the following null
hypothesis

H0 :α
l
ij ≡ 0

for l = 1, 2, · · · , p2. Note that H0 is a family of hypotheses, in
which αl

ij = 0 holds simultaneously for all l. Given a family-

wise significance level r, we consider the Bonferroni correction
(Shaffer, 1995), by which the hypothesis αl

ij = 0 is tested for

each l simultaneously with significance level r/p2. Then, one
can achieve at least 1 − r confidence if H0 is rejected. Note
that αl

ij = 0 holds simultaneously for all l is equivalent to

α
lij
ij = 0, where lij = argl max

∣

∣

∣
αl
ij/σ

l
ij

∣

∣

∣
, σ l

ij is the standard

deviation of αl
ij estimated through Equation (3) and αl

ij/σ
l
ij is

asymptotically standard Gaussian. For simplicity of notation, we

define Mij = α
lij
ij . Intuitively, Mij represents the αl

ij that is most

likely nonzero over all l, thus Mij = 0 guarantees αl
ij = 0 for

all l. In the numerical experiments, we observe thatMij is usually

also the peak value of αl
ij as a function of l. Given significance

level r, we reject H0 if
∣

∣M̃ij

∣

∣ > F−1
(

1− r/2p2
)

, where F−1(·)
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is the inverse function of F(x) = 1√
2π

∫ x
−∞ exp

(

−t2

2

)

dt,

which is the cumulative distribution function of the standard
Gaussian distribution N (0, 1) and M̃ij = Mij/θij. Here, θij =
σ
lij
ij is the standard deviation of Mij. Otherwise, i.e.,

∣

∣M̃ij

∣

∣ 6

F−1
(

1− r/2p2
)

, we acceptH0.WhenH0 is rejected, we conclude
from Equation (2) (as further discussed below) that, for a
positiveMij, neuron i receives excitatory influence from neuron j,
whereas, for a negativeMij, neuron i receives inhibitory influence

from neuron j. Note that, by the analysis in section 3.1, αl
ij is

obtained through regression and can be further interpreted as the
subthreshold response kernel triggered by the presynaptic spikes,
we term our method as the spike-triggered regression method.

3. RESULTS

3.1. Inference of Coupling Strength
It can be seen intuitively from Equation (2) that αl

ij encodes

the information of how the history of spike train of neuron
j contributes to the prediction of the subthreshold voltage of
neuron i. However, it remains an important issue of how αl

ij is

related to the underlying neuronal dynamics, in particular, the
synaptic coupling structure sij. In the following, we investigate the
conductance-based I&F dynamics (Equation 1) to address this
issue.

3.1.1. Relation between Mij and sij
We first numerically investigate Mij as a function of sij using a
two-neuron I&F network with a unidirectional connection from
neuron 1 to neuron 2 only. There are two possible situations
of connections, excitatory or inhibitory. For either case, we
can observe in Figure 1 that Mij is proportional to sij for the
excitatory coupling (sij > 0) or the inhibitory coupling (sij <

0) from neuron 1 to neuron 2. For the uncoupled direction
from neuron 2 to neuron 1, Mij stays nearly 0. This observation
suggests the following linear relations:

Mij = BEs
+
ij for sij = s+ij > 0,

Mij = BIs
−
ij for sij = −s−ij < 0,

(4)

while Mij ≡ 0 for uncoupled directions, where BE is a positive
proportionality constant and BI is a negative proportionality
constant. In the following, we use numerical examples to explain
this linear relation as well as αl

ij in terms of the I&F dynamics.

3.1.2. Response Kernel αl
ij

To understand the relation between Mij and the coupling
strength sij of the I&F network, we first rewrite Equation (2) as

V i
t − β0

i −
p1

∑

k=1

βk
i V

i
t−kτ =

∑

j 6=i

p2
∑

l=1

αl
ijS

j

t−lτ
+ ǫit for t ∈ Ji. (5)

For the convenience of discussion, we denote the left hand side
of Equation (5) as 1V i

t , which can be regarded as a filtered

subthreshold voltage trace of neuron i. Because S
j

t−lτ
is a binary

spike train time series, αl
ij as a function of l can be interpreted

FIGURE 1 | Linear relation between Mij and sij . The time series are generated

from a unidirectional two-neuron I&F dynamics (Equation 1) with coupling

strength s21 varying from −0.02 to 0.02 and s12 ≡ 0. Note that a positive s21
indicates an excitatory coupling whereas a negative s21 indicates an inhibitory

coupling. Each neuron receives independent external Poisson input with

strength f = 0.012 and rate µ = 1ms−1. Red circles represent the coupled

direction from neuron 1 to neuron 2 and blue circles represent the uncoupled

direction from neuron 2 to neuron 1. Black lines are a linear fit through the

origin for the excitatory and the inhibitory coupling, respectively. The

proportionality constants in Equation (4) are determined to be BE = 0.32 and

BI = −0.15 for the coupled direction.

as the linear response kernel of the filtered subthreshold voltage
trace 1V i

t upon receiving a spike from neuron j. In Figure 2,
we explore the contribution of each regression component to the

prediction ofV
(2)
t and plot the profile of αl

21 for the unidirectional
two-neuron I&F network. For both excitatory and inhibitory

coupling, we can observe from Figures 2A,C that 1V
(2)
t is small,

nearly overlapping with ǫ
(2)
t , when V

(2)
t evolves smoothly within

an inter-spike interval of neuron 1. This confirms that the smooth
subthreshold dynamics of the I&F neuron can be well captured
by the linear prediction of its own history in the absence of spikes
from the other neuron.

Figures 2A,C also show that there is a spikelet in 1V
(2)
t

right after a spike of neuron 1. Intuitively, this spikelet structure
arises from the rapid change of voltage upon receiving a spike
from a presynaptic neuron, and is quantified in the following
analysis. Because the subthreshold voltageV i

t for neuron i evolves
smoothly when there is no spike input, it can be well predicted
by the linear combination of its own history obtained through
regression as follows,

V i
t ≈ β0

i +
p1

∑

k=1

βk
i V

i
t−kτ .

When neuron i receives a presynaptic spike from neuron j (say,
excitatory) at time t0 ∈ [t − mτ , t − (m − 1)τ ], where m is an
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FIGURE 2 | Regression components in STR. (A) Spikes of neuron 1 (black), subthreshold voltage trace of neuron 2 (blue), the filtered subthreshold voltage trace

1V
(2)
t (red), and the regression residual ǫ

(2)
t (cyan) are plotted for the two-neuron I&F network with a unidirectional excitatory connection from neuron 1 to neuron 2 for

which s12 = 0, s21 = 0.08. (B) αl21 as a function of l obtained from the same network as in (A). (C,D) for the case of inhibitory connection. s12 = 0, s21 = −0.2. Note

that for both excitatory and inhibitory couplings, we have M21 = α
(2)
21 (i.e., lij = 2), which attains the peak (absolute) value of αl21.

integer satisfying 1 6 m 6 p2, V
i
t can be expressed as

V i
t ≈ β0

i +
p1

∑

k=1

βk
i V

i
t−kτ + s+ij

[

vE(1t)−
m−1
∑

l=1

β l
ivE(1t − lτ )

]

,

in which 1t = t − t0, vE(1t) is the excitatory postsynaptic
potential of the unit coupling strength in response to a spike.
Therefore, 1V i

t ∝ s+ij in the case of excitation and similarly

1V i
t ≈ s−ij [vI(1t) − ∑m−1

l=1 β l
ivI(1t − lτ )] ∝ s−ij in the case

of inhibition. Note that the above analysis depends only on the
linearity of the postsynaptic potential response and the form of
postsynaptic potentials vE(1t) and vI(1t) can be general, not
limited to dynamics (Equation 1). Subtracting the contribution of
∑

j 6=i

∑p2
l=1

αl
ijS

j

t−lτ
from1V

(2)
t yields small residuals (prediction

errors) around spikelets as seen in Figures 2A,C. That is, the
spikelet structure in 1V i

t can be quantified by the linear response

kernel αl
ij (Figures 2B,D). As a consequence, αl

ij is linearly related

to sij. This in turn underliesMij being linearly proportional to the
coupling strength sij as exhibited in Figure 1.

3.2. Inference Invariance
We have established above the linear relation between Mij and
the coupling strength sij. Next, we investigate the issue of whether
this linear relation is invariant across different dynamical regimes
of the neuronal network. Specifically, we study the behavior of the
proportionality constants BE and BI in Equation (4) for different
network input rate µ and strength f . Figure 3A (or Figure 3D)
displays the result of our scanning of Mij as a function of f and
µf for a fixed synaptic coupling s21 = 0.01 (or s21 = −0.01),
s12 = 0 for a unidirectional two-neuron network. Note that µf
is the mean input current of the Poisson input. In our parameter
scan, the Poisson input strength f ranges from 0.0016 to 0.1, the
Poisson input current µf ranges from 0.012 to 0.062, thus the
range of the Poisson input rate µ is from ∼0.1ms−1 (100Hz)
to ∼40ms−1 (40 kHz) correspondingly. The network dynamics
driven by the above Poisson inputs covers a wide variety of
dynamical regimes from the highly fluctuating regime to the
mean driven regime as firing rate changes from∼1 to 150 Hz.

As observed from Figure 3, for the uncoupled direction, M12

always remains nearly 0 across different dynamical regimes;
whilst for the excitatory (inhibitory) coupling, M21 is nearly a
positive (negative) constant across different dynamical regimes.
Therefore, we can conclude that, over broad dynamical regimes,
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FIGURE 3 | Inference invariance across different dynamical regimes. Upper panel: (A) M21, (B) M12, and (C) l21 as a function of f and µf for the excitatory network.

Colors code the value of M21, M12, and l21 with the corresponding colorbars. Lower panel: (D–F) correspond to the inhibitory case. Both the abscissa and the

ordinate are on the log scale in (A–F). The time series are generated from the two-neuron network of I&F dynamics (Equation 1) with a unidirectional coupling

s21 = 0.01, s12 = 0 for the excitatory case and s21 = −0.01, s12 = 0 for the inhibitory case. The Poisson input strength f ranges from 0.0016 to 0.1, the Poisson

input current µf ranges from 0.012 to 0.062, thus the Poisson input rate µ covers the range from ∼0.1ms−1 (100Hz) to ∼40ms−1 (40 kHz) correspondingly.

the coupled direction can be well distinguished from the
uncoupled direction. It is important to emphasize that BE (or
BI) is approximately a constant over a wide range of dynamical
regimes for the excitatory (or inhibitory) coupling between
neurons. As will be seen below, BE (or BI) remains the same
for the inference of synaptic coupling between different pairs of
neurons in a neuronal network. If the proportionality constant
BE (or BI) is known, we can recover the excitatory (or inhibitory)
coupling strength sij by sij = Mij/BE (or sij = −Mij/BI). In the
following, we show that the coupling strengths between neurons
obtained from different dynamical regimes can be used to verify
the consistency of prediction of the network structure.

For the I&F dynamics (Equation 1), it can be clearly seen that

from Figures 3C,F that the time lag lij ≡ 2 (i.e., Mij ≡ α
(2)
ij ),

which corresponds to the peak of the response kernel αl
ij, for both

excitatorily and inhibitorily coupled directions across different
dynamical regimes. This is consistent with what is presented in
Figures 2B,D, where Mij attains the peak (absolute) value of αl

ij

at l = 2 for both excitatory and inhibitory couplings. Therefore,
in the following discussion, we will set lij ≡ 2 and H0 will be

rejected when
∣

∣M̃ij

∣

∣ > F−1 (1− r/2).

3.3. A Five-Neuron Network
We have presented above the case of two-neuron I&F networks
to illustrate our method. We now turn to the question of

how well our STR method can perform for a multi-neuron
network with complex connectivity motifs and different neuron
types. Here, we apply our STR method to an I&F network
of five neurons consisting of three excitatory neurons and
two inhibitory neurons with various coupling strengths (see
Figure 4A). Using 20 s of the voltage and spike train time series,
we can successfully reconstruct the topological connectivity
of the network (see Figure 4B). By the property of inference
invariance, using BE = 0.32 and BI = −0.15 obtained
from the two-neuron network in Figure 1, we can even recover
excitatory and inhibitory coupling types and strengths as shown
in Figure 4B. The corresponding 99% confidence intervals for
the values of couplings are also displayed in Figure 4B. Note that
the true values of the coupling strength indicated in Figure 4A all
fall within the 99% confidence intervals. In this network there is a
type of motif of neuron X presynaptically coupled to neuron Y , Y
in turn to neuron Z, i.e.,X → Y → Z (for example, in Figure 4A,
1 → 2 → 3, 3 → 4 → 5, 4 → 5 → 1 and 4 → 5 → 2
are of this motif). In this motif, X does not influence Z directly,
and it influences Z only indirectly through Y . As demonstrated
in Figure 4, our STR method is able to differentiate the direct
influence from the indirect influence and reconstruct the true
synaptic connectivity.We emphasize that it takes only 20 s of data
for our STR method to provide a rather precise reconstruction of
synaptic connectivity with an accurately recovered connectivity
strength sij.
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FIGURE 4 | STR reconstruction of an I&F network of 5 neurons. (A) Connectivity of the network. Excitatory neurons (red circles) and inhibitory neurons (blue circles)

interact with one another through the excitatory couplings (red arrows) and the inhibitory couplings (blue arrows). The coupling strength is labeled on the

corresponding arrow with the value of sij × 102. Each neuron receives independent external Poisson input with strength f = 0.02 and rate µ = 1ms−1. These neurons

fire at about 40Hz. (B) Network connectivity reconstructed through STR with significance level r = 0.01 using voltage and spike train time series of time length 20s

generated from I&F neuronal dynamics (Equation 1) with the network structure in (A). Invoking the inference invariance with BE = 0.32 and BI = −0.15 obtained from

the two-neuron network in Figure 1, we label the recovered coupling strength sij = Mij/BE and −Mij/BI on the predicted excitatory and inhibitory coupling directions,

respectively. The predicted values of sij with 99% confidence intervals are in good agreement with the true coupling strengths of the underlying network.

3.4. 100-Neuron I&F Network
Reconstruction
We next illustrate our STR method can be successfully used to
recover a neuronal network of large size. We apply our STR
method to 100-neuron network (80 excitatory neurons and 20
inhibitory neurons) with random topological connectivity of
different coupling strengths. The absolute coupling strength |sij|
is generated from the uniform distribution U(0, 0.01) to describe
the diversity of coupling strength. Figure 5 displays the results
for a sparse network and a dense network with connection
probability of 15 and 70%, respectively. The sparse network
exhibits asynchronous firing activity as in Figure 5A whereas
the dense network exhibits nearly synchronous firing activity as
shown in Figure 5D. The effectiveness of our STR reconstruction
is demonstrated in Figures 5B,C,E,F, respectively, for both
networks.

In Figures 5B,E, each connected pair of neurons is
represented by a dot which describes the relation between
Mij and sij. The dots are tightly concentrated around the straight
lines of the linear relations (Equation 4) between Mij and sij.
It should be stressed that, as with the case of the five-neuron
network above, the linear relation between Mij and sij with BE
and BI obtained from the two-neuron network persists and is
robustly preserved over different pairs of neurons with different
coupling strengths for a large neuronal network. Therefore, the
value of Mij can be used to predict both the coupling type and
the coupling strength from neuron j to neuron i. The width of
the spread of dots around the straight lines is determined by
the mean value of θij (standard deviation of Mij) averaged over
all directions, which can be used to quantify the uncertainty of
reconstruction. In both Figures 5B,E, the mean values of θij are
∼ 9 × 10−5. As will be discussed below, the spread width can be
reduced by increasing the data length in the STR analysis.

We further note that there are some coupled directions
incorrectly predicted as uncoupled (green dots in Figures 5B,E).

This arises from the fact that, when the coupling is sufficiently
weak, the strength of Mij can be comparable to or even smaller

than its standard deviation, making H0 unlikely to be rejected

when a finite length of data is used. On the other hand, for a
fixed length of time series, when a coupling is sufficiently strong,
the value of Mij can be much larger than its standard deviation,

yielding a correct rejection of H0. To quantify to which extent
a weak coupling can still be successfully predicted, we define

excitatory and inhibitory critical values ScE and S
c
I as follows. First,

we reconstruct the topological connectivity of the network with
significance level r (we usually set r = 0.01) using time series of

certain fixed duration. Then we compare the predicted and the
true connectivity and locate the values of ScE and ScI so that, for

all couplings satisfying sij > ScE or sij < ScI , 99% of them can
be correctly predicted. Clearly, the closer the critical value is to

0, the weaker a coupling that we can correctly predict through

our STR, hence the more accurate the network reconstruction.
In Figures 5B,E, which use 100 s of voltage and spike train times
series, the critical values for our STR reconstruction are ScI ∼
−0.002 for inhibitory couplings and ScE ∼ 0.0008 for excitatory
couplings.

Figures 5C,F displays the histogram of the predicted Mij for
the uncoupled pairs. As expected, the predicted Mij for the
uncoupled directions distributes around 0 and ∼99% of the
uncoupled directions are correctly predicted, which conforms
with the significance level r = 0.01. The histogram ofMij shown
in Figures 5C,F is not necessarily Gaussian because each Mij is
from a Gaussian distribution with a different variance.

In Figure 5D, the neuronal network exhibits a nearly
synchronous global oscillation of ∼35Hz and the firing pattern
of each individual neuron is relatively irregular due to the
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FIGURE 5 | STR reconstruction of a 100-neuron (80 excitatory and 20 inhibitory) I&F network of random connectivity with connection probabilities of 15% (upper

panel) and 70% (lower panel). The absolute coupling strength |sij | of each coupled direction is generated from the uniform distribution U(0, 0.01). Each neuron receives

independent external Poisson input with strength f = 0.012 and rate µ = 1ms−1. (A,D) Raster plots of the network firing events, which indicate an asynchronous

dynamics in (A) and a nearly synchronous dynamics in (D). (B,E) Mij vs. the true coupling strength sij . Each coupled direction is represented by a dot. Shown are

directions correctly reconstructed as excitatory (red dots) or inhibitory (blue dots) and the directions incorrectly reconstructed as uncoupled (green dots). Black straight

lines indicate the linear relations (Equation 4) between Mij and sij with the proportionality constants BE = 0.32 and BI = −0.15 obtained from the two-neuron network

in Figure 1. The mean values of θij , which determine the width of the spread of dots around the straight lines, are ∼ 9× 10−5. The blue and red vertical lines indicate

critical values Sc
E
∼ 0.0008 and Sc

I
∼ −0.002, respectively. For all couplings satisfying sij > Sc

E
or sij < Sc

I
, 99% of them can be correctly predicted. (C) Histogram of

the predicted Mij for the uncoupled directions. Shown are directions incorrectly predicted as excitatory (red) or inhibitory (blue) couplings and those correctly predicted

as uncoupled (cyan). Here, we use voltage and spike train time series of 100 s with significance level r = 0.01. As expected, the area under the cyan curve in (C) or (F)

constitutes ∼99% of the uncoupled direction.

stochastic Poisson input. In such case, our STR method can
still reconstruct the underlying synaptic coupling. Note that the
network dynamics shown in Figure 5D is not dominated by
inhibition and the firing rate of each neuron is close to the global
oscillation frequency. These dynamical features are different
from those of the synchronous irregular regime as described in
Brunel (2000) where the dynamics are dominated by inhibition
and the firing rate of each neuron is much lower than the global
oscillation frequency. Furthermore, the dense connectivity also
gives rise to a strong effect of indirect influence (i.e., influence
mediated by other neurons) between neurons, making it difficult
to uncover their true couplings. However, as demonstrated in
Figure 5, our STR network reconstruction method performs
surprisingly well even for nearly synchronous, densely connected
I&F neuronal networks.

Through further examination of many networks with
connection probability from 5 to 70% , we can conclude that
our STR is able to reconstruct accurately the connectivity of
both sparse and dense networks in either asynchronous or nearly
synchronous dynamical regime.

3.5. STR Reconstruction Accuracy
As is demonstrated above that our STR method can reconstruct
accurately the I&F neuronal synaptic connectivity using time
series of 20 ∼ 100 s, we further address issues of how one can
improve the prediction accuracy. Intuitively, a longer data length
should reduce the statistical error and thus improve the network
reconstruction accuracy. To determine how long one needs for
time series in order to achieve a desired accuracy, we investigate
the relation between the STR reconstruction accuracy and the
data length T. In Figures 6A,B, we present numerical results
of two types of quantifications of the network reconstruction
accuracy.

First, we consider θij, which represents the statistical
uncertainty of Mij. Given a coupled direction with coupling
strength sij (without loss of generality, we consider sij > 0),
the mean value of Mij is approximately BEsij. It can be easily
seen that, the smaller θij, the more likely the hypothesis Mij =
0 can be correctly rejected. The confidence interval of the
predicted coupling strength is determined by θij as Mij/BE ±
F−1 (1/2+ c/2) θij/BE, where c is the confidence level, F

−1(·) is
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FIGURE 6 | STR reconstruction accuracy as a function of data length T and sampling interval length τ . Here, we fix a random I&F network of 100 neurons (80

excitatory and 20 inhibitory) with connection probability 30% and use different data lengths or sampling interval lengths to examine the accuracy of the STR

reconstruction. (A) θij averaged over all directions in the network as a function of data length T. Black dashed line indicates a T−
1
2 scaling. (B) |Sc

E
| (red) and |Sc

I
|

(blue) as a function of data length T. Black dashed line indicates a T−0.65 scaling. (C) |Sc
E
| (red) and |Sc

I
| (blue) as a function of τ . We fix τ = 0.5ms in (A,B) and

T = 100 s in (C).

the inverse function of F(x) = 1√
2π

∫ x
−∞ exp

(

−t2

2

)

dt. Clearly,

given c and BE, the smaller θij is, the more accurate the predicted
coupling strength Mij/BE. To represent the overall accuracy of
our synaptic connectivity reconstruction, in Figure 6A, we plot
the mean value of θij averaged over all directions, which controls
the width of the spread of dots around the straight lines as in
Figures 5B,E, as a function of data length T. We can see that it

follows a T− 1
2 scaling as expected from the central limit theorem.

As a second quantification, we use the excitatory and
inhibitory critical values ScE and ScI of coupling as the indicator of
the accuracy of the network reconstruction. In Figure 6B, both ScE
and ScI possess approximately a power law decay as the data length
increases. Their decay rate is determined empirically as T−0.65,

which is slightly faster than T− 1
2 . As discussed above, the smaller

the critical (absolute) values ScE and ScI , the more accurate the
weak coupling strengths can be predicted, thus the better network
reconstruction.

Based on the above observations, we can conclude that the
accuracy of the STR reconstruction follows a scaling of at least

T− 1
2 as the data length T increases. Therefore, if one desires to

achieve a factor of Q (Q > 1) improvement in the accuracy of
STR reconstruction (i.e., a 1/Q times smaller confidence interval,
or to detect a 1/Q times weaker coupling strength), data of Q2

times longer length is required.
The accuracy of reconstruction can be further improved

through reducing the sampling interval length τ , i.e., increasing
the sampling rate. Intuitively, as one samples at a higher rate,
i.e., a smaller τ , more information of detailed dynamics is
preserved, hence more accurate the network reconstruction. This
is confirmed in Figure 6C. Note that a change of the τ value
leads to a change of the values of BE and BI in the linear
relation (Equation 4) betweenMij and sij. The underlying reason
is as follows. As τ vanishes, with the self-prediction residual
1V i

t decreasing for the smooth dynamics, the reduction of the

magnitude of its response kernel αl
ij follows the same τ scaling.

Therefore, BE and BI should be recalibrated when a different

τ is used in our STR reconstruction. Furthermore, the firing
rate of presynaptic neurons could also influence the accuracy
of synaptic connectivity reconstruction. The covariance of αl

ij is

approximately inversely proportional to the covariance of the
presynaptic neurons spike trains. Therefore, if the firing rate
of presynaptic neurons is too low, one may need to use longer
time series to obtain a high signal-to-noise ratio for an accurate
recovery of synaptic connectivity.

3.6. Detection of Synaptic Couplings to a
Target Neuron
Under the situation where voltage and spike train information
of all neurons in the I&F network can be obtained, we
have demonstrated the efficiency of our STR method for
connectivity reconstruction. However, to apply the STR method
to physiological experiments, one may encounter certain
constraints from the recording techniques. In experiments, the
voltage trace of very few neurons can be acquired through
intracellular recording since it is rather difficult to perform
intracellular recording on a large set of neurons simultaneously.
Nevertheless, we can consider a setup in which the voltage trace
of only a target neuron is recorded and the spike trains of many
other neurons in the network are obtained through other means,
say, calcium imaging (Stosiek et al., 2003; Grewe and Helmchen,
2009; Grewe et al., 2010) or Multielectrode array (MEA) (Litke
et al., 2004; Field et al., 2010; Shimono and Beggs, 2015). Applying
the STR method to this type of data, we are able to reconstruct
the synaptic connectivity from the recorded neuronal population
to the target neuron. An example is illustrated in Figure 7. For
the same network of 100 neurons as in Figure 5A, we choose
Neuron 13 as the target neuron and use our STR method to
recover the network couplings to Neuron 13. Note that, we can
think of this example as sampling 100 active neurons from a large
cortical circuit and the effect of all the unrecorded neurons on
each recorded neuron is modeled by an external Poisson input
with strength f = 0.012 and rate µ = 1ms−1. In general, if spike
trains of a much larger neuronal population can be recorded, we
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FIGURE 7 | STR reconstruction of synaptic couplings to a target neuron in the I&F network of 100 neurons (Neurons 1 to 80 are excitatory and Neurons 81 to 100 are

inhibitory) as in Figure 5A. We use the voltage time series of the target Neuron 13, and the spike trains of the other neurons for the STR reconstruction. (A) The

underlying synaptic couplings to Neuron 13. (B) The predicted synaptic couplings to Neuron 13. The other neurons are arranged on the circle and the couplings

among them are not shown. The red and blue arrows indicate excitatory and inhibitory couplings to Neuron 13, respectively. The width of an arrow indicates the

strength of the coupling. (C) Comparison of the true coupling strengths (blue circles) and the predicted coupling strengths (red dots) to Neuron 13. The 99%

confidence interval for each predicted coupled direction is indicated by the error bar around each red dot. We predict the coupling strengths using the proportionality

constants BE = 0.32 and BI = −0.15 obtained from the two-neuron network in Figure 1. Note that only one coupled direction (from Neuron 46 to Neuron 13) is

incorrectly predicted as uncoupled (the green circle in C). Its true coupling strength s13,46 = 0.00017 is much weaker than the excitatory critical value Sc
E
∼ 0.0008

shown in Figure 5. Here, we use 100s of data with significance level r = 0.01.

could recover these corresponding synaptic connections on the
dendritic tree of the target neuron. Here, 100 s of data is used
with significance level r = 0.01 for reconstruction. Incidentally,
we can choose any neuron in the network as a target neuron and
obtain a reconstruction similar to what is shown in Figure 7.
Comparing Figures 7A,B, we can observe that, except for one
very weakly coupled direction (46 → 13), the other couplings
to the target neuron are successfully recovered. Displayed in
Figures 7C is a detailed comparison between the predicted and
the underlying true coupling strengths. Evidently, the underlying
true coupling strength falls within the 99% confidence interval of
the predicted coupling strength.

4. CONCLUSIONS AND DISCUSSION

We have established our STR method and the corresponding
significance test for the neuronal network reconstruction. By
regressing the subthreshold voltage trace on the spike trains
of presynaptic neurons, the subthreshold voltage responses to
presynaptic spikes are captured by the response kernel αl

ij.

Mij has been shown to possess a linear relation with the true
coupling strength sij. Significantly, this linear relation is invariant
for any neuron pairs in networks with different coupling
structures and over broad dynamical regimes. Therefore, given
the proportionality constants BE and BI , the coupling strength sij
can be successfully predicted from Mij. It should be emphasized
that without the proportionality constants we can still use Mij as
a measure of the relative coupling strength. Our STR method
is able to discriminate the direct influence from the indirect
influence among neurons and to reconstruct accurately the true
synaptic connectivity, even for a nearly synchronous, densely
connected network. Often only 20 ∼ 100s of data is needed for an

accurate reconstruction. The accuracy of our STR reconstruction
can be further improved by increasing the length of data or the
sampling rate. Finally, for potential application in experiments,
an example is illustrated for reconstructing the couplings to a
target neuron under the setting, where the voltage of the target
neuron is measured through intracellular recording and the spike
trains of other neurons are obtained through calcium imaging or
MEA. In summary, our STR method can efficiently reconstruct
the neuronal synaptic connectivity, thereby, provides a means
of shedding light on how neuronal networks are organized to

perform functions. Note that, it is in general quite challenging in

experiment to obtain the true underlying synaptic connectivity
of large neuronal networks to verify any theoretical network

reconstruction method. We expect to verify our STR method in

future collaborations with experimental labs.
A widely used strategy to infer the synaptic connectivity

between neurons is the spike-triggered average (STA) method.

It has been applied to reconstruct the excitatory or inhibitory

postsynaptic potential in electrophysiological study. It assumes
linear response dynamics and aims to capture the response

kernel through averaging the trajectory of the postsynaptic
neuron’s voltage response upon the presynaptic neuron’s spikes.

In Figure 8, we apply STA to a unidirectional two-neuron

network with sij = 0.01 over different dynamical regimes as in
Figure 3A. It can be seen that, STA results are quite different
over different dynamical regimes even if the synaptic coupling
remains unchanged. In Figure 8A, when the firing rate of the
neuron is about 1Hz and STA of the coupled direction from
neuron 2 to neuron 1, i.e., the voltage response of neuron 1
triggered by the spikes of neuron 2, reflects the underlying
synaptic coupling from neuron 2 to neuron 1 while STA of
the uncoupled direction from neuron 1 to neuron 2 stays
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FIGURE 8 | Spike-triggered average (STA) for a unidirectional two-neuron network of I&F dynamics (Equation 1). The coupling strength is fixed to s21 = 0.01 and

s12 = 0. Red curves indicate STA of the voltage of neuron 2 triggered by the spikes of neuron 1 whereas blue curves indicate the STA of the voltage of neuron 1

triggered by the spikes of neuron 2. The STA results are shown in three different dynamical regimes for external Poisson inputs with strength f = 0.04 and rate (A)

µ = 0.16ms−1, (B) µ = 0.3ms−1 and (C) µ = 1ms−1. The neurons fire at about (A) 1Hz, (B) 15Hz and (C) 100Hz.

around 0 indicating no synaptic coupling from neuron 1 to
neuron 2. However, in Figures 8B,C, STA of the uncoupled
direction significantly deviates from zero indicating the existence
of synaptic coupling. Moreover, in Figure 8C, STA of the
coupled direction oscillates around zero, making it difficult
to infer whether the coupling type is excitatory or inhibitory.
Therefore, STA in general cannot be used for the synaptic
coupling reconstruction in neuronal networks. In contrast, as
demonstrated in Figure 3, our STR is robust for the synaptic
connectivity reconstruction over a wide range of dynamical
regimes.

We now address another important issue about the lack
of neuronal activity recordings of an entire neuronal circuit.
Theoretically, if the spike trains of all neurons in the network
are incorporated in the regression, the indirect influence between
two neurons mediated by other neurons can be well removed and
the direct synaptic coupling can be successfully inferred by STR.
However, due to the limitation of recording techniques, one can
usually obtain only the spike trains of a subnetwork of neurons
in experiments. Under this condition, the indirect influence
between two neurons mediated by unmeasured neurons could
influence the inference of the direct coupling. To investigate
the question of whether our STR method can still provide a
reliable reconstruction of the connectivity of a subnetwork, we
consider the sparsely connected network as in Figure 5A. We
apply our regression method to each pair of neurons by ignoring
all other neurons in the network. The results of the pairwise
STR method are summarized in Figure 9. In Figure 9A, dots
describe Mij obtained through the pairwise STR as a function of
sij. Importantly, the dots are also narrowly concentrated around
the straight lines with an identical proportionality constants
(BE = 0.32 and BI = −0.15) to what is obtained from the
unidirectional two-neuron network in Figure 1. The width of the
spread of dots around the straight lines is quantified by the mean
value of θij, which is ∼ 9 × 10−5 approximately the same as in
Figure 5B. The critical values ScI ∼ −0.002 and ScE ∼ 0.0008
for inhibitory and excitatory couplings, respectively, are nearly
identical to those in Figure 5B. Consistent with the significance
level r = 0.01, ∼99% of the uncoupled directions are correctly
predicted. Therefore, for a sparse network, even when we obtain

only the activities of a subnetwork of neurons, the pairwise STR
method is able to reconstruct reliably the corresponding neuronal
couplings of the subnetwork and to achieve approximately the
same accuracy as the conditional STR reconstruction, which uses
the knowledge of activities of other neurons in the network.
Intuitively, when the synaptic connectivity is sparse, for a pair
of coupled neurons, the overall indirect influence is mediated
by a very small number of other neurons through long, indirect
paths, resulting in much weaker effects than the direct one. As a
consequence, the underlying synaptic connectivity can be often
successfully recovered through the pairwise STR application. As
suggested by many studies that the structural brain connectivity
may form a sparse graph (Song et al., 2005), our STR method can
be potentially applied to subnetwork recordings of a cortical area
to reconstruct the subnetwork connectivity.

In addition, the presence of noise usually complicates the
reconstruction of synaptic connectivity since it gives rise to
lower signal-to-noise ratio. In the above neuronal networks, the
major source of noise comes from the external Poisson input,
which leads to fluctuations in subthreshold voltage and firing
dynamics of neurons. However, our STR method is robust to
this type of noise as shown in Figure 3. Another source of noise
may come from the measurement error in subthreshold voltage
and spike timing in experimental recordings. In Figure 10,
we investigate the effects of this source of noise on our STR
reconstruction: additive Gaussian white noise with standard
deviation of 0.01 in dimensionless unit (See section 2.1 for
details) on the recorded voltage or spike-jittering with a uniform
distribution over the interval [−0.5, 0.5ms] in recorded spike
trains of presynaptic neurons. In Figure 10A, we can observe
that the linear relation well holds with these two types of noise
added to the measured dynamics of neurons. In Figure 10B,
one may notice that Mij tends to be lower for larger f and µf .
Therefore, we need to reconstruct the synaptic coupling strength
separately over different dynamical regimes in the presence of
large measurement noise of voltage. In Figure 10C, Mij for the
coupled direction stays constant over a wide range of dynamical
regimes. Therefore, the synaptic connectivity reconstruction in
the presence of spike-jittering can be performed similarly as
that discussed previously. Note that the proportionality constant
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FIGURE 9 | Pairwise STR reconstruction of a random I&F network of 100 neurons (80 excitatory and 20 inhibitory) with sparse connectivity as in Figure 5A. αl
ij
is

obtained using only the voltage trace of neuron i and the spike train of neuron j by disregarding the activity of all other neurons. (A) Mij vs. the true coupling strength sij
is represented by a dot for each coupled direction. Shown are directions correctly predicted as excitatory (red dots) or inhibitory (blue dots) couplings and directions

incorrectly predicted as uncoupled (green dots). Black lines indicate the linear relations (Equation 4) between Mij and sij with the same values of BE = 0.32 and

BI = −0.15 as obtained from Figure 1. The width of the spread of dots around the straight lines is controlled by the mean value of θij , which is ∼ 9× 10−5. The

critical values Sc
I
∼ −0.002 and Sc

E
∼ 0.0008 for inhibitory and excitatory couplings, respectively. (B) Histogram of Mij for the uncoupled directions. Shown are

directions incorrectly predicted as excitatory (red) or inhibitory (blue) couplings and directions correctly predicted as uncoupled (cyan). Here, we use voltage and spike

train time series of 100 s with significance level r = 0.01. As expected, the area under the cyan curve in (B) constitutes ∼99% of the uncoupled direction.

FIGURE 10 | STR network reconstruction with additive noise. Two types of noise are added separately to the data—additive Gaussian white noise with standard

deviation of 0.01 in dimensionless unit (See section 2.1 for details) on voltage and spike-jittering with a uniform distribution over the interval [−0.5, 0.5ms] on

presynaptic spike trains. (A) Linear relation between Mij and sij for the same unidirectional two-neuron network as in Figure 1 with no measurement noise (black

circle), additive noise on voltage (red circle) or spike-jittering (blue circle). The straight lines indicate the corresponding linear relations fitted from the data points.

Invariance of Mij with (B) additive noise on voltage or (C) spike-jittering over a wide range of dynamical regimes for a unidirectional two-neuron network with sij = 0.01

as in Figure 3.

varies with different types of noise as shown in Figure 10A,
therefore, it should be chosen correctly to recover the underlying
synaptic coupling strength. In addition, the quantal release
nature of the synaptic transmission may lead to a different
postsynaptic potential amplitude for each presynaptic spike. This
may be modeled using a different sij upon each presynaptic
spike. From our analysis in section 3.1, it is expected that only
the mean value of sij could be recovered from Mij in our STR
method. In experiment, variability in the neuronal dynamics
could also complicate the synaptic connectivity reconstruction.
Because the subthreshold membrane potential response behavior
is usually different for different types of neurons, onemay need to
recalibrate the proportionality constant for each type of neuronal
dynamics for the recovery of synaptic connectivity.
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