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Hierarchical representations of relative
numerical magnitudes in the human
frontoparietal cortex

Teruaki Kido 1,2, Yuko Yotsumoto 1 & Masamichi J. Hayashi 2,3

The ability to estimate numerical magnitude is essential for decision-making
and is thought to underlie arithmetic skills. In humans, neural populations in
the frontoparietal regions are tuned to represent numerosity. However, it
remains unclear whether their response properties are fixed to a specific
numerosity (i.e., absolute code) or dynamically scaled according to the range
of numerosities relevant to the context (i.e., relative code). Here, using func-
tional magnetic resonance imaging combined with multivariate pattern ana-
lysis, we uncover evidence that representations of relative numerosity coding
emerge gradually as visual information processing advances in the fronto-
parietal regions. In contrast, the early sensory areas predominantly exhibit
absolute coding. These findings indicate a hierarchical organization of relative
numerosity representations that adapt their response properties according to
the context. Our results highlight the existence of a context-dependent opti-
mization mechanism in numerosity representation, enabling the efficient
processing of infinite magnitude information with finite neural resources.

The processing of magnitude information, such as quantity, length, or
size of objects, is essential for decision-making and behavior guidance.
The ability to estimate numerical quantities, known as numerosity, has
been widely reported across species1 (e.g., monkeys2,3, crows4,
humans5), indicating its adaptive value that helps an organism to sur-
vive and reproduce6. In humans, the ability to estimate numerosity is
evident throughout different developmental stages7 and among both
numerate and innumerate adults8, suggesting that the numerosity
estimation may serve as a fundamental skill, underpinning arithmetic
ability1.

In recent decades, extensive research has explored the neural
basis of numerosity processing in both animals and humans. Electro-
physiological studies in non-human primates have provided sub-
stantial evidence indicating that the frontoparietal regions, including
the intraparietal sulcus (IPS) and the lateral prefrontal cortex (PFC),
play a pivotal role in representing numerosity information. In these
regions, numerical magnitudes are represented by populations of
numerosity-tuned neurons that fire most frequently at their preferred

numerosity2,3, forming a labeled line code9. Importantly, the firing
patterns of these numerosity-tuned neurons align closely with beha-
vioral response, adhering to Weber-Fechner’s law10,11. These findings
are also consistent with human functional magnetic resonance ima-
ging (fMRI) studies,whichdemonstrate reduced fMRI responses to the
repeated presentation of similar numerosities5,12 and the ability to
decode numerosity from the multivariate activity patterns13–15. In
addition, meta-analyses of neuroimaging studies16,17 highlight the
supplementary motor area (SMA) as another key region frequently
engaged in numerosity processing.

While existing studies strongly support the notion that numer-
osity is represented in the frontoparietal regions, the impact of con-
text, such as the range or distribution of numerical magnitudes in the
given environment, on neural responses remains an open question.
More specifically, it remains unknown whether the response proper-
ties of the numerosity representations are static, adhering to a specific
numerical magnitude (an absolute code), or whether they dynamically
adjust according to the contextual factors (a relative code). This
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distinction is crucial, considering the brain’s neuronal capacity is finite
(e.g., limited number of neurons), whereas spatial magnitudes such as
quantity, length, or size are boundless, unlike circular attributes such
as orientation or direction of motion. One possible neural strategy to
handle such infinite magnitudes may involve gathering statistical data
of magnitudes (e.g., range or distribution) of the environment and
subsequently modulating neural response properties accordingly. In
this way, the brain could potentially optimize the allocation of neural
resources, ensuring accurate representation of numerosity.

To investigate this, we conducted an fMRI study where partici-
pants performed a numerosity discrimination task. The task involved
different contexts with numerosities derived from three partially
overlapping sets, presented as visual dot arrays. Our hypothesis was
twofold:firstly, thatnumerosity representationswould scale according
to the range of numerical magnitudes in each set; secondly, that this
relative representation of numerosity would emerge progressively
along the numerical processing hierarchy18. Specifically, we predicted
non-scaled, absolute numerosity encoding in lower sensory areas
(such as the visual cortex), while higher-level association cortices
(including IPS and PFC) and areas beyond (e.g., SMA) would represent
relative numerosity.

Our results, derived from classification analysis of multivariate
activity patterns, reveal that relative representation of numerosity is
distributedacrossboth the visual cortex and frontoparietal regions. The
relative representation of numerositywas emphasized from theparietal
region through the lateral PFC to the SMA. Additionally, using linear
mixed-effect modeling combined with representational similarity ana-
lysis, we found that while the visual cortex predominantly exhibits
absolute coding, the frontoparietal regions are more inclined towards

relative coding. These findings suggest that the brain constructs a
relative representation of numerosity through hierarchical processing.

Results
Participants completed three separate sessions of our fMRI experi-
ments, which were performed on different days. In each session, par-
ticipants performed a numerosity bisection task (Fig. 1a). During each
trial, a visual dot array was presented at the center of the screen for
0.4 s, and participants judged whether the number of dots was smaller
or larger than the average numerosity of preceding trials. Following an
inter-stimulus interval (ISI; jittered between 3.0 and 6.0 s), a response
cue appeared, indicating the spatial correspondence between the
judgments (S for smaller, L for larger) and the position of the response
key (left or right button). This design helped to isolate fMRI responses
associated with numerosity processing, distinct from motor planning
and execution which were not the focus of the present study. The
numerosity of the visual dot arrays was sampled from one of the three
sets of partially overlapping, logarithmically spaced, four numerosities
(Fig. 1b): small (8, 10, 12, 15), medium (12, 15, 18, 22), and large (18, 22,
26, 32). Each set was assigned to a different fMRI session in a counter-
balanced manner across participants.

Comparable task performance across numerosity ranges
Task performance was in line with our expectations. First, for each of
the three numerosity ranges, the bisection points derived from indi-
vidually fitted psychometric functions (Fig. 1c and Supplementary
Fig. 1), closely matched the mean of each range (Fig. 1d) (small:
MSE =0.017 ± 0.010, 95% CI = [−0.003, 0.037], t(29) = 1.771, p =0.087,
BF10 = 0.777; medium: MSE = −0.002 ±0.010, 95% CI = [−0.023, 0.018],

Fig. 1 | Overview of stimulus sequence, numerosity sets, and behavioral data.
a Schematic illustration of the stimulus sequence used in each trial. A single dot
array was presented within an implied virtual circle (dotted line, not visible during
the experiment), followed by a jittered inter-stimulus interval (ISI) and a response
cue indicating which of the two response buttons corresponded to larger (L) or
smaller (S). b Three partially overlapping numerosity sets used in the study. c The
psychometric functions fitted to the individual data of a representative participant.
The vertical lines represent the average numerosity (dashed lines) and estimated
bisection points (solid lines) for each stimulus set, with the colors matching those
used in b. Source data are provided as Source Data file. d Distributions of the

bisection points (left panel) and slopes (right panel) of all participants (n = 30). The
density plots illustrate the distribution of the estimated parameters among parti-
cipants. In the boxplots, the thick vertical lines indicate themedianof the estimated
parameters, the box bounds represent the first (Q1) and third (Q3) quartiles, and
the whiskers extend to Q1-1.5×IQR (interquartile range) and Q3+1.5×IQR. Outliers
are represented by colored dots. The average values across participants (n = 30),
along with the standard error of the mean, are indicated by black points and hor-
izontal solid lines. Individual participant data are denoted by small vertical lines.
The dashed lines in the left panel indicate the mean numerosity for each stimulus
set, as detailed in c. Source data are provided as Source Data file.
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t(29) = −0.212, p =0.833, BF10 = 0.199; large: MSE = −0.020 ±0.010,
95% CI = [−0.041, 7.416e-5], t(29) = −2.038, p = 0.051, BF10 = 1.182),
confirmingminimal systematic bias in task performance. Secondly, the
estimated slopes of the psychometric curves (Fig. 1d), which reflect the
precision of numerosity judgments, were comparable across all three
sets (F(1.591, 46.136) = 0.731, p =0.458 with Greenhouse-Geisser cor-
rection, BF10 = 0.176). This consistency supports Weber-Fechner’s law
in numerosity perception10,11. Consequently, these results suggest that
the subsequent fMRI results are not likely influenced by any biases or
precisions in task performance specific to certain numerosity sets (see
Supplementary Fig. 2 for reaction time data).

Relative coding of numerosity distributed across visual and
frontoparietal cortices
We identified the neural locus of the relative numerosity coding
through a region-of-interest (ROI) based multivariate pattern analysis

(MVPA). The ROIs were predetermined based on cortical parcellation
methods19,20 (Table 1, Supplementary Fig. 3). First, we employed a
general linear model (GLM) to obtain event-related multivariate
activity patterns for each numerosity with each stimulus set. We then
trained a four-class classifier (linear support vector machine; linear
SVM) using the multivariate activity patterns of selected 500 voxels
per ROI on one numerosity set. The primary objective was to identify
the ROI that exhibited relative coding. To achieve this, we tested the
classifier’s ability to accurately decode the relative position of
numerosity in the other two numerosity sets (Fig. 2).

Classification performance above-chance level was notably pre-
sent across various ROIs, including the parietal, lateral prefrontal,
medial prefrontal areas, and the early visual cortex (Fig. 3 and Sup-
plementary Table 1; Supplementary Fig. 4 for confusion matrices).
Within the frontoparietal regions, we observed a progressive increase
in classification performance, starting from the parietal areas (VA
lParOper, Df rPar, Fp lPar, Fp rPar, and DA Post) and moving towards
the lateral prefrontal areas (VA lFrOper+lIns, VA rFrOper+rIns, VA
lPFCl, Fp lPFCl, Fp rPFCl, and Df PFC). The performance reached its
peak in themedial prefrontal areas (VAMed and Fp PFCmp+Cing). This
trend suggests that the neural representation of the relative magni-
tudes of numerosity was emphasized along these frontoparietal
regions. In contrast, classification performance in the temporal areas
was comparatively lower and generally lacked statistical significance
(Df lPar+lTemp, Fp rTemp, Df rTemp, and VA rTempOcc+rPar).

While our ROI-based classification approach effectively revealed
the hierarchical emergence of relative numerosity coding across cor-
tical areas, it had a limitation in spatial specificity due to the feature
selection procedure, which could select any distant voxels in the
relatively large ROIs. To address this issue, we conducted a supple-
mentary searchlight-based classification analysis using a small, moving
sphere. The results were largely aligned with those of the ROI-based
analysis; Clusters where classification performance exceeded chance
level were predominantly found around the visual cortex and fronto-
parietal regions (Fig. 4a). Notably, the statistically significant clusters
identified in the searchlight-based analysis largely overlapped with the
ROIs that showed statistically significant classification performance in
the ROI-based analysis (Fig. 4b). This overlap suggests that the results
of our ROI-based classification were not unduly influenced by the way
we defined the ROIs.

Relative versus absolute coding of numerosity
Our ROI- and searchlight-based classification analyses demonstrated
the existence of a relative coding of numerosity within the visual and
the frontoparietal regions. Crucially, the results revealed that the
relative coding evolves along the numerosity processing hierarchy.
This raises a question: Is the absolute coding of numerosity similarly
distributed across cortices, and which form of coding, relative or
absolute, predominates in each ROI?

To address these questions, we examined whether the activity
patterns in each brain region better represent absolute numerosity,
relative numerosity, or a combination of both using our representa-
tional similarity analysis with linear mixed-effect modeling. This
involved measuring the dissimilarity in the brain activity patterns
between pairs of numerosities and constructing a representational
dissimilaritymatrix (dataRDM) for eachROI (Fig. 5a). Thesedata RDMs
were then subjected to regression analysis against a combination of
hypothetical dissimilarity matrices, employing linear mixed-effect
modeling (Fig. 5b). A model selection approach was adopted to
determine themost parsimonious and best fittingmodel for each ROI,
considering all possible combinations of regressors.

Our key regressors included three hypothetical RDMs, treated as
fixed-effects: absolute magnitude-, relative magnitude-, and relative
category-based RDMs. The absolute magnitude-based RDM repre-
sented differences in the absolute numerosity magnitude. In contrast,

Table 1 | The ROIs for the ROI-based MVPAs

ROI Label Functional
Network

Laterality Anatomical
Location

Vis Visual –

SomMot Somatomotor –

DA lFEF+lPrCv Dorsal Attention left Frontal eye fields +
Precentral ventral

DA rFEF+rPrCv Dorsal Attention right Frontal eye fields +
Precentral ventral

DA Post Dorsal Attention – Posterior

VA lPFCl Ventral Attention left Lateral prefrontal
cortex

VA lParOper Ventral Attention left Parietal operculum

VA rTem-
pOcc+rPar

Ventral Attention right Temporal occipital +
Parietal

VA lFrOper+lIns Ventral Attention left Frontal operculum +
Insula

VA rFrOper+rIns Ventral Attention right Frontal operculum +
Insula

VA Med Ventral Attention – Medial

Fp lTemp Frontoparietal left Temporal

Fp rTemp Frontoparietal right Temporal

Fp pCun Frontoparietal – Precuneus

Fp lPar Frontoparietal left Parietal

Fp rPar Frontoparietal right Parietal

Fp PFCmp+Cing Frontoparietal – Medial posterior
prefrontal cortex +
Cingulate

Fp lPFCl Frontoparietal left Lateral prefrontal
cortex

Fp rPFCl Frontoparietal right Lateral prefrontal
cortex

Df rPFCv Default right Ventral prefrontal
cortex

Df rPar Default right Parietal

Df rTemp Default right Temporal

Df pCun+PCC Default – Precuneus + Poster-
ior cingulate cortex

Df lPar+lTemp Default left Parietal + Temporal

Df PFC Default – Prefrontal cortex

All the ROI labels stem from those in a preceding study that utilized the same cortical
parcellation20. In general, all the labels were in the form of “<Functional Network > <Laterality >
<Anatomical Location > .” “<Functional Network > ” was one of the abbreviated labels of func-
tional networks: Vis (Visual), SomMot (Somatomotor), DA (Dorsal Attention), VA (Ventral Atten-
tion), Fp (Frontoparietal), and Df (Default). When an ROI spanned both hemispheres,
“<Laterality > ” information was omitted from the ROI label and indicated as “–“ in the table.
Otherwise, “<Laterality > ” was either “l” or “r,” indicating the left or right hemisphere. “<Anato-
mical Location > ” was an abbreviated anatomical label.
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the relative magnitude-based RDM anchored on deviation from the
mean numerosity in each set, reflecting differences in relative
numerosity magnitude. Additionally, to account for the task-related
dichotomic categories of numerosity (i.e., smaller and larger), the
relative category-based RDM was defined as the difference in numer-
osity categories, namely, whether numerosities were smaller or larger
than the set’s mean. Note that, due to their collinearity, the relative
magnitude- and category-based RDMs were mutually exclusive in
every candidate model (Supplementary Fig. 5). To further control for
the potential influences of task difficulty and experimental sessions,
another hypothetical RDM based on the numerical distance between
numerosity pairs was included, along with random intercepts for ses-
sion pairs (see the Methods for details). Note that all dissimilarity
measures in the hypothetical RDMs were defined on the logarithm of
numerosity, in accordance with Weber-Fechner’s law in numerosity
discrimination10,11.

Significant regression coefficients, indicating non-zero weights
for the relative magnitude, were found in the frontoparietal cortex.
This includes the parietal regions (VA lParOper and DA Post), lateral
PFC (VA lFrOper+lIns, VA rFrOper+rIns, Fp lPFCl, Fp rPFCl, Df rPFCv,
and Df PFC), medial PFC (VA Med and Fp PFCmp+Cing), and a motor-
related region (DA rFEF+rPrCv). The upward trend in these regression
coefficientswasnoted, beginning in the parietal regions and reaching a
peak in the medial PFC (Fig. 6 and Supplementary Table 2). These
results align well with the findings from our earlier classification ana-
lysis (Fig. 3). The relative category-based RDM showed a non-zero
coefficient exclusively in a lateral prefrontal region (VA lPFCl), sug-
gesting a focal representationof the relative category of numerosity. In
contrast to the relative representations, absolute coding was sig-
nificant only in a limited number of ROIs: visual and prefrontal ROIs
(Vis, VA lFrOper+lIns, DA lFEF+lPrCv, and DA rFEF+rPrCv). We did not
observe any clear increasing or decreasing trends in the regression
coefficients along the information processing hierarchy for the abso-
lute coding. Finally, the numerical distance-based RDM showed a non-
zero coefficient in a few ROIs, alongside other coefficients (VA lPFCl,
VA Med, and DA lFEF+lPrCv, Supplementary Table 2).

While ourmultivariate approach revealed brain regions exhibiting
distinct multivariate activity patterns for varying numerical magni-
tudes, it does not completely discount the possibility that these
regions might encode numerical magnitudes through a simpler
mechanism, such as monotonic increase or decrease in activity cor-
responding to the rise in numerosity. To explore this further, we
assessed whether changes in average activity within each ROI were
linked to either the absolute or relative magnitude of numerosity
(Supplementary Figs. 6–7). Employing this additional univariate
method, we found a significant Spearman’s rank correlation exclu-
sively in the visual cortex ROI (Fig. 7); the mean activities positively
correlated with the absolute magnitude of numerosity (two-sided
Wilcoxon signed-rank test: median ρ =0.377, 95% CI = [0.095, 0.528],
W = 393.5, p =0.024). There was also a weaker correlation with the
relative magnitude of numerosity (two-sided Wilcoxon signed-rank

test: median ρ =0.203, 95% CI = [0.038, 0.311], W = 362.5, p = 0.044);
however, the difference in these correlations was not statistically sig-
nificant (two-sided Wilcoxon signed-rank test: median Δρ = 0.119, 95%
CI = [−0.015, 0.266], W = 321, p = 0.070). This result supports the
notion that the visual cortex may represent numerosity through
monotonic neural responses, and it reinforces our multivariate find-
ings that highlight the dominance of absolute numerosity coding in
the visual cortex.

Discussions
The present study investigated whether the neural representation of
numerosity encodes the absolute or relative magnitude of non-
symbolic numbers. Through ROI- and searchlight-based classification
analysis, we first demonstrated that relative magnitude representa-
tions were distributed in the visual cortex and the frontoparietal
regions. The classification performance improved progressively along
the frontoparietal network, indicating a hierarchical development of
relative numerosity coding.

Next, by employing representational similarity analysis with
linear mixed-effect modeling, which accounted for the influence of
relative category and task difficulty, we observed a transition from
absolute to relative magnitude representation along the information
processing hierarchy; the absolute coding was predominant in the
early visual cortex, while the relative coding of numerical magnitude
was more pronounced in the frontoparietal regions. In line with the
classification analysis, the weight of the relative coding increased
along the frontoparietal areas, supporting the idea that relative
numerosity plays a crucial role in guidingmagnitude-based decisions
and actions.

Neural representations of relative numerosity
Our study revealed that the frontoparietal regions encode the relative
magnitude of numerosity. This finding might seem contradictory to a
recent fMRI study with a population receptive field (pRF) analysis
suggesting that numerosity preference is fixed irrespective of the
numerical context21. In their experiment, Cai and colleagues used two
sets of dot arrays, one ranging narrowly from 1 to 7 and the other
widely from 1 to 64, to present numerosity. Although their analyses
indicated a slight shift in preferred numerosity at each recording site
depending on the range presented, it did not strongly support the
existence of relative coding of numerosity.

The discrepancies between Cai’s findings and ours could be
attributed to difference in task design. While Cai’s study engaged
participants in a color detection task unrelated to numerosity, our
study explicitly required participants to judge whether the presented
numerosity was larger or smaller than the average of preceding trials.
Our task inherently involved making judgments about relative mag-
nitude differences, potentially compelling our participants to intern-
ally scale numerical magnitude. This requirement might have
enhanced the representation of relative numerosity in the frontopar-
ietal regions.
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Another potential explanation for the differing conclusions
could be the difference in the analysis method. While Cai’s pRF
analysis focused on the magnitude of brain activity for each voxel
(i.e., univariate approach), our MVPA examined the spatial pattern
across a group of voxels (i.e., multivariate approach). Although not
directly compared, our MVPA approach might be better suited to

address our research question than the pRF approach. This is
because MVPA, without assuming any specific format of repre-
sentation a priori, can detect numerosity-sensitive activity with
greater sensitivity than theunivariatemethod22, whereas pRF analysis
is specialized in identifying voxels tuned to specific numerosities. An
example that MVPA could uniquely identify, but not pRF, is when
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PrCv, precentral ventral. See Table 1 for a detailed description of ROI labeling. See
Supplementary Table 1 for the statistical test results. Source data are provided as
Source Data file.
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numerosity information is embedded in the populations of neurons
without a distinct preference for a specific numerosity. In a previous
electrophysiological study23, Tudusciuc and Nieder suggested that
the temporal structure of spike trains in numerosity-untuned neu-
rons may convey numerosity information. Although such temporal
dynamics may be blurred in fMRI data, they could still be reflected in
the estimatedmulti-voxel activity patterns. Hence, we speculate that,
if these neural populations contribute to the relative coding of
numerosity, they aremore likely to be detected byMVPA than by pRF
analysis.

Collectively, the differences in the task or the fMRI data analyses
methods, or possibly a combination of both, could have led to the
varied findings between Cai and colleagues and our study. Future
research, employing comparable task designs and analytical techni-
ques, is necessary to bridge the gap between these studies and pro-
vides a better understanding of the neuralmechanisms underlying the
scaling of response properties in different contexts.

Contributions of predictive processing to the relative numer-
osity representation
The underlying mental process that shapes relative numerosity
representation remains anopen question. Beyond the influenceof task
demands discussed earlier, we propose that predictive processing24

might play a role. This concept suggests that deviations from prior
expectations, constructedbasedonpast experiences, could lead to the
formation of relative numerosity representations. Supporting this
idea, a recent electrophysiological study in non-human primates
reported such relative representation driven by predictive processing
in the temporal domain. In this study, Meirhaeghe and colleagues
manipulated expectations of time intervals using two different sti-
mulus ranges (short vs. long) and found that neural dynamics in the
dorsomedial frontal cortex were modulated according to these
expectations, reflecting deviations from the expected intervals25.

We speculate that the relative representations driven by pre-
dictive processing may be linked to numerosity adaptation, given the
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potential connection between predictive processing and perceptual
adaptation26–28. A large body of psychophysical research has shown
that numerosity perception is susceptible to adaptation29–31 where
participants are repeatedly exposed to a specific numerosity. Several
neuroimaging studies indicated that adaptation alters neural respon-
ses to numerosity stimuli in the parietal cortex5,32,33, which is where we
observed relative numerosity representations. Since the experimental
manipulations are comparable in that both adaptation and our study
involve altering the external statistical structure (i.e., repeated expo-
sure to a particular numerosity in adaptation and shifting the range of
numerosity distribution in our study), we speculate that the neural
consequences may be similar. Specifically, adaptation may also reor-
ganize neural responses in a relative manner, centered around the
adapted numerosity.

Our study, however, could not conclusively determine whether
relative representation of numerosity was driven by specific task
demands (such as comparison with an internal reference) or by pre-
dictive processing. This limitation arises because, in our experimental
design, the numerical distance from a reference numerosity (i.e., the
internal average numerosity of preceding trials) and the deviation

from the expected numerosity (i.e., the mean of the uniform stimulus
distribution) were nearly identical (Fig. 1d), making them not dissoci-
able. A potential avenue for future research is to investigate whether
the neural representation for a comparison stimulus is more related to
a reference stimulus or to prior expectations. This could be achieved
by independently manipulating these variables and examining if the
relative representations observed in the present study are affected
accordingly.

Hierarchical processing of numerosity in the frontoparietal
regions
The involvement of the frontoparietal regions in numerosity proces-
sing aligns with previous human fMRI studies employing diverse ana-
lytical methods, including conventional univariate analysis5,12,34,35,
MVPA13–15,33,36–41, pRF analysis21,32,42–45, and meta-analysis16,17, as well as
insights from brain-lesion46 and -stimulation47,48 studies. Most impor-
tantly, our study showed that numerosity processing is hierarchically
organized in the frontoparietal regions. This finding agrees with a
neurophysiological study in monkeys showing a longer response
latency of the lateral PFC than the IPS during numerosity processing49.
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We speculate that the relative representations of numerosity in
the occipital, parietal, and frontal cortices may contribute to different
stages of numerosity processing. While relative numerosity repre-
sentations in the occipital and parietal cortices likely contribute to
perceptual processes, those in the frontal cortices may be more
involved in decision-making processes. This notion is supported by

previous neuroimaging studies that have shown a dissociation
between active and passive (or numerosity-irrelevant) tasks. For
instance, studies using decision-free, passive viewing paradigms, such
as pRF21,43,44 and numerosity adaptation studies5,32,33, consistently
reported perceptual-level numerosity representations in the occipital
and parietal regions (see also a meta-analysis17). In contrast, studies
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requiring explicit numerosity judgments reported involvement of the
lateral PFC2,9,11,16–18,49, where we observed relative representations,
suggesting a role in decision-making process. Indeed, the lateral PFC is
well-known for its involvement in decision-related cognitive processes,
such as executive control50. Importantly, in addition to the lateral PFC,
we also found relative representations in the medial PFC, which is
anatomically connected to the lateral PFC51 and has been implicated in
decision-making processes, such as conflict monitoring and behavior
controll52. Based on these findings, we speculate that relative numer-
osity representations are first established at a perceptual level in the
occipital and parietal regions, then transferred to the frontal associa-
tion cortices (i.e., lateral and medial PFC) to incorporate task-
dependent components, such as relative categorization and
decision-making. This idea is consistent with a neurophysiological
study that proposed a flow of numerosity information from the IPS to
the lateral PFC49 and a recent fMRI study that identified theparietal and
prefrontal cortices as key regions for representing internally generated
numerical magnitudes during approximate calculation, with the par-
ietal cortex specifically implicated in transforming external inputs to
internal numerical magnitudes53.

This notion is also in line with the two-stagemodel of numerosity-
time interaction, which posits that numerosity information may be
more abstractly represented in the prefrontal than in the parietal
cortex48. By illustrating that the representation of relative numerosity
emerges through this hierarchical process, our study goes beyond
these previous studies and introduces an additional dimension of
abstraction: the transition from absolute to relative numerical magni-
tude. We speculate that this abstraction process might be a funda-
mental principle in magnitude coding, potentially offering more
efficiency and robustness, and might even be applicable across other
domains54.

Mixed representations of absolute and relative numerosity in
the visual cortex
The classification analysis showed the presence of relative numerosity
representation in the visual cortex, albeit with a smaller weight on
relative coding compared to absolute magnitude in the representa-
tional similarity analysis. We interpret these results as indicating a
mixture of absolute and relative magnitude representations, with a
relatively smaller proportion of information dedicated to relative
magnitude. This interpretation aligns with our observations that the
average activity in the visual cortex showed a positive correlation with

absolute magnitude, and to a lesser extent, with relative magni-
tude (Fig. 7).

The question of whether the visual cortex encodes numerosity
directly or low-level visual features that construct numerosity in the
later processing stages is a topic of ongoing debate. A recent fMRI
study by Paul and colleagues found that while BOLD responses in the
early visual cortex (V1–3) exhibited monotonic increases with numer-
osity, this was likely a reflection of increased local image contrast (or
aggregated Fourier power), rather than numerosity itself 45. This find-
ing was supported by another study indicating that multivariate
activity patterns before V3 mainly reflect non-numerical visual
features15. In contrast, another line of research suggests that the
monotonic response to numerosity observed in a visual-system-
inspired convolutional neural network cannot be attributed to lower-
level visual features of the stimuli, but rather to the concept of
numerosity itself 55.

Although we do not rule out the potential contributions of non-
numerical stimulus features, the present study, demonstrating suc-
cessful classification performance of numerical magnitudes, offers
further support to the notion that the visual cortex is involved in
representing numerosity information. Considering our findings of
mixed absolute and relative numerosity representations in the visual
cortex, it would be intriguing to investigate how these two coding
strategies are related to the transitions across different sub-regions of
the visual cortex. While this remains speculative, it is possible that
there is a transition point around V3, where neural populations in the
earlier stages are more sensitive to lower-level visual features, and
those in later stages are more sensitive to numerosity information.

The absolute magnitude coding observed in the visual cortex ROI
in our representational similarity analysis may also align with the
findings from pRF studies that reported numerosity tuning in the
occipito-temporal regions21,32,42–45. Although none of our ROIs exclu-
sively covered the occipito-temporal regions, the ROI designated for
the visual cortex was, in fact, relatively large and likely included por-
tions of these regions (Vis in Supplementary Fig. 3). Interestingly, the
representational similarity analysis also revealed relative coding in the
same Vis ROI, and the searchlight-based classification analysis further
highlighted the occipito-temporal regions as areas where relative
coding exists. Collectively, these findings suggest that the occipito-
temporal regions may encode both the absolute and relative magni-
tude of numerosity. In contrast, the involvement of other temporal
regions in numerosity representation has been rarely reported in pRF
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studies21,32,42–45, meta-analyses16,17, or in the present study. Although we
can only speculate, this consistent lack of observations might suggest
that these temporal regions donotplay a significant role in numerosity
representation.

In the present study, we observed that relative coding of numer-
osity was distributed across the frontoparietal regions whereas abso-
lute coding co-exists with relative coding in the early sensory cortex.
Notably, we found that the representation of relative magnitude is
hierarchically organized along the numerosity processing pathway
within these frontoparietal regions. These findings offer insights into
the plasticity of numerosity representations, suggesting a potential for
optimizing these representations in a context-dependent manner. We
believe that ourfindings inspire a range of subsequent studies aimedat
exploring the computational mechanisms underlying the emergence
of such relative coding of numerosity through the information pro-
cessing stream and its role in guiding magnitude-based decisions and
actions.

Methods
Participants
To obtain complete fMRI data sets from 30 participants, which we
planned a priori, we recruited 45 volunteers. Of these, nine were unable
to complete the three experimental sessions. Additionally, six partici-
pants were excluded due to exceptionally accurate or inaccurate
behavioral responses (n = 3; see Behavioral data analysis) or excessive
head motions (n = 3; see Preprocessing in fMRI data analysis). Conse-
quently, data from the remaining 30 participants (20 males and 10
females, Mage = 22.467, SDage = 1.383) were analyzed to finalize the
results. All participants had normal or corrected-to-normal vision and
had no history of psychiatric and neurological disorders. Participants
receivedmonetary compensation for their participation. They provided
written informed consent prior to participation. The study’s protocol
was approved by the institutional ethics and safety committees of the
National Institute of Information and Communications Technology.

Sex and/or gender were not considered in the study design. Par-
ticipants self-reported their sex prior to the experiment. Since sex
differences were beyond the scope of our study, no analyses based on
sex were performed.

Experimental design
The experiment consisted of three sessions, conducted on three dif-
ferent days. To reduce the potential for carryover or learning effects
from previous sessions, we scheduled the interval between sessions to
range from 3 to 21 days. Participants were instructed to disregard any
experiences from the earlier sessions.

Task and stimuli
Participants were asked to maintain their gaze at the red fixation cross
(0.219 ×0.219 deg) presented at the center of the monitor throughout
experimental runs (Fig. 1a). In each trial, a dot array was presented for
0.4 swithin a virtual circle located at themonitor’s center. Following an
inter-stimulus interval (jittered between 3.0 and 6.0 s with 0.2 s step
size), the red response cues indicating the spatial position of the
response buttons for smaller (S) or larger (L) responseswere presented
for 2 s. Participants responded whether the numerosity was smaller or
larger than the running average of the preceding trials (i.e., bisection
task) by pressing one of the two response buttons. Following this, the
dot array for the subsequent trial appeared after an inter-trial interval
(jitteredbetween 3.1 and 5.9 swith0.2 s step size). To record the blood-
oxygen-level-dependent (BOLD) signal baseline, a rest period of 16 s
with a fixation crosswas included at the beginning and endof each run.

The participants were instructed to pay attention to the numer-
osity of the dot array while ignoring the task-irrelevant stimulus fea-
tures such as the color of dots or the dot positions. Also, participants
were explicitly instructed not to count the dots. The spatial positions

of the response cues (S for smaller and L for larger), corresponding to
the two response buttons (the left cue for the right index and the right
cue for the right middle finger), were randomized across trials. This
randomization was expected to help distinguish the BOLD responses
reflecting the numerosity encoding process from those involved in
preparing, selecting, and executing a response. This distinction was
possible because participants were not able to decide which button to
press until the response cue was shown. The participants were
encouraged to prioritize response accuracy. In the first trial of the first
run of each session, participants were asked to press one of the two
buttons at random, as there was no previous trial to use as a reference
for numerosity.

Since previous studies suggested that different mechanisms may
be involved depending on the range of numerical magnitude56–59, our
study focused on the approximate number system (ANS) range. We
created the three sets of numerosity, each containing four values that
were approximately equidistant on a logarithmic scale. These sets
were categorized as small (8, 10, 12, or 15), medium (12, 15, 18, or 22),
and large (18, 22, 26, or 32) as shown in Fig. 1b. In each session, only one
set was used, with the order of sets being counterbalanced across
participants. Participants were not informed about the number of
numerical magnitudes in each set, the number of sets, and the order in
which they would be presented.

By referencing a preceding study15, other irrelevant stimulus
parameters, such as item surface area (the dot size), and total field area
(the size of the virtual circle) of the dot arrays, were manipulated
independently fromnumericalmagnitudes. The range of numerosities
varied across sessions, but the item surface area remained constant at
either 0.22π deg2 or 0.2372πdeg2, and the total field area was fixed at
either 5.922πdeg2 or 72πdeg2, regardless of the session. Thus, in each
session, the dot arrays were defined by 4 (numerical magnitude) × 2
(item surface area) × 2 (total field area) combinations, resulting in 16
unique combinations. These combinations were presented in a ran-
dom order in each run. Dot positions were also randomized across
trials. To prevent the texture-density mechanism from becoming
predominant, we ensure that minimum edge-to-edge distance
between elements, including the fixation cross, was no less than
0.219 deg. This constraint yielded an average edge-to-edge distance of
at least 0.665 deg (mean = 1.173,max = 1.955) and an average center-to-
center distance of at least 1.108 deg (mean= 1.610, max= 2.373),
facilitating the processing of numerosity primarily through the ANS59.
Furthermore, to prevent the luminance of the dot array from being a
proxy to estimate numerosity, half of the dots within an array were
presented in black, and the rest were presented in white60: for arrays
with an odd number of dots (2N + 1), half the trials featured N white
dots and N + 1 black dots, while the other half had N + 1 white dots and
N black dots.

All stimuli were generated and presented with MATLAB 2020a
(Mathworks, Natick, MA, USA) and Psychophysics Toolbox Version
361–63. The stimuli were presented on the gamma-corrected MRI-com-
patible LCD monitor (32 inches, resolution = 1920 × 1080, refresh
rate = 60Hz, width = 69.84 cm; BOLDscreen 32”, Cambridge Research
Systems, Rochester, UK). The participants viewed themonitor through
a mirror mounted on the head coil (viewing distance 153.0 cm). The
participants’ responses were recorded using an MRI-compatible but-
ton box (4 Button Bimanual, Current Designs, Philadelphia, PA, USA).

Procedure
To ensure the task and experimental procedure, the participants
performed practice trials outside and inside the scanner before
each experimental session. The numerosity set in the practice
blocks was the same as in the subsequent fMRI runs. The practice
blocks outside and inside the scanner consisted of four trials, where
each of the four numerical magnitudes in a set was presented
only once.
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In the subsequent 16 fMRI runswith 16 trials per run, BOLD signals
were recorded while wemonitored behavioral performances. The first
run was considered as a practice run to establish the bisection point
while the following 15 runs were considered as the real experimental
runs. When they did not make a button press during the response
phase, that trial was recorded as amiss. If responses weremissedmore
than two times in a run, that run was repeated with the same stimulus
parameters. The data of participants whose experimental session was
aborted due to such repetition more than three times were excluded
from the data analyses.

MRI data acquisition
A3TMRI scanner (MAGNETOMPrismafit, Siemens, Erlangen,Germany)
equipped with a 64-channel head coil (Head/Neck 64, Siemens, Erlan-
gen, Germany) was used for the image acquisitions. A field-map image
was acquired with the double-echo spoiled gradient-echo sequence (78
axial slices, phase encoding direction A≫P, FOV= 216 × 216mm, voxel
size = 2 × 2 × 2mm, phase partial Fourier = 7/8, bandwidth = 827Hz/
pixel, flip angle = 50˚, TR = 763.0ms, TE1/TE2 = 4.95/7.41ms). In the
fMRI runs BOLD signals were acquired with a multi-band accelerated
echoplanar imaging (EPI) (versionR016b,multi-band factor =6, 78 axial
slices, phase encoding direction = A≫P, FOV= 216 × 216mm, voxel
size = 2 × 2 × 2mm, phase partial Fourier = 7/8, bandwidth = 2436Hz/
pixel, flip angle = 60˚, TR = 1000ms, TE = 30ms, echo spacing =
0.57ms). The leak-block kernel64 was applied tominimize slice leakages.
An anatomical image was also acquired using the magnetization pre-
pared rapid acquisition with gradient echo (MPRAGE; phase encoding
direction=A≫P, FOV= 256 × 256mm2, voxel size =0.8 ×0.8 × 0.8mm3,
bandwidth = 220Hz/pixel, flip angle = 8˚, TR = 2400ms, TE = 2.22ms,
TI = 1000ms, GRAPPA reduction factor = 2).

Behavioral data analysis
Theproportion of larger responses in the actual experimental runswas
calculated at each numerical magnitude within each set. For each
individual’s data, a psychometric function (logistic function) was fitted
on the log scale for each set (Fig. 1c and Supplementary Fig. 1). We
estimated two key parameters: the numerical value at which the pro-
portion of larger responses is 0.5, representing the subjective bisec-
tion point, and the slope, indicating the precision of the participants’
responses. Participants whose bisection point and slope values
deviated bymore than 3 SDs from the group average were considered
outliers and excluded from the subsequent data analyses. We con-
ducted two-sided t-tests to examine whether the subjective bisection
points were under- or overestimated and whether they significantly
differed from the mathematical average of each set. Additionally, we
used a one-way repeated-measures ANOVA with numerosity set as the
factor to assesswhether the slopes differed across the numerosity sets,
potentially contradicting Weber-Fechner’s law. The significance level
was set at α = 0.05. When Mauchly’s test indicated a violation of
sphericity, the degrees of freedom were adjusted using the
Greenhouse-Geisser correction. Bayesian t-tests and Bayesian
repeated-measures ANOVA were also applied to test the null hypoth-
eses. In the Bayesian hypothesis testing, we used the Jeffreys-Zellner-
Siow prior, which is the default option in JASP65–67. The prior on effect
sizewas specified as a Cauchy distributionwith scale r: r =

ffiffiffi

2
p

=2 for the
Bayesian t-test, r =0:5 for the fixed effect, and r = 1 for the random
effect in the Bayesian repeated-measures ANOVA, while the prior on
variance was set as a Jeffreys prior p σ2

� �

= 1=σ2. The statistical analyses
were performed with R68, JASP69, MATLAB 2020a (Mathworks, Natick,
MA, USA), and Palamedes toolbox70.

fMRI data analysis
Preprocessing. The fMRI data of the real experimental runs were
preprocessed using SPM12 (v7771) software implemented onMATLAB
2017a (Mathworks, Natick,MA,USA). First, geometrical distortions and

head movements were corrected. The anatomical image was regis-
tered onto the average functional image for each session. All the cor-
egistered images were then normalized onto the MNI (Montreal
Neurological Institute) space. The functional images were smoothed
with the three-dimensional Gaussian kernel with an FWHM of 2mm in
light of the possibility of performance improvement in multivariate
pattern analyses (MVPA)71. Participants who showed translations
greater than 2mm or rotations greater than 0.05 radians were exclu-
ded from the following fMRI data analyses.

General linear model analysis
To estimate brain activity during numerosity processing, a general
linear model was applied to each numerosity set using SPM12. The
model included four regressors of interest, one for each numerical
magnitude. To regress out nuisance variables, we incorporated
parametric modulation terms for both the item surface area and the
total field area into the numerosity regressors. Additionally,
regressors accounting for button presses, the six head movement
parameters, and constant terms were included in the design matrix.
The regressors on numerosity, their modulation terms, and partici-
pant responseswere all set at the onset of each event, with a duration
of zero. Each regressor was convolved with a canonical hemody-
namic response function. The model for each participant was high-
pass filtered (cutoff period = 128 s). Since TR was relatively short
(1 s), temporal autocorrelation in the BOLD signal was accounted for
by the FAST model72 in the SPM12. As a result, beta images for the 15
real experimental runs were estimated for each numerical
magnitude.

Region of interest
To define network-constrained regions of interests, we employed a
cortical parcellation based on functional connectivity19. The parcella-
tion consists of seven functional networks: visual (Vis), somatomotor
(SomMot), dorsal attention (DA), ventral attention (VA), limbic, fron-
toparietal (Fp), and default (Df) network. The limbic network was
excluded from our ROIs as it contains brain regions susceptible to
geometrical distortion and signal loss in the EPI sequence, such as the
orbitofrontal cortex73. Consequently, including the limbic network
could lead to controversial interpretations of the results.

The ROIs were formed from the liberal masks of the cortical
parcellation on the MNI space distributed with FreeSurfer74. To define
network-constrained but spatially local ROIs, each network mask was
divided into sub-regions based on geometrical continuity (voxel con-
nectivity parameter was 26) using FSL v5.075. The ROIs with less than
500 voxelswere excluded in the following analyses for the subsequent
feature extraction. Eventually, 25 ROIs were constructed (Table 1 and
Supplementary Fig. 3), and unique ROI labels were assigned for
identification20.

Classification analysis
To decode the relative positions of numerosity from multivariate
patterns (Fig. 2), we employed a four-class classifier. This classifier was
a linear SVM with a regularization parameter C set at 1. It was trained
using the fMRI data (beta images, without any feature scaling) on one
numerosity set and then tested on the other two sets. This procedure
was repeated across all possible combinations of the three numerosity
sets, effectively implementing a 3-fold cross-validation approach. The
average classification performance was then assessed based on these
cross-validation results.

For the ROI-based classification analysis, 500 voxels were
extracted within each ROI to make the ROIs comparable in their size.
Before conducting the classification analyses, we performed feature
selection for each ROI and each participant, using a leave-one-
participant-out approach. Initially, a first-level analysis was con-
ducted within each set for each participant, where a contrast image
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against zerowasdefined for eachnumericalmagnitude. Following this,
a second-level analysis was applied to the contrast images from the
remaining 29 participants for each participant. This process produced
a t-valuemap for the 12 numericalmagnitudes (4 stimuli × 3 set). The 12
t-value maps were aggregated by taking the minimum value at each
voxel. The top 500 voxels were then selected within each ROI mask
based on these aggregated t-value maps. The classification perfor-
mance was derived for each ROI and participant. To determine whe-
ther the classifications was successful, we tested if the performance
exceeded the theoretical chance level of 25% for each ROI using a one-
sided t-test. The p-values were Holm corrected for multiple compar-
isons across ROIs76. The significance level was set to α = 0.05.

To evaluate the robustness of the results, we conducted a whole-
brain searchlight-based classification analysis. For this analysis, we
used a searchlight sphere with a radius of four voxels (8mm). The
classification performance map was derived for each participant and
smoothed with a three-dimensional Gaussian kernel with an FWHM of
4mm. The performancemapswere then subjected to one-sided t-tests
to determine if they exceeded the chance level. The statistical sig-
nificance was defined by cluster-wise family-wise error (FWE) cor-
rected p < 0.05: clusters were defined by voxel level threshold
p <0.001 (uncorrected).

Both ROI- and searchlight-based classification analyses were per-
formed using The Decoding Toolbox (3.999E)77 implemented on
MATLAB 2017a (Mathworks, Natick, MA, USA).

Representational similarity analysis
In the representational similarity analysis (RSA)78, we focused on the
same 500 voxels that were selected for the ROI-based classification.
For each ROI, we constructed a representational dissimilarity matrix
(data RDM) where the dissimilarity in brain activity patterns between
each pair of numerosities was represented as 1 minus Pearson’s cor-
relation, 1� r (Fig. 5a). To examine whether the data RDMs could be
explained by the absolute and relative coding, we regressed the data
RDMs onto a combination of hypothetical dissimilarity matrices using
a linear mixed-effect modeling approach (Fig. 5b).

We modeled the hypothetical dissimilarity matrices as fixed
slopes. The dissimilarity matrices were defined in the stimulus space,
with numerosity log-transformed in advance, in accordance with
Weber-Fechner’s law innumerosity discrimination10,11. The dissimilarity
between numerosities was based on different aspects: absolute mag-
nitude (numerical magnitude), relative magnitude (deviation of the
presented numerosity from the mathematical bisection point), or
relative category (smaller or larger than the mathematical bisection
point, binarized as 0 for smaller and 1 for larger). To regress out the
effect of task difficulty, we included a numerical distance-based dis-
similarity matrix as another fixed slope. This dissimilarity matrix
resembled the relative magnitude-based matrix, but with a key dis-
tinction: we used the absolute value of the deviation of presented
numerosity from themathematical bisection point. Finally, to account
for any possible nuisance effects by comparing activity patterns across
experimental sessions, such as spatial displacements that may persist
after preprocessing and impair the dissimilarity measure across the
sessions, we added a random intercept as a nuisance regressor. This
random intercept was defined for each combination of participant and
session pairs, reflecting the fact that the effect depends on which pair
of sessions was compared for each participant. The session pairs (i.e.,
numerosity sets) included within-set comparisons (small-set vs. small-
set, medium-set vs. medium-set, and large-set vs. large-set), and cross-
set comparisons (small-set vs. medium-set, medium-set vs. large-set,
and large-set vs. small-set). Notably, within-set comparisons did not
distinguish between small-, medium-, or large-set pairings. This
approach aimed to control for intra-individual and/or intra-session
nuisance factors that could influence the comparisons of brain activity
patterns.

We applied a model selection framework to determine the most
parsimonious and predictive model for each ROI. This involved con-
structing various candidatemodels based on possible combinations of
the regressors. There was a total of 12 candidatemodels, derived from:
2 (include or exclude absolute magnitude-based regressor) × 3
(include relativemagnitude-based regressor, include relative category-
based regressor, or exclude them) × 2 (include or exclude numerical
distance-based regressor). Due to the high correlation between the
relative magnitude-based regressor and the relative category-based
regressor (Supplementary Fig. 5), these regressors were not included
together in the model, but rather mutually exclusively. The random
intercept was always contained in the model. The selection of the top
models was based on the Akaike information criterion (AIC). We con-
sidered the top models, rather than solely the model with the mini-
mum AIC, because models with a small AIC difference relative to the
minimum AIC (ΔAIC < 2) are also considered to have substantial
support79. Among these topmodels, the bestmodel was defined as the
one that was most parsimonious in terms of the number of free
parameters. In case where there was a tie in the number of free para-
meters, the model with the lower AIC value was selected as the best.
This approach insured a balanced consideration of model fit and
complexity.

In the bestmodel, we assumed that the weights on each regressor
reflected the amount of evidence of the corresponding hypothesis.We
anticipated positive weights for each regressor, indicating a positive
linear association between dissimilarities in the stimulus space and
those in the brain activity patterns. However, negative weights could
be also informative, potentially revealing unexpected insights. To
assess this, we tested whether the weight on each regressor deviated
from 0 with a two-sided t-test via the Satterthwaite approximation80,81.
The p-values were Holm corrected for multiple comparisons across
ROIs for each regressor76. The significance level was set to α = 0.05.
When a regressor was excluded, the weight on that regressor was
replaced by 0.

The data RDMs were calculated using rsatoolbox implemented in
Python82.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The fundamental data generated in this study (ROI- and searchlight-
based classification performance for each participant, data RDM for
each ROI and participant, and average activity level for each ROI and
participant) have been deposited in the Zenodo repository (https://
doi.org/10.5281/zenodo.14262987). Source data of presented figures
are providedwith this paper. Source data are providedwith this paper.

Code availability
The code that supports the findings of this study is available from the
Zenodo repository (https://doi.org/10.5281/zenodo.14262995).

References
1. Nieder, A. The neuronal code for number. Nat. Rev. Neurosci. 17,

366–382 (2016).
2. Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the

quantity of visual items in the primate prefrontal cortex. Science
297, 1708–1711 (2002).

3. Sawamura, H., Shima, K. & Tanji, J. Numerical representation for
action in the parietal cortex of the monkey. Nature 415,
918–922 (2002).

4. Ditz,H.M.&Nieder, A.Numerosity representations in crowsobey the
Weber-Fechner law. Proc. R. Soc. B Biol. Sci. 283, 20160083
(2016).

Article https://doi.org/10.1038/s41467-024-55599-8

Nature Communications |          (2025) 16:419 12

https://doi.org/10.5281/zenodo.14262987
https://doi.org/10.5281/zenodo.14262987
https://doi.org/10.5281/zenodo.14262995
www.nature.com/naturecommunications


5. Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. Tuning
curves for approximate numerosity in the human intraparietal sul-
cus. Neuron 44, 547–555 (2004).

6. Nieder, A. The adaptive value of numerical competence. Trends
Ecol. Evol. 35, 605–617 (2020).

7. Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number.
Trends Cognit. Sci. 8, 307–314 (2004).

8. Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate
arithmetic in an Amazonian indigene group. Science 306,
499–503 (2004).

9. Nieder, A. & Merten, K. A labeled-line code for small and large
numerosities in the monkey prefrontal cortex. J. Neurosci. 27,
5986–5993 (2007).

10. Merten, K. & Nieder, A. Compressed scaling of abstract numerosity
representations in adult humans and monkeys. J. Cognit. Neurosci.
21, 333–346 (2009).

11. Nieder, A. & Miller, E. K. Coding of cognitive magnitude: com-
pressed scaling of numerical information in the primate prefrontal
cortex. Neuron 37, 149–157 (2003).

12. Piazza, M., Pinel, P., Le Bihan, D. & Dehaene, S. A magnitude code
common to numerosities and number symbols in human intrapar-
ietal cortex. Neuron 53, 293–305 (2007).

13. Eger, E. et al. Deciphering cortical number coding from human
brain activity patterns. Curr. Biol. 19, 1608–1615 (2009).

14. Eger, E., Pinel, P., Dehaene, S. & Kleinschmidt, A. Spatially invariant
coding of numerical information in functionally defined subregions
of human parietal cortex. Cereb. Cortex 25, 1319–1329 (2015).

15. Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A. & Eger, E. Atten-
tional amplification of neural codes for number independent of
other quantities along the dorsal visual stream. eLife 8,
e45160 (2019).

16. Arsalidou,M. & Taylor, M. J. Is 2 + 2 = 4?Meta-analyses of brain areas
needed for numbers and calculations. NeuroImage 54,
2382–2393 (2011).

17. Sokolowski, H. M., Fias, W., Mousa, A. & Ansari, D. Common and
distinct brain regions in both parietal and frontal cortex support
symbolic and nonsymbolic number processing in humans: a func-
tional neuroimaging meta-analysis. NeuroImage 146, 376–394
(2017).

18. Nieder, A. Supramodal numerosity selectivity of neurons in primate
prefrontal and posterior parietal cortices. Proc. Natl Acad. Sci. USA
109, 11860–11865 (2012).

19. Yeo, B. T. T. et al. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106,
1125–1165 (2011).

20. Schaefer, A. et al. Local-Global parcellation of the human cerebral
cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28,
3095–3114 (2018).

21. Cai, Y. et al. Topographic numerosity maps cover subitizing and
estimation ranges. Nat. Commun. 12, 3374 (2021).

22. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyondmind-
reading: multi-voxel pattern analysis of fMRI data. Trends Cognit.
Sci. 10, 424–430 (2006).

23. Tudusciuc, O. & Nieder, A. Neuronal population coding of
continuous and discrete quantity in the primate posterior
parietal cortex. Proc. Natl Acad. Sci. USA 104, 14513–14518
(2007).

24. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B
Biol. Sci. 360, 815–836 (2005).

25. Meirhaeghe, N., Sohn, H. & Jazayeri, M. A precise and adaptive
neural mechanism for predictive temporal processing in the frontal
cortex. Neuron 109, 2995–3011.e5 (2021).

26. Kohn, A. Visual adaptation: physiology,mechanisms, and functional
benefits. J. Neurophysiol. 97, 3155–3164 (2007).

27. Schwartz, O., Hsu, A. & Dayan, P. Space and time in visual context.
Nat. Rev. Neurosci. 8, 522–535 (2007).

28. Weber, A. I., Krishnamurthy, K. & Fairhall, A. L. Coding principles in
adaptation. Annu. Rev. Vis. Sci. 5, 427–449 (2019).

29. Burr, D. C. & Ross, J. A visual sense of number. Curr. Biol. 18,
425–428 (2008).

30. Aagten-Murphy, D. & Burr, D. Adaptation to numerosity requires
only brief exposures, and is determined by number of events, not
exposure duration. J. Vis. 16, 22 (2016).

31. Grasso, P. A., Anobile, G., Arrighi, R., Burr, D. C. & Cicchini, G. M.
Numerosity perception is tuned to salient environmental features.
iScience 25, 104104 (2022).

32. Tsouli, A. et al. Adaptation to visual numerosity changes neural
numerosity selectivity. NeuroImage 229, 117794 (2021).

33. Castaldi, E., Aagten-Murphy, D., Tosetti, M., Burr, D. & Morrone, M.
C. Effects of adaptation on numerosity decoding in the human
brain. NeuroImage 143, 364–377 (2016).

34. Ansari, D., Dhital, B. & Siong, S. C. Parametric effects of numerical
distance on the intraparietal sulcus during passive viewing of rapid
numerosity changes. Brain Res. 1067, 181–188 (2006).

35. Cantlon, J. F., Brannon, E. M., Carter, E. J. & Pelphrey, K. A. Func-
tional imaging of numerical processing in adults and 4-y-old chil-
dren. PLOS Biol. 4, e125 (2006).

36. Bulthé, J., De Smedt, B. & Op de Beeck, H. P. Format-dependent
representations of symbolic and non-symbolic numbers in the
human cortex as revealed by multi-voxel pattern analyses. Neuro-
Image 87, 311–322 (2014).

37. Bulthé, J., De Smedt, B. & Op de Beeck, H. P. Visual number beats
abstract numerical magnitude: format-dependent representation
of Arabic digits and dot patterns in human parietal cortex. J. Cognit.
Neurosci. 27, 1376–1387 (2015).

38. Cavdaroglu, S. & Knops, A. Evidence for a posterior parietal cortex
contribution to spatial but not temporal numerosity perception.
Cereb. Cortex 29, 2965–2977 (2019).

39. Damarla, S. R. & Just, M. A. Decoding the representation of
numerical values from brain activation patterns. Hum. Brain Mapp.
34, 2624–2634 (2013).

40. Lasne, G., Piazza, M., Dehaene, S., Kleinschmidt, A. & Eger, E. Dis-
criminability of numerosity-evoked fMRI activity patterns in human
intra-parietal cortex reflects behavioral numerical acuity. Cortex
114, 90–101 (2019).

41. Pennock, I. M. L., Schmidt, T. T., Zorbek, D. & Blankenburg, F.
Representation of visual numerosity information during working
memory in humans: An fMRI decoding study.Hum. Brain Mapp.42,
2778–2789 (2021).

42. Cai, Y., Hofstetter, S., Harvey, B. M. & Dumoulin, S. O. Attention
drives human numerosity-selective responses. Cell Rep. 39,
111005 (2022).

43. Harvey, B. M., Klein, B. P., Petridou, N. & Dumoulin, S. O. Topo-
graphic representation of numerosity in the human parietal cortex.
Science 341, 1123–1126 (2013).

44. Harvey, B. M. & Dumoulin, S. O. A network of topographic numer-
osity maps in human association cortex. Nat. Hum. Behav. 1,
0036 (2017).

45. Paul, J. M., van Ackooij, M., Ten Cate, T. C. & Harvey, B. M. Numer-
osity tuning in human association cortices and local image contrast
representations in early visual cortex. Nat. Commun. 13,
1340 (2022).

46. Lemer, C., Dehaene, S., Spelke, E. & Cohen, L. Approximate quan-
tities and exact number words: dissociable systems. Neu-
ropsychologia 41, 1942–1958 (2003).

47. Cappelletti, M., Barth, H., Fregni, F., Spelke, E. S. & Pascual-Leone,
A. rTMS over the intraparietal sulcus disrupts numerosity proces-
sing. Exp. Brain Res. 179, 631–642 (2007).

Article https://doi.org/10.1038/s41467-024-55599-8

Nature Communications |          (2025) 16:419 13

www.nature.com/naturecommunications


48. Hayashi, M. J. et al. Interaction of numerosity and time in prefrontal
and parietal cortex. J. Neurosci. 33, 883–893 (2013).

49. Nieder, A. & Miller, E. K. A parieto-frontal network for visual
numerical information in the monkey. Proc. Natl Acad. Sci. 101,
7457–7462 (2004).

50. Tanji, J. & Hoshi, E. Role of the lateral prefrontal cortex in executive
behavioral control. Physiol. Rev. 88, 37–57 (2008).

51. Vergani, F. et al. White matter connections of the supplementary
motor area in humans. J. Neurol. Neurosurg. Psychiatry 85,
1377–1385 (2014).

52. Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: a
bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

53. Czajko, S., Vignaud, A. & Eger, E. Human brain representations of
internally generatedoutcomesof approximatecalculation revealed
by ultra-high-field brain imaging. Nat. Commun. 15, 572 (2024).

54. Walsh, V. A theory of magnitude: common cortical metrics of time,
space and quantity. Trends Cognit. Sci. 7, 483–488 (2003).

55. Park, J. & Huber, D. E. A visual sense of number emerges from
divisive normalization in a simple center-surround convolutional
network. eLife 11, e80990 (2022).

56. Burr, D. C., Anobile, G. & Arrighi, R. Psychophysical evidence for the
number sense. Philos. Trans. R. Soc. B Biol. Sci. 373,
20170045 (2017).

57. Anobile, G., Cicchini, G. M. & Burr, D. C. Number as a primary per-
ceptual attribute: a review. Perception 45, 5–31 (2016).

58. Anobile, G., Cicchini, G. M. & Burr, D. C. Separate mechanisms for
perception of numerosity and density. Psychol. Sci. 25,
265–270 (2014).

59. Anobile, G., Turi, M., Cicchini, G. M. & Burr, D. C. Mechanisms for
perception of numerosity or texture-density are governed by
crowding-like effects. J. Vis. 15, 4 (2015).

60. Ross, J. & Burr, D. C. Vision senses number directly. J. Vis. 10,
10.1–8 (2010).

61. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10,
433–436 (1997).

62. Kleiner, M. et al. What’s new in psychtoolbox-3. Perception 36,
1–16 (2007).

63. Pelli, D. G. The VideoToolbox software for visual psychophysics:
transforming numbers into movies. Spat. Vis. 10, 437–442
(1997).

64. Cauley, S. F., Polimeni, J. R., Bhat, H., Wald, L. L. & Setsompop, K.
Interslice leakage artifact reduction technique for simultaneous
multislice acquisitions. Magn. Reson. Med. 72, 93–102 (2014).

65. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G.
Bayesian t tests for accepting and rejecting the null hypothesis.
Psychon. Bull. Rev. 16, 225–237 (2009).

66. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default
Bayes factors for ANOVA designs. J. Math. Psychol. 56,
356–374 (2012).

67. Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R. &
Wagenmakers, E.-J. Bayesian analysis of factorial designs. Psychol.
Methods 22, 304–321 (2017).

68. R. Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing (2021).

69. JASP Team. JASP (Version 0.16.0) [Computer software]. https://
jasp-stats.org/faq/#collapse-449 (2021).

70. Prins, N. & Kingdom, F. A. A. Applying the model-comparison
approach to test specific research hypotheses in psychophysical
research using the palamedes Toolbox. Front. Psychol. 9,
1250 (2018).

71. Gardumi, A. et al. The effect of spatial resolution on decoding
accuracy in fMRI multivariate pattern analysis. NeuroImage 132,
32–42 (2016).

72. Corbin, N., Todd, N., Friston, K. J. & Callaghan, M. F. Accurate
modeling of temporal correlations in rapidly sampled fMRI time
series. Hum. Brain Mapp. 39, 3884–3897 (2018).

73. Poldrack, R. A., Mumford, J. A. & Nichols, T. E. Handbook of Func-
tional MRI Data Analysis. (Cambridge University Press, 2011).

74. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
75. Smith, S. M. et al. Advances in functional and structural MR image

analysis and implementation as FSL. NeuroImage 23,
S208–S219 (2004).

76. Holm, S. A simple sequentially rejective multiple test procedure.
Scand. J. Stat. 6, 65–70 (1979).

77. Hebart, M. N., Görgen, K. & Haynes, J.-D. The Decoding Toolbox
(TDT): a versatile software package for multivariate analyses of
functional imaging data. Front. Neuroinform. 8, 88 (2014).

78. Kriegeskorte, N.,Mur, M. & Bandettini, P. Representational similarity
analysis - connecting the branches of systems neuroscience. Front.
Syst. Neurosci. 2, 4 (2008).

79. Burnham, K. P. & Andersen, D. R.Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. (Springer-
Verlag, 2002).

80. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-
effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

81. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest
Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82,
1–26 (2017).

82. Nili, H. et al. A toolbox for representational similarity analysis. PLOS
Comput. Biol. 10, e1003553 (2014).

Acknowledgements
This work was supported by the Japan Society for the Promotion of
Science (Grants-in-Aid for Scientific Research JP22J21061 and
JP22KJ1038 to T.K., JP19H01771 to Y.Y., and JP22H01110 to M.J.H., Grant-
in-Aid for Scientific Research on Innovative Areas JP21H00315 to MJH)
and the Japan Science and Technology Agency (PRESTO JPMJPR19J8
to M.J.H.).

Author contributions
Conceptualization: M.J.H.; Methodology: T.K. and M.J.H.; Software: T.K.:
Formal analysis: T.K.; Investigation: T.K., Data curation: T.K.;
Writing–Original draft: T.K.; Writing–Review and Editing: M.J.H. and Y.Y.;
Visualization: T.K.; Supervision: M.J.H. and Y.Y.; Project administration:
M.J.H; Funding acquisition: M.J.H., T.K., and Y.Y.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55599-8.

Correspondence and requests for materials should be addressed to
Yuko Yotsumoto or Masamichi J. Hayashi.

Peer review informationNature Communications thanks David Burr and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-55599-8

Nature Communications |          (2025) 16:419 14

https://jasp-stats.org/faq/#collapse-449
https://jasp-stats.org/faq/#collapse-449
https://doi.org/10.1038/s41467-024-55599-8
http://www.nature.com/reprints
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-55599-8

Nature Communications |          (2025) 16:419 15

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex
	Results
	Comparable task performance across numerosity ranges
	Relative coding of numerosity distributed across visual and frontoparietal cortices
	Relative versus absolute coding of numerosity

	Discussions
	Neural representations of relative numerosity
	Contributions of predictive processing to the relative numerosity representation
	Hierarchical processing of numerosity in the frontoparietal regions
	Mixed representations of absolute and relative numerosity in the visual cortex

	Methods
	Participants
	Experimental design
	Task and stimuli
	Procedure
	MRI data acquisition
	Behavioral data analysis
	fMRI data analysis
	Preprocessing

	General linear model analysis
	Region of interest
	Classification analysis
	Representational similarity analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




