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Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer
relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is
important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review,
we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of
therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better
therapeutic rationales to accompany novel anticancer therapeutics.

1. Introduction

Cancer is one of the leading causes of morbidity and mortal-
ity worldwide with about 20% of all deaths in developed
countries [1]. From preclinical and clinical cancer studies,
various new diagnostic and treatment options for cancer
patients provide notable progresses in cancer treatment and
prevention [2]. Cancer heterogeneity is one of the reasons
contributing to the treatment failure and disease progression.
Among several cancer treatments, the main treatments that
are commonly used to treat patients are surgery, radiother-
apy, and chemotherapy. Surgery can successfully remove
cancer from the body, while combining radiotherapy with
chemotherapy can effectively give better results for treating
many types of cancer [3]. Recent chemotherapeutic agents
are successful against primary tumor lesions and its residue
after surgery or radiotherapy [4]. However, chemotherapy
induces tumor heterogeneity derived from both normal and
cancer cells and the heterogeneity within tumors, in turn,
results in reducing effects of chemotherapy; contributing
to the treatment failure and disease progression [5, 6].
Chemoresistance is a major problem in the treatment of
cancer patients, as cancer cells become resistant to chemical

substances used in treatment, which consequently limits the
efficiency of chemo agents [7]. It is also often associated with
tumors turning into more aggressive form and/or metastatic
type [8–11].

Accumulating evidences suggest that cancer stem cell
(CSC) population, a subgroup of cancer cells, is responsible
for the chemoresistance and cancer relapse, as it has ability
to self-renew and to differentiate into the heterogeneous
lineages of cancer cells in response to chemotherapeutic
agents [12–14]. CSCs are also able to induce cell cycle arrest
(quiescent state) that support their ability to become resistant
to chemo- and radiotherapy [15–20]. Common chemother-
apeutic agents target the proliferating cells to lead their
apoptosis, as mentioned previously. Although successful
cancer therapy abolishes the bulk of proliferating tumor
cells, a subset of remaining CSCs can survive and promote
cancer relapse due to their ability to establish higher inva-
siveness and chemoresistance [21, 22]. Understanding the
features of CSCs is important to establish the foundation
for new era in treatment of cancer. In this review, we
address the detailed mechanisms by which CSCs display
the resistance to chemo- and radiotherapy and their impli-
cation for clinical trials.
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2. The Origin and Surface Markers of Cancer
Stem Cells (CSCs)

Cancer stem cells (CSCs), also known as tumor-initiating
cells (TICs), have been intensively studied in the past decade,
focusing on the possible source, origin, cellular markers,
mechanism study, and development of therapeutic strategy
targeting their pathway [23, 24]. The first convincing evi-
dence of CSCs was reported by Bonnet and Dick in 1997 by
the identification of a subpopulation of leukemia cells
expressing surface marker CD34, but not CD38. CD34+/
CD38− subpopulation was capable of initiating tumor growth
in the NOD/SCID recipient mice after transplantation [25].
In addition to blood cancer, CSCs have been identified in
several kinds of solid tumor [21, 26]. The first evidence of
the presence of CSCs in solid cancer in vivo was found and
identified as CD44+CD24-/lowLineage− cells in immunocom-
promised mice after transplanting human breast cancer cells
in 2003 [27] even though it has been indicated in vitro in
2002 by the discovery of clonogenic (sphere-forming) cells
isolated from human brain gliomas [28]. Over time, CSC
population was also identified from several other solid can-
cers including melanoma, brain, lung, liver, pancreas, colon,
breast cancer, as well as ovarian cancer [27, 29–35].

Although CSC model explains the heterogeneity of
cancers in terms of hierarchical structure and progression

mode, the origins of CSCs are currently unclear and con-
troversial [36, 37]. Accumulating hypotheses suggest that
depending on the tumor type, CSCs might be derived
from either adult stem cells, adult progenitor cells that
have undergone mutation, or from differentiated cells/can-
cer cells that obtained stem-like properties through dedif-
ferentiation [25, 38–50]. Because of the plasticity of
CSCs, it has been suggested that the combinational ther-
apy of targeting CSC pathways and conventional chemo-
therapeutics might have better therapeutic effect, which
will be explained later in detail (Figure 1). Early studies
in AML demonstrated that normal primitive cells, but
not committed progenitor cells, are targets for leukemic
transformation [25]. Similarly, it has been indicated that
deletion of Apc in Lgr5+ (leucine-rich-repeat containing
G-protein coupled receptor 5) long-lived intestinal stem
cells, rather than short-lived transit-amplifying cells, could
lead to their transformation, showing that stem cells are
the cells-of-origin in intestinal cancer [42]. Moreover,
long-term culture can also induce telomerase-transduced
adult human mesenchymal stem cells (hMSCs) to undergo
spontaneous transformation, showing that these cells are
also the origin of CSCs [43, 44]. Interestingly, CSCs originate
from the transformation of not only their tissue-specific
stem cells but also other tissue stem cells. For instance,
bone marrow-derived cells (BMDCs) may be an essential
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Figure 1: The origin of CSCs and combinational therapy of CSC targeting and bulk tumor ablation. CSCs could possibly have originated from
either stem cells with mutation/oncogenic transformation, progenitors that have undergone mutation, or from differentiated cells or cancer
cells that obtained stem-like properties by dedifferentiation. Thus, because of the plasticity of CSCs, it is suggested that combinational therapy
of CSC targeting and bulk tumor ablation may have better therapeutic effects to improve the clinical outcomes of cancer patients.
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source of many tumor types, such as gastric cancer, neural
tumors, and even teratoma [45].

CSCs also have been demonstrated to be generated by
dedifferentiation from progenitor cells or differentiated
cells which have acquired “stemness” properties as a result
of the accumulation of extra genetic or epigenetic abnor-
malities [46]. For example, BCR-ABL fusion protein is
present in hematopoietic stem cell- (HSC-) like CML cells
but granulocyte-macrophage progenitors are found to be a
candidate of the advanced-stage LSCs during blast crisis in
blast-crisis CML by activating the self-renewal process via
β-catenin pathway [47]. In addition, it has been shown
that oncogenic Hh signaling can promote medulloblas-
toma from either lineage-restricted granule cell progenitors
or stem cells [48, 49]. Besides, most differentiated cells in
the CNS, including terminally differentiated neurons and
astrocytes, can acquire defined genetic alterations to dedif-
ferentiate into NSC or progenitor state and consequently
induce and maintain malignant gliomas [50].

Of note, CSCs can be identified by specific markers of
normal stem cells which are commonly used for isolating
CSCs from solid and hematological tumors [51]. Several
cell surface markers have been verified to identify CSC-
enriched populations, such as CD133, CD24, CD44,
EpCAM (epithelial cell adhesion molecule), THY1, ABCB5
(ATP-binding cassette B5), and CD200 [27, 32, 34, 52].
Additionally, certain intracellular proteins also have been
used as CSCs markers, such as aldehyde dehydrogenase 1
(ALDH1) which is used to characterize CSCs in many
types of cancer such as leukemia, breast, colon, liver, lung,
pancreas, and so forth [12, 53]. The usage of cell surface
markers as CSC markers might differ from each cancer
types depending on their characteristics and phenotypes.
The surface markers that are frequently used to isolate
CSCs from each cancer types are listed in Table 1.

3. The Mechanisms by Which CSCs
Contribute to the Resistance against
Chemotherapy and Cancer Relapse

Recent studies suggest that CSCs are enriched after chemo-
therapy because a small subpopulation of cells remaining in

tumor tissue, so-called CSCs, can survive and expand though
most chemotherapeutic agents kill bulk of tumors [12–14].
For instance, preleukemic DNMT3Amut HSCs which can
initiate clonal expansion as the first step in leukemogenesis
and regenerate the entire hematopoietic hierarchy were
found to survive and expand in the bone marrow remission
after chemotherapy [54]. Similarly, exposure to therapeutic
doses of temozolomide (TMZ), the most commonly used
antiglioma chemotherapy, consistently expands the glioma
stem cell (GSC) pool over time in both patient-derived and
established glioma cell lines, which has been shown to be a
result of phenotypic and functional interconversion between
differentiated tumor cells and GSCs [55]. Moreover, the
humanized VEGF antibody bevacizumab reduces glioblas-
toma multiforme (GBM) tumor growth but followed by
tumor recurrence, possibly due to the ongoing autocrine sig-
naling through the VEGF-VEGFR2–Neuropilin-1 (NRP1)
axis, which is associated with the enrichment of active
VEGFR2 GSC subset in human GBM cells [56]. The
gefitinib-resistant subline HCC827-GR-highs established by
high-concentration method also acquire both the EMT and
stem cell-like features but do not show any EGFR-mutant–
specific protein production or further increase in the number
of either mutant allele or EGFR copy [57]. Therefore, by
understanding the mechanisms and oncogenic drivers by
which the CSCs escape the radio- and chemotherapy, we
can develop more effective treatments that could improve
the clinical outcomes of cancer patients. The mechanisms
by which CSCs contribute to the chemoresistance includ-
ing EMT, MDR, dormancy, tumor environment, and so
forth are mentioned below in detail and summarized in
Figure 2.

3.1. Epithelial Mesenchymal Transition (EMT). It has been
indicated that epithelial mesenchymal transition (EMT)
markers and stem cell markers are coexpressed in circulating
tumor cells from patients with metastasis [58] and EMT
induction or activation of EMT transcription factors (TFs)
confers stem-like features in cancer cells [59]. In particular,
normal and neoplastic human breast stem-like cells express
similar markers with cells that have undergone EMT, and
EMT induces the generation of relatively unlimited numbers
of cancer stem cells from more differentiated neoplastic cells

Table 1: Cancer stem cell markers in human.

Tumor type Cancer stem cell markers Reference

Lung cancer CD133+, CD44+, ABCG2, ALDH, CD87+, SP, CD90+ [215–217]

Colon cancer CD133+, CD44+, CD24+, CD166+, EpCAM+, ALDH, ESA [218, 219]

Liver cancer CD133+, CD44+, CD49f+, CD90+, ALDH, ABCG2, CD24+, ESA [51, 219]

Breast cancer CD133+, CD44+, CD24−, EpCAM+, ALDH-1 [51, 218]

Gastric cancer CD133+, CD44+, CD24+ [215, 220–222]

Leukemia (AML) CD34+, CD38−, CD123+ [216, 218, 223]

Prostate cancer CD133+, CD44+, α2β1, ABCG2, ALDH [51, 215, 223]

Pancreatic cancer CD133+, CD44+, CD24+, ABCG2, ALDH, EpCAM+, ESA [195, 215, 218]

Melanoma ABCB5+, CD20+ [51, 217]

Head and neck cancer SSEA-1+, CD44+, CD133+ [224–226]
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[60]. Meanwhile, there is an association between EMT activa-
tion and drug resistance [61]. For instance, gefitinib-induced
resistant lung cancer cells acquire EMT phenotype [62]
through activation of Notch-1 signaling [63]. Moreover,
enhanced invasive potential, tumorigenicity, and expression
of EMT markers could be used to predict the resistance of
anti-EGFR antibody cetuximab in the cells [64]. In parallel,
compared with epithelial cell lines, the mesenchymal cells
have increased expression of genes involved in metastasis
and invasion and are significantly less susceptible to EGFR
inhibition, including erlotinib, gefitinib, and cetuximab; at
least partly via integrin-linked kinase (ILK) overexpression
in mesenchymal cells [65]. Besides, EMT mediator S100A4
has been shown to involve in maintaining the stemness
properties and tumorigenicity of CSCs in head and neck can-
cer [66]. Therefore, EMT induces the cancer cells to exhibit
stem cell-like characteristics which promote cells to invade
surrounding tissues and display therapeutic resistance [67].
Interestingly, ZEB1, a regulator of EMT, plays an important
role in key features of cancer stem cells including the
regulation of stemness and chemoresistance induction
through transcriptional regulation of O-6-Methylguanine
DNA Methyltransferase (MGMT) via miR-200c and c-
MYB in malignant glioma [68]. Apart from EMT, the high
expression of stem cell markers such as Oct4, Nanog, Sox2,
Musashi, and Lgr5 has been considered to confer chemore-
sistance as well [69–73].

3.2. High Levels of Multidrug Resistance (MDR) or
Detoxification Proteins. Side population (SP) cells, which
exhibit a cancer stem cell-like phenotype, are detected in a

variety of different solid tumors such as retinoblastoma, neu-
roblastoma, gastrointestinal cancer, breast cancer, lung can-
cer, and glioblastoma; their high expression of drug-
transporter proteins (including MDR1, ABCG2, and
ABCB1) not only acts to exclude Hoechst dye but also expels
cytotoxic drugs, leading to high resistance to chemothera-
peutic agents with better cell survival and disease relapse
[74–76]. Alisi et al. suggest that the overexpression of ABC
protein is probably the most important protective mecha-
nism for CSCs in response to chemotherapeutic agents
[77]. Interestingly, it has been demonstrated that the PI3K/
Akt pathway specifically regulates ABCG2 activity via its
localization to the plasma membrane, and loss of PTEN pro-
motes the SP phenotype of human glioma cancer stem-like
cells [78]. Moreover, the activity of aldehyde dehydrogenase
(ALDH), a cytosolic enzyme that is responsible for the oxida-
tion of intracellular aldehydes to protect cells from the poten-
tially toxic effects of elevated levels of reactive oxygen species
(ROS) [79], is high in both normal and patients’ CD34+/
CD38− leukemic stem cells, and thus plays an important role
in resistance to chemotherapy [80]. ALDH activity is a poten-
tial selective marker for cancer stem cells in many different
types of cancer, such as breast cancer [53], bladder cancer
[81], head and neck squamous cell carcinoma [82], lung
cancer [83], and embryonal rhabdomyosarcoma [84]. Inter-
estingly, cell culture model systems and clinical sample stud-
ies show that ALDH1A1-positive cancer stem cells promote
significant resistance to both EGFR-TKI (gefitinib) and other
anticancer chemotherapy drugs (cisplatin, etoposide, and
fluorouracil) than ALDH1A1-negative cells in lung cancer
[85]. In addition, high levels of ALDH1 expression predict
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Figure 2: Key signaling pathways and modifications of CSCs contributing to the resistance against chemotherapeutics. In order to survive
during and after therapy, CSCs display many responses including EMT, self-renewal, tumor environment, quiescence, epigenetic
modification, MDR, and so forth. The mechanisms by which CSCs contribute to resistance against therapeutics are summarized.
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a poor response or resistance to preoperative chemoradio-
therapy in resectable esophageal cancer patients [86].

3.3. Dormancy of CSCs. It has been demonstrated that besides
the intratumoral heterogeneity initiated by the evolution of
genetically diverse subclones, there are also functionally dis-
tinct clones, which were found by tracking the progeny of
single cells using lentivirus, within a genetic lineage in colo-
rectal cancers [87]; accordingly, these diversity-generating
processes within a genetic clone promote cells for higher
survival potential, especially during stress such as chemo-
therapy. For example, chemotherapy can induce the tumor
growth of previously relatively dormant or slowly proliferat-
ing lineages that still retain potent tumor propagation
potential, leading to both cancer growth and drug resistance
[87]. Similarly, in glioblastoma multiforme, there is also the
existence of a relatively quiescent subset of endogenous
tumor cells with characteristics similar to cancer stem cells
responsible for maintaining the long-term tumor growth
and therefore leading to recurrence via the production of
transient populations of highly proliferative cells [17]. Con-
comitantly, chemotherapy-induced damages recruit the qui-
escent label-retaining pool of bladder CSCs during the gap
periods between chemotherapy cycles into an unexpected cell
division response to repopulate residual tumors, similar to
wound repair mobilization of tissue resident stem cells [88].

3.4. Resistance to DNA Damage-Induced Cell Death. CSCs
can be resistant to DNA damage-induced cell death through
several ways. These include protection against oxidative
DNA damage by enhanced ROS scavenging, promotion of
the DNA repair capability through ATM and CHK1/CHK2
phosphorylation, or activation of the anti-apoptotic signaling
pathways, such as PI3K/Akt, WNT/b-catenin, and Notch sig-
naling pathways [24]. For instance, CD44, an adhesion mol-
ecule expressed in CSC, interacts with a glutamate-cystine
transporter and controls the intracellular level of reduced
glutathione (GSH); hence, the CSCs expressing a high level
of CD44 showed an enhanced capacity for GSH synthesis,
resulting in stronger defense against ROS [89]. Interestingly,
similar to normal tissue stem cells, CSCs have lower ROS
levels, which is associated with increased expression of free
radical scavenging systems, leading to higher ROS defenses
and radiotherapy resistance as well [90]. In addition,
CD44+/CD24−/low CSC subset in breast cancer is resistant
to radiation via activation of ATM signaling but does not
depend on alteration of nonhomologous end joining (NHEJ)
DNA repair activity [91]. Similarly, CD133-expressing tumor
cells isolated from both human glioma xenografts and pri-
mary patient glioblastoma specimens preferentially activate
the DNA damage checkpoint in response to radiation and
repair radiation-induced DNA damage more effectively than
CD133-negative tumor cells [92]. Notch pathway also pro-
motes the radioresistance of glioma stem cells as the
Notch inhibition with gamma-secretase inhibitors (GSIs)
induces the glioma stem cells to be more sensitive to radi-
ation at clinically relevant doses due to the reduction of
radiation-induced PI3K/Akt activation and upregulated

levels of truncated apoptotic isoform of Mcl-1 (Mcl-1s)
while not altering DNA damage response [93].

3.5. Tumor Environment. It has been shown that a distinct
microenvironment of various cellular composition is impor-
tant to protect and regulate normal stem cells. An equivalent
microenvironment was also found in the CSCs in which
CSCs was favorably supported within a histologic niche,
so-called CSC microenvironment [94–96], containing con-
nective stromal [97–101] and vascular tissues [102–106].
This environment expedites CSC divisional dynamics, allow-
ing them to differentiate progenitor daughter cells as well as
self-renew and maintain CSCs in the primitive develop-
mental state. The cells within CSC microenvironment are
capable of stimulating signaling pathways [58], such as
Notch [102, 107, 108] and Wnt [109–111] which may
facilitate CSCs to metastasize, evade anoikis, and alter
divisional dynamics, achieving repopulation by symmetric
division [109, 112–114].

3.5.1. Hypoxia. Hypoxia and HIF signaling pathway have
been shown to contribute to the regulation and sustenance
of CSCs and EMT phenotype such as cell migration, inva-
sion, and angiogenesis [115], via the increased expression of
VEGF, IL-6, and CSC signature genes such as Nanog, Oct4,
and EZH2, in pancreatic cancer for example [116]. There-
fore, hypoxia and HIF signaling pathway may also play a role
in CSC resistance to therapy. In the hypoxic microenviron-
ment, hypoxia and hypoxia-inducible factor HIF1-α signal-
ing promote CML cell persistence mainly through the
upregulation of hypoxia-inducible factor 1α (HIF1-α), inde-
pendent of BCR-ABL1 kinase activity [117]. Similarly,
hypoxia increases gefitinib-resistant lung CSCs in EGFR
mutation-positive NSCLC by upregulating expression of
insulin-like growth factor 1 (IGF1) through HIF1α and acti-
vating IGF1 receptor (IGF1R) [118]. Interestingly, autophagy
is upregulated in the pancreatic cancer in the microenviron-
mental condition of low oxygen and lack of nutrition, similar
with the hypoxic tumor, and then promotes the clonogenic
survival and migration of pancreatic CSChigh cells [119].

3.5.2. Cancer-Associated Fibroblasts (CAFs). It has been indi-
cated that besides cell autonomous resistance of CSCs, che-
motherapy preferentially targets non-CSCs by the
stimulation of cancer-associated fibroblasts (CAFs) which
creates a chemoresistant niche by increased secretion of spe-
cific cytokines and chemokines, including interleukin-17A
(IL-17A), a CSC maintenance factor by promoting self-
renewal and invasion [120]. It has been shown previously
that CSCs can differentiate into CAF-like cells (CAFLCs)
and hence they are one of the key sources of CAFs which
support the tumor maintenance and survival in the cancer
niche [121]. CAFs are known to secrete many different
growth factors, cytokines, and chemokines, including hepa-
tocyte growth factor (HGF), which activates the MET recep-
tors to protect the CSCs from apoptosis in response to the
cetuximab monotherapy targeting the EGFR in metastatic
colorectal cancer [122].

5Stem Cells International



3.5.3. Inflammation. In addition, long-term treatment of
breast cancer cells with trastuzumab specifically enriched
CSCs which exhibit EMT phenotypes with higher levels of
secreted cytokines IL-6 compared with parental cells; as a
consequence, these cells develop trastuzumab resistance
mediated by activation of an IL-6-mediated inflammatory
feedback loop to expand the CSC population [123]. Similarly,
autocrine TGF-β signaling and IL-8 expression are also
enhanced after chemotherapeutic drug paclitaxel treatment
in triple-negative breast cancer, leading to CSC population
enrichment and tumor recurrence [124]. Furthermore,
stroma-secreted chemokine stroma-derived factor 1a
(SDF-1a) and its cognate receptor CXCR4 play an impor-
tant role in the migration of hematopoietic cells to the
bone marrow microenvironment [125, 126], so SDF-1A/
CXCR4 interaction mediates the resistance of leukemia
cells to chemotherapy-induced apoptosis [127], and thus
CXCR4 inhibition with inhibitors such as AMD3100 can
enhance the sensitivity of leukemic cells to chemotherapy
by disrupting stromal/leukemia cell interactions within
the bone marrow microenvironment by Akt phosphoryla-
tion inhibition and PARP cleavage induction due to borte-
zomib in the presence of bone marrow stromal cells
(BMSCs) in coculture [128]. Moreover, the CSCs from
the chemoresistant tumors have the unique ability to pro-
duce a variety of proinflammatory signals, such as IFN
regulatory factor-5 (IRF5), which acts as a transcription
factor specific for chemoresistant tumors to induce the
M-CSF production, to consequently produce the M2-like
immunoregulatory myeloid cells from CD14+ monocytes,
and to promote the myeloid cell-mediated tumorigenic
and stem cell activities of bulk tumors [129].

3.5.4. Immune Cells. It has been indicated previously that
tumor-associated macrophages (TAMs) can promote
chemoresistance in both myeloma cell lines and primary
myeloma cells from spontaneous or chemotherapeutic
drug-induced apoptosis by directly interacting with
malignant cells within the tumor microenvironment and
attenuating the activation and cleavage of caspase-
dependent apoptotic signaling [130]. Moreover, TAM also
directly induces CSC properties of pancreatic tumor cells by
activating signal transducer and activator of transcription 3
(STAT3) and thus inhibits the antitumor CD8+ T lympho-
cyte responses in the chemotherapeutic response [131].
Besides, in pancreatic ductal adenocarcinoma, cancer cells
secrete colony-stimulating factor 1 (CSF1) to attract and
stimulate CSF1 receptor- (CSF1R-) expressing TAM to
express high levels of cytidine deaminase (CDA), an intracel-
lular enzyme which catabolizes the bioactive form of gemci-
tabine and therefore protects the cancer cells from the
chemotherapy [132].

3.6. Epigenetics. Besides, CSC-mediated drug resistance is
regulated by epigenetic mechanisms as well, including
histone modifications and DNA methylation. First, DNA
methylation was unchanged during TGF-β-mediated
EMT but other epigenetic changes such as a lysine-
specific deaminase-1- (Lsd1-) dependent global reduction

of the heterochromatin mark H3-lys9 dimethylation
(H3K9Me2), an increase of the euchromatin mark H3-
lys4 trimethylation (H3K4Me3) and the transcriptional
mark H3-lys36 trimethylation (H3K36Me3) are found;
especially, H3K4Me3 might contribute to Lsd1-regulated
chemoresistance [133]. In addition, KDM1A, a flavin ade-
nine dinucleotide- (FAD-) dependent lysine-specific
demethylase specifically with monomethyl- and dimethyl-
histone H3 lysine-4 (H3K4) and lysine-9 (H3K9) sub-
strate, is an important regulator of MLL-AF9 leukemia
stem cell (LSC) oncogenic potential by blocking differenti-
ation [134]. Besides, B-cell-specific Moloney murine leuke-
mia virus integration site 1 (BMI1), one of several
epigenetic silencer proteins belonging to Polycomb group
(PcG), is required for self-renewal of both adult stem cells
and many CSCs via various key pathways, such as
anchorage-independent growth, Wnt and Notch pathway
[135]. BMI-1 has been indicated to be involved in the
protection of cancer cells from apoptosis or drug resis-
tance in various types of cancer, including nasopharyngeal
carcinoma [136], melanoma [137], pancreatic adenocarci-
noma [138], ovarian cancer [139], and hepatocellular car-
cinoma [140]. Furthermore, another PcG member EZH2,
a catalytic subunit of polycomb repressor complex 2
(PRC2) which trimethylates histone H3 at lysine 27
(H3K27me) and elicits gene silencing, also participates in
pancreatic cancer chemoresistance by silencing p27 tumor
suppressor gene via methylation of histone H3-lysine 27
(H3K27) [141]. Moreover, EZH2 protects GSCs from
radiation-induced cell death and consequently promotes
GSC survival and radioresistance via upstream regulator
mitotic kinase maternal embryonic leucine-zipper kinase
(MELK) [142]. In addition, EZH2 inhibition sensitizes
BRG1 and EGFR loss-of-function mutant lung tumors to
topoisomerase II (TopoII) inhibitor etoposide with increased
S phase, anaphase bridging, and apoptosis [143]. Interest-
ingly, EZH2 and BMI1 are indicated to inversely correlate
with prognosis signature and TP53 mutation in breast
cancer [144].

Second, histone acetylation is involved in the regula-
tion of transcriptional activation and chemoresistance of
CSCs too. Treatment with HDAC inhibitors (HDACi)
effectively targets the quiescent chronic myelogenous leu-
kemia (CML) stem cells which are resistant to tyrosine
kinase inhibitor imatinib mesylate (IM) [145]. Similarly,
pretreatment with HDAC inhibitors may sensitize the
prostate stem-like cells to radiation treatment through
increased DNA damage and reduced clonogenic survival
[146]. Vorinostat, a HDAC inhibitor via inducing ubiqui-
tination and lysosome degradation, downregulates the
expression and signaling of all three receptors EGFR,
ErbB2, and ErbB3 together with reversion of EMT in
EGFR TKI gefitinib-resistant cells and therefore enhances
the antitumor effect of gefitinib in squamous cell carci-
noma of head and neck [147]. Interestingly, NANOG
upregulates histone deacetylases 1 (HDAC1) via binding
to the promoter region and decreasing K14 and K27 his-
tone H3 acetylation; as a result, it induces not only the
stem-like features through epigenetic repression of cell
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cycle inhibitor CDKN2D and CDKN1B but also the
immune resistance and chemoresistance through MCL-1
upregulation by epigenetic silencing of E3 ubiquitin-ligase
TRIM17 and NOXA [148].

Third, many tumor suppressor genes have been shown to
be epigenetically silenced in chemoresistant cancers by DNA
methylation on CpG promoter regions. For instance, tumor
suppressor insulin-like growth factor binding protein-3
(IGFBP-3), which is involved in controlling cell growth,
transformation, and survival, is specifically downregulated
through promoter-hypermethylation and results in acquired
resistance to chemotherapy in many different types of cancer
[149]. In addition, loss of DNA mismatch repair (MMR)
gene hMLH1 via full hypermethylation of the hMLH1 pro-
moter [150] is highly correlated with the ability of arresting
cell death and cell cycle after DNA damage induced by che-
motherapy and poor survival prediction for cancer patients
[151], hence plays a role in drug resistance in ovarian [152]
and breast cancers [153].

3.7. Signaling Pathways of CSC-Driven Chemoresistance. As
mentioned, normal stem cells and CSCs have similar charac-
teristics such as self-renewal and differentiation. They also
share numbers of key signaling pathway to maintain its exis-
tence. For example, Notch signaling was highly expressed in
the hematopoietic tumors such as T-ALL and solid tumors
such as non-small-cell lung carcinoma (NSCLC), breast can-
cer, and glioblastoma [154–156]. Activation of Hedgehog sig-
naling which in normal condition plays important roles in
embryonic development and tissue regeneration also has
been found to be involved in the regulation of various cancer
stem cells, such as pancreatic cancer, leukemias, and basal
cell carcinoma (BCC) [157]. Another signaling pathway such
as WNT, TGFβ, PI3K/Akt, EGFR, and JAK/STAT, as well as
transcriptional regulators including OCT4, Nanog, YAP/
TAZ, andMyc are also commonly activated in various cancer
stem cells to regulate their self-renewal and differentiation
state [21, 158]. CSCs have been indicated to display many
characteristics of embryonic or tissue stem cells and develop-
mental signaling pathways such as Wnt, HH, and Notch that
are highly conserved embryonically and control self-renewal
of stem cells [159]. Therefore, activation of these pathways
may play an important role in the expansion of CSCs and
hence the resistance to therapy [160]. Here, several represen-
tatives are explained.

First, it has been indicated that activation of Wnt/β-
catenin signaling enhances the chemoresistance to IFN-α/5-
FU combination therapy [161]. OV6+ HCC cells, a subpopu-
lation of less differentiated progenitor-like cells in HCC cell
lines and primary HCC tissues, have been shown to be
endogenously active Wnt/β-catenin signaling and resistant
to standard chemotherapy [162]. In addition, in neuroblas-
toma, amplification and upregulation of frizzled-1 Wnt
receptor (FZD1) activate the Wnt/β-catenin pathway in che-
moresistant cancer cells by nuclear β-catenin translocation
and transactivation of Wnt target genes such as multidrug
resistance gene (MDR1), which is known to mediate the
resistance to chemotherapy [163]. Furthermore, c-Kit, a stem
cell factor (SCF) receptor, mediates chemoresistance through

activation of Wnt/β-catenin and ATP-binding cassette G2
(ABCG2) pathway in ovarian cancer [164].

Secondly, Hh pathway could regulate autophagy in CML
cells and then inhibition of the Hh pathway and autophagy
simultaneously could sharply reduce cell viability and signif-
icantly induce apoptosis of imatinib-sensitive or -resistant
BCR-ABL+ cells via downregulating the kinase activity of
the BCR-ABL oncoprotein [165]. Concomitantly, the expres-
sion of sonic hedgehog (SHH) and glioma-associated onco-
gene homolog 1 (GLI1), the well-known signaling pathway
molecules involved in the drug resistance, is higher in
enriched CD44+/Musashi-1+ gastric cancer stem cells and
consequently enhances the drug resistance via high drug
efflux pump activity [166]. In glioma, CD133+ CSC popula-
tion, which contributes to the chemoresistance of therapy
such as temozolomide (TMZ) treatment, overexpresses genes
involved in Notch and SHH pathways and activates these
pathways [167].

Last but not least, chemotherapy such as oxaliplatin
induces Notch-1 receptor and its downstream target Hes-1
activity by increasing gamma-secretase activity in colon can-
cer cells; hence, inhibition of Notch-1 signaling by gamma-
secretase inhibitors (GSIs) sensitizes colon cancer cells to
chemotherapy [168]. Moreover, Notch signaling pathway
and Notch3 in particular play an essential role in the regula-
tion of CSC maintenance and chemoresistance to platinum
in ovarian cancer therapy [169]. Similarly, the enrichment
of CD133+ cells in lung adenocarcinoma after cisplatin
induction leads to multidrug resistance through activation
of Notch signaling as higher levels of cleaved Notch1
(NICD1) are detected [170]. Furthermore, it has been shown
that gefitinib-acquired resistant lung adenocarcinoma cells
undergo EMT by activation of Notch-1 signaling via
Notch-1 receptor intracellular domain (N1IC), the activated
form of the Notch-1 receptor [63].

Besides, there are also some molecules which act as the
integration of various pathways involved in the control of
stem cell fate across tissues; for example, CYP26, a primary
retinoid-inactivating enzyme through retinoid and Hedge-
hog pathways, limits the retinoic acid concentration, there-
fore leading to drug resistance in the stem cell niche [171].

4. CSC-Based Therapy

Owing to the ability of CSCs to develop chemo- and radiore-
sistance which play key roles in the malignant progression,
metastasis, and cancer recurrence, it is suggested that target-
ing cancer stem cells offers an ultimate goal to overcome a
poor prognosis, leading to a better patient survival [15, 22].
Selective targeting of CSC signaling networks that are essen-
tial for self-renewal, proliferation, and differentiation to
maintain their stem cell properties provides a new challenge
in the development of cancer treatments [19, 172]. Over the
last decades, it was suggested that the combination of con-
ventional therapy and targeted therapy against CSC-specific
pathways gives rise a better consequence compared to mono-
therapy in removal of both bulk tumor and CSC population
(Figure 1) [19]. Thus, targeting essential pathways in the
CSCs such as Notch, Wnt, and Hedgehog (HH) is being
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developed to block the self-renewal of CSCs [21]. Lately,
some classes of Notch pathway inhibitors have been reported
to enter a clinical trial, accompanied by a substantial variety
of targets, mechanism of action, and drug classes [19, 21].
The major class of Notch inhibitor is the γ-secretase inhibi-
tors (GSIs). GSI works by inhibiting the final proteolytic
cleavage of Notch receptors, which results in the release of
the active intracellular fragment. It was the first class of
Notch pathway inhibitor that enters a clinical trial in the can-
cer field [159, 173, 174].

HH pathway is shown to be involved in several essential
developmental pathways such as tissue patterning during
embryonic development and the repair of normal tissues
and epithelial-to-mesenchymal transition [175]. Vismode-
gib, a drug targeting HH pathway, was approved by the Euro-
pean Medicines Agency (EMA) in 2013 and the US FDA in
2012 for the therapy of metastatic BCC patients or locally
advanced BCC patients that are not candidates for surgery
or radiotherapy [176, 177].

Targeting Wnt signaling has also shown promising
results related to carcinogenesis, tumor invasiveness, and
metastasis [159]. Wnt3A-neutralizing mAb was shown to
have antiproliferation and proapoptotic effects in prostate
cancer mouse model [178]. And anti-Fz10 radio-labeled
mAb is being evaluated in a phase I trial for the synovial
sarcoma therapy. Vantictumab (OMP-18R5, a mAb that
blocks five Fz receptors such as Fz1, Fz2, Fz5, Fz7, and
Fz8) [179–181] and OMP-54F28 [181] (a mAb that blocks
fusion protein decoy receptor such as truncated Fz8) are
under investigation in phase I studies in advanced-stage
solid tumors [182].

Targeting CSCs through the EMT pathways also provides
a new challenge in the cancer therapy study. This therapy is
developed in order to prevent cancer aggressiveness and
acquired drug resistance of cancer stem cells [183, 184].
Lately, the finding of therapeutic agents to EMT-based CSC
therapy indicated three general target groups [184, 185].
These include a group involved in the regulation of EMT
extracellular inducer such as TGF-β, EGF, Axl-Gas6 path-
ways, hypoxia, and extracellular matrix components.
Another group is the transcription factors (TFs) that pro-
mote EMT transcriptome including Twist1, Snail1, Zeb1/2,
T-box TF Brachyury as well as its downstream effectors of
EMT, such as E-Cadherin, N-Cadherin, vimentin, and
HoxA9. The last one is targeting regulators of EMT-TFs
and epigenetic regulator using microRNA [184–190].

Accumulating evidence suggests that miRNA and other
groups of long noncoding RNA (lncRNA) play important
roles in the regulation of CSCs properties such as self-renewal,
asymmetric cell division, tumor initiation, drug resistance,
and disease recurrence [186, 187, 189, 191–193].The usage
of miRNA as CSC-based therapeutic agents is reported; for
example, mir-22 that targets TET2 in leukemia (AML and
MDS) and breast cancer [194], Let-7 to target RAS and
HMGA2 in breast cancer [195], mir-128 to target BMI-1 in
brain cancer [191], mir-200 to target ZEB1/ZEB2, BMI-1,
and SUZ12 in breast cancer [189, 196, 197], and some other
miRNA in the colon cancer and prostate cancer have been
reported to reduce cancer malignancy [198–202].

Finally, cancer immunotherapy may be a breakthrough
for targeting specifically CSCs in cancer patients. For cancer
immunotherapy, several effectors, including natural killer
(NK) cells and γδT cells in innate immunity, antibodies in
acquired humoral immunity, CSC-based dendritic cells, and
CSC-primed cytotoxic T lymphocytes (CTLs) in acquired
cellular immunity, which are able to recognize and kill CSCs
may be suitable candidates to improve the efficacy of cancer
treatment. A variety of immunotherapeutic strategies that
specifically target CSCs using these effector cells have been
reported. In addition, identification of specific antigens or
genetic alterations in CSCs plays an important role in finding
targets for immunotherapy. These include CSC markers
(ALDH [203], CD44 [204, 205], CD133 [206], EpCAM
[207], and HER2 [208]), CSC niche interaction (TAM
[209]), tumor microenvironment (immune cells/myeloid-
derived suppressor cells), cytokines (IL1 [210], IL6 [211],
and IL8 [212]), and immune checkpoint (CTLA-4 [213] or
PD1/PDL1 [214]).

5. Conclusion

CSCs possess stem cell-like features found in cancer and have
important implications for the chemoresistance and cancer
relapse, a notion that remains somewhat controversial. With
a small subpopulation in the malignant cell pool, the contri-
bution of CSCs is remarkable in cancer therapy, as shown by
intensive studies in recent decades. These cells can be identi-
fied based on the presence of surface biomarkers, enhanced
spheroid or colony formation in vitro and augmented
tumor-initiating potential as well as tumorigenic ability
in vivo. They are resistance to chemotherapy and radiation
therapy compared to bulk tumor cells and hence play a cru-
cial role in tumor recurrence after anticancer therapy. To sur-
vive following cancer treatment, CSCs seem to be able to
manifest several responses such as EMT, induction of signal-
ing pathways that regulate self-renewal or influence tumor
environments, expression of drug transporters or detoxifica-
tion proteins, and so forth to protect them from devastating
effects caused by therapeutic agents. Thus, the development
of anticancer therapeutics that target CSCs is not only limited
to the finding of inhibitor of CSC pathways and cell surface
markers but also to the development of EMT and CSCs
microenvironment-related inhibitors. Though the molecular
mechanisms underlying the resistance of CSCs to chemo-
therapy and radiation still require further studies in order
to develop promising strategies for suppressing tumor
relapse and metastasis, recent technological advances made
it easier than before to find mechanisms contributing to drug
resistance. Also, the recent therapeutic strategy of combining
molecules specifically targeting CSCs with conventional che-
motherapeutic drugs could possibly be a better direction for
anticancer therapy and may therefore achieve better survival
rates of cancer patients (Figure 1) [19]. Besides, as some cell
surface biomarkers and signaling pathways are similar
between CSCs and normal stem cells, it is also essentially
required to develop novel therapeutic agents targeting only
CSCs to avoid off-target effects on noncancerous cells or
normal stem cells.
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