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Abstract

All modern approaches to molecular phylogenetics require a quantitative model for how genes evolve. Unfortunately,
existing evolutionary models do not realistically represent the site-heterogeneous selection that governs actual sequence
change. Attempts to remedy this problem have involved augmenting these models with a burgeoning number of free
parameters. Here, I demonstrate an alternative: Experimental determination of a parameter-free evolutionary model via
mutagenesis, functional selection, and deep sequencing. Using this strategy, I create an evolutionary model for influenza
nucleoprotein that describes the gene phylogeny far better than existing models with dozens or even hundreds of free
parameters. Emerging high-throughput experimental strategies such as the one employed here provide fundamentally
new information that has the potential to transform the sensitivity of phylogenetic and genetic analyses.

Key words: phylogenetics, codon model, substitution model, influenza, nucleoprotein, deep mutational scanning.

Introduction
The phylogenetic analysis of gene sequences is one of the
most important and widely used computational techniques
in all of biology. All modern phylogenetic algorithms require a
quantitative evolutionary model that specifies the rate at
which each site substitutes from one identity to another.
These evolutionary models can be used to calculate the sta-
tistical likelihood of the sequences given a particular phylo-
genetic tree (Felsenstein 1973). Phylogenetic relationships are
typically inferred by finding the tree that maximizes this like-
lihood (Felsenstein 1981) or by combining the likelihood with
a prior to compute posterior probabilities of possible trees
(Huelsenbeck et al. 2001).

Actual sequence evolution is governed by the rates at
which mutations arise and the selection that subsequently
acts upon them (Halpern and Bruno 1998; Thorne et al. 2007).
Unfortunately, neither of these aspects of the evolutionary
process are traditionally known a priori. The standard
approach in molecular phylogenetics is therefore to assume
that sites evolve independently and identically, and then con-
struct an evolutionary model that contains free parameters
designed to represent features of mutation and selection
(Goldman and Yang 1994; Yang 1994; Yang et al. 2000;
Kosiol et al. 2007). This approach suffers from two major
problems. First, although adding parameters enhances a
model’s fit to data, the parameter values must be esti-
mated from the same sequences that are being analyzed
phylogenetically—and so complex models can overfit the
data (Posada and Buckley 2004). Second, even complex
models do not contain enough parameters to realistically
represent selection, which is highly idiosyncratic to specific
sites within a protein. Attempts to predict site-specific selec-
tion from protein structure have had limited success
(Rodrigue et al. 2009; Kleinman et al. 2010), probably because

even sophisticated computer programs cannot reliably pre-
dict the impact of mutations (Potapov et al. 2009).

Methods have been developed to infer site-specific selec-
tion from naturally occurring sequences (Rodrigue et al. 2010;
Tamuri et al. 2012, 2014). Because the number of possible
mutations is large, steps must be taken to ensure that these
methods do not overfit the data (Rodrigue 2013). However,
even when such steps are taken, the inferred site-specific se-
lection parameters cannot easily be applied to phylogenetic
analyses. The reason is that the selection parameters are gen-
erally inferred from the same naturally occurring sequences
that are of phylogenetic interest—and parameters inferred
from a data set cannot be used to analyze that same data
set without additional procedures to avoid overfitting. The
procedures that have been devised to restrain this problem of
proliferating free parameters are complex and generally re-
quire assuming that sites fall into only a limited number of
different classes (Lartillot and Philippe 2004; Le et al. 2008;
Wang et al. 2008; Wu et al. 2013). Therefore, estimating site-
specific selection from natural sequences is an imperfect
method for inferring realistic evolutionary models for phylo-
genetic analyses.

Here, I demonstrate a radically different approach for
constructing quantitative evolutionary models: Direct exper-
imental measurement. This approach bypasses the aforemen-
tioned problem of proliferating free parameters because
site-specific selection is measured experimentally without
consideration of naturally occurring sequences. The evolu-
tionary models constructed from these experiments therefore
do not contain any parameters that must be estimated
from the natural sequences that are being analyzed
phylogenetically.

Specifically, using influenza nucleoprotein (NP) as an
example, I experimentally estimate mutation rates via
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limiting-dilution passage and site-specific selection via deep
mutational scanning (Fowler et al. 2010; Araya and Fowler
2011), a combination of high-throughput mutagenesis, func-
tional selection, and deep sequencing. I then show that these
experimental measurements can be used to create a param-
eter-free evolutionary model describes the NP gene phylogeny
far better than existing models with numerous free parame-
ters. Finally, I discuss how the increasing availability of data
from high-throughput experimental strategies such as the
one employed here has the potential to transform analyses
of genetic data by augmenting generic statistical models of
evolution with detailed molecular level information.

Results

Components of an Experimentally Determined
Evolutionary Model

A phylogenetic evolutionary model specifies the rate at which
one genotype is replaced by another. These rates of genotype
substitution are determined by the underlying rates at which
new mutations arise and the subsequent selection that acts
upon them (Halpern and Bruno 1998; Thorne et al. 2007).
A standard assumption in molecular phylogenetics is that the
rate of genotype substitution can be decomposed into inde-
pendent substitution rates at individual sites. Here, I make this
assumption at the level of codon sites, and use Pr,xy to denote
the rate that site r substitutes from codon x to y given that
the identity is already x. I further assume that it is possible to
decompose Pr,xy as

Pr,xy ¼ Qxy � Fr,xy, ð1Þ

where Qxy is the rate of mutation from x to y (assumed to be
constant across sites) and Fr,xy is the site-specific probability
that a mutation from x to y will fix at site r if it arises. Both are
assumed to be constant over time.

Given the evolutionary model described by equation (1),
the challenge is to experimentally estimate the mutation
rates Qxy and the fixation probabilities Fr,xy. In the following
sections, I describe these experiments.

Measurement of Mutation Rates

A general challenge in quantifying mutation rates is the dif-
ficulty of separating mutations from the subsequent selection
that acts upon them. To decouple mutation from selection, I
utilized a previously described method for growing influenza
viruses that package green fluorescent protein (GFP) in the
PB1 segment (Bloom et al. 2010). The GFP does not contrib-
ute to viral growth and so is not under functional selection—
therefore, substitutions in this gene accumulate at the muta-
tion rate.

To drive the rapid accumulation of substitutions in
the GFP gene, I performed limiting-dilution mutation-
accumulation experiments (Halligan and Keightley 2009).
Specifically, I passaged 24 replicate populations of GFP-
carrying influenza viruses by limiting dilution in tissue culture,
at each passage serially diluting the virus to the lowest con-
centration capable of infecting target cells. Because each lim-
iting dilution bottlenecks the population to one or a few

infectious virions, mutations fix rapidly. After 25 rounds of
passage, the GFP gene was Sanger sequenced for each repli-
cate to identify 24 substitutions (tables 1 and 2), for an overall
rate of 5:6� 10�5 mutations per nucleotide per tissue-
culture generation—a value similar to that estimated previ-
ously by others using a somewhat different experimental
approach (Parvin et al. 1986). The rates of different types of
mutations are in table 3 and possess expected features such as
an elevation of transitions over transversions.

Because an observed mutation of A!G can arise from
either this change on the sequenced strand or a change of
T!C on the complementary strand, then assuming that the
same molecular mutation process affects both strands, there
are only the six different mutation rates shown in table 3.
Specifically, let Rm!n represent the rate at which nucleotide
m mutates to n given that the identity is already m, and let mc

denote the complement of m (e.g., Ac is T). The assumption
that the same molecular mutation process affects both
strands means that Rm!n ¼ Rmc!nc

. An additional empirical
observation from table 3 is that the mutation rates for
influenza are approximately symmetric, with the rate of
each mutation approximately equal to its reversal
(Rm!n + Rmc!nc

� Rn!m + Rnc!mc
). Because it somewhat

simplifies computational aspects of the subsequent phyloge-
netic analyses, I enforce this empirical observation of

Table 1. Mutations Identified by Sequencing the 720-Nucleotide GFP
Gene Packaged in the PB1 Segment After 25 Limiting-Dilution
Passages for 24 Independent Replicates.

Clone Mutations

Clone 1 G62T (G21V), T693C (synonymous), del153-522 (indel)

Clone 2 None

Clone 3 C29T (T10I)

Clone 4 None

Clone 5 None

Clone 6 G429A (synonymous), C447T (synonymous)

Clone 7 None

Clone 8 None

Clone 9 C646A (R216S)

Clone 10 G471T (K157N), G703A (D235N)

Clone 11 T111C (synonymous), T718G (*240E)

Clone 12 T25C (F9L), T26C (F9S)

Clone 13 C45T (synonymous), C549T (synonymous)

Clone 14 T319C (Y107H), C372T (synonymous), C539T (A180V)

Clone 15 A488C (K163T)

Clone 16 G274T (G92C)

Clone 17 None

Clone 18 None

Clone 19 None

Clone 20 G527A (S176N), A676G (T226A)

Clone 21 G4A (V2I)

Clone 22 T266C (M89T)

Clone 23 None

Clone 24 C30T (synonymous), del45-590 (indel)

NOTE.—The numbering is sequential beginning with the first nucleotide of the GFP
start codon. For nonsynonymous mutations, the induced amino acid change is
indicated in parentheses.
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approximately symmetric mutation rates to be exactly true
by taking the rates of mutations and their reversals to be the
average of the two. With the further assumption that codon
mutations occur a single nucleotide at a time, the mutation
rates Qxy from codon x to y are estimated from the experi-
mental data in table 3 as

Qxy ¼

0 if x and y differ by more than one nucleotide,

4:7� 10�5 if x and y differ by A! G,T! C,G! A, or C! T,

1:84� 10�5 if x and y differ by A! C,T! G,C! A, or G! T,

6:0� 10�6 if x and y differ by A! T or T! A,

3:8� 10�6 if x and y differ by G! C or C! G:

8>>>><
>>>>:

ð2Þ

These mutation rates define the first term in the evolutionary
model specified by equation (1).

Deep Mutational Scanning to Assess Effects of
Mutations on NP

Estimation of the fixation probabilities Fr,xy in equation (1)
requires quantifying the effects of all � 104 possible amino
acid mutations to NP. Such large-scale assessments of muta-
tional effects are feasible with the advent of deep mutational
scanning, a recently developed experimental strategy of high-
throughput mutagenesis, selection, and deep sequencing
(Fowler et al. 2010; Araya and Fowler 2011) that has now
been applied to several genes (Fowler et al. 2010; Traxlmayr
et al. 2012; Melamed et al. 2013; Roscoe et al. 2013; Starita
et al. 2013). Applying this experimental strategy to NP
requires creating large libraries of random gene mutants,
using these genes to generate pools of mutant influenza vi-
ruses which are then passaged at low multiplicity of infection
(MOI) to select for functional variants, and finally using

Illumina sequencing to assess the frequency of each mutation
in the input mutant genes and the resulting viruses. Because
NP plays an essential role in influenza genome packaging,
replication, and transcription (Portela and Digard 2002; Ye
et al. 2006), mutations that interfere with NP function or
stability will impair or ablate viral growth. Such mutations
will therefore be depleted in the mutant viruses relative to
the input mutant genes.

Most previous applications of deep mutational scanning
have examined single-nucleotide mutations to genes, because
such mutations can easily be generated by error-prone poly-
merase chain reaction (PCR) or other nucleotide-level muta-
genesis techniques. However, many amino acid mutations are
not accessible by single-nucleotide changes. I therefore used a
PCR-based strategy to construct codon-mutant libraries that
contained multinucleotide (i.e., GGC! ACT) and single-
nucleotide (i.e., GGC! AGC) mutations. The use of codon-
mutant libraries has an added benefit during the subsequent
analysis of the deep sequencing when trying to separate true
mutations from errors, because the majority (54 of 63) pos-
sible codon mutations involve multinucleotide changes,
whereas sequencing and PCR errors generate almost exclu-
sively single-nucleotide changes. I used identical experimental
procedures to construct two codon-mutant libraries of NP
from the wild-type (WT) human H3N2 strain A/Aichi/2/1968
and two from a variant of this NP with a single amino acid
substitution (N334H) that enhances protein stability
(Ashenberg et al. 2013; Gong et al. 2013). These codon-
mutant libraries are termed WT-1, WT-2, N334H-1, and
N334H-2. Each of these four mutant libraries contained
more than 106 unique plasmid clones. Sanger sequencing of
30 clones drawn roughly equally from the four libraries
revealed that the number of codon mutations per clone fol-
lowed a Poisson distribution with a mean of 2.7 (fig. 1). These
codon mutations were distributed roughly uniformly along
the gene sequence and showed no obvious biases toward
specific mutations (fig. 1). Most of the &104 unique amino
acid mutations to NP therefore occur in numerous different
clones in the four libraries, both individually and in combina-
tion with other mutations.

Table 2. Counts for Different Types of Mutations After the 25
Limiting-Dilution Passages.

Mutation Type Number of Occurrences

Total substitutions 24

Transversions 6

Transitions 18

Nonsynonymous 15

Synonymous 8

Stop codons 1

Indels 2

T!G 1

T!C 6

T!A 0

G!T 3

G!C 0

G!A 4

C!T 7

C!G 0

C!A 1

A! T 0

A!G 1

A!C 1

NOTE.—The numbers are calculated from table 1. Given that GFP is 720 nucleotides
long, the data suggest a viral mutation rate of 5:6� 10�5 mutations per nucleotide
per tissue-culture generation.

Table 3. Influenza Mutation Rates.

Mutation Type Rate

A!G, T!C (transition) 2:4� 10�5

G!A, C! T (transition) 2:3� 10�5

A!C, T!G (transversion) 9:0� 10�6

C!A, G! T (transversion) 9:4� 10�6

A!T, T!A (transversion) 3:0� 10�6

G!C, C!G (transversion) 1:9� 10�6

NOTE.—Numbers represent the probability a site that has the parent identity will
mutate to the specified nucleotide in a single tissue-culture generation and are
calculated from tables 1 and 2 after adding one pseudocount to each mutation
type. Mutations are in pairs because an observed change of A!G can derive either
from this mutation on the sequenced strand or a T!C on the complementary
strand, and so the paired mutations are indistinguishable assuming that the same
mutational process applies to both strands of the replicated nucleic acid molecule.
The numbers are the estimated rates of each individual mutation, so, for example,
the observed rate of change from A!G is 2� 2:4� 10�5ð Þ because this change
can arise from either of the two mutations A!G and T!C.
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To assess effects of the mutations on viral replication, the
plasmid mutant libraries were used to create pools of mutant
influenza viruses by reverse genetics (Hoffmann et al. 2000).
The viruses were passaged twice in tissue culture at low MOI
to enforce a linkage between genotype and phenotype. The
NP gene was reverse transcribed and PCR amplified from viral
RNA after each passage, and similar PCR amplicons were
generated from the plasmid mutant libraries and a variety
of controls designed to quantify errors associated with se-
quencing, reverse transcription, and viral passage (fig. 2).
The entire process outlined in figure 2 was performed in
parallel but separately for each of the four mutant libraries
(WT-1, WT-2, N334H-1, and N334H-2) in what will be termed
one experimental replicate. This entire process of viral crea-
tion, passaging, and sequencing was then repeated indepen-
dently for all four libraries in a second experimental replicate.
The two independent replicates will be termed replicate A
and replicate B.

The mutation frequencies in all samples were quantified by
Illumina sequencing, using overlapping paired-end reads to

reduce errors (supplementary fig. S1, Supplementary Material
online). Each sample produced &107 paired reads that could
be aligned to NP, providing an average of &5� 105 calls per
codon (supplementary fig. S2, Supplementary Material
online). Sequencing of unmutated NP plasmid revealed a
low rate of errors, which were almost exclusively single-
nucleotide changes (fig. 3). As expected, the plasmid
mutant libraries contained a high frequency of single and
multinucleotide codon mutations (fig. 3). Mutation frequen-
cies for unmutated RNA or viruses created from unmutated
NP plasmid were only slightly above the sequencing error rate
(fig. 3), indicating that reverse transcription and viral replica-
tion introduced few mutations relative to the targeted mu-
tagenesis in the plasmid libraries. Mutation frequencies were
reduced in the mutant viruses relative to the mutant plasmids
used to create these viruses, particularly for nonsynonymous
and stop-codon mutations (fig. 3)—consistent with selection
purging deleterious mutations. These results indicate that
the deep mutational scanning experiment successfully intro-
duced many of the NP variants in the plasmid mutant

A

B

C

D

E

FIG. 1. The codon-mutant libraries as assessed by Sanger sequencing 30 individual clones. (A) The clones have an average of 2.7 codon mutations and
0.1 indels per full-length NP coding sequence, with the number of mutated codons per gene following an approximately a Poisson distribution. (B) The
number of nucleotide changes per codon mutation is roughly as expected if each codon is randomly mutated to any of the other 63 codons, with a
slight elevation in single-nucleotide mutations. (C) The mutant codons have a uniform base composition. (D) Mutations occur uniformly along the
primary sequence. (E) In clones with multiple mutations, there is no tendency for mutations to cluster. Shown is the actual distribution of pairwise
distances between mutations in all multiply mutated clones compared with the distribution generated by 1,000 simulations where mutations are placed
randomly along the primary sequence of each multiple-mutant clone. The data and code for this figure are available at https://github.com/jbloom/
SangerMutantLibraryAnalysis/tree/v0.21 (last accessed May 31, 2014).
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libraries into mutant viruses, which were then subjected to
purifying selection against mutations that interfered with viral
replication.

A key question is the extent to which the possible muta-
tions were sampled in both the plasmid mutant libraries and
the mutant viruses created from these plasmids. The deep
mutational scanning would not achieve its goal if only a small
fraction of possible mutations are sampled by the mutant
plasmids or by the mutant viruses created from these plas-
mids (the latter might be the case if there is a bottleneck
during virus creation, such that all viruses are generated
from only a few plasmids). Fortunately, figure 4 shows that
the sampling of mutations was quite extensive in both the
mutant plasmids and the mutant viruses. Specifically, figure 4
suggests that for each replicate, nearly all codon mutations
were sampled numerous times in the plasmid mutant librar-
ies and that over 75% of codon mutations were sampled by
the mutant viruses. Figure 4 also suggests that replicate A was
technically superior to replicate B in the thoroughness with
which mutations were sampled by the mutant viruses.
Because most amino acids are encoded by multiple codons,
the fraction of amino acid mutations sampled in each repli-
cate is even higher than the >75% of sampled codon muta-
tions. So although the experiments may not have exhaustively
examined every possible codon mutation, the thoroughness
of sampling is certainly sufficient to make the sort of statistical
inferences about mutational effects that are necessary to
construct a quantitative evolutionary model.

Inference of Site-Specific Amino Acid Preferences

Qualitatively, it is obvious that changes in mutation frequen-
cies between the plasmid mutant libraries and the resulting
mutant viruses reflect selection. However, it is less obvious
how to quantitatively analyze this information. Selection
acts on the full genomes of all viruses in the population.

In contrast, the experiments only measure site-independent
mutation frequencies averaged over the population. Here,
I have analyzed this data by assuming that each site has an
inherent preference for each possible amino acid. The moti-
vation for envisioning site heterogenous but site-independent
amino acid preferences comes from experiments suggesting
that the dominant constraint on mutations that fix during
NP evolution relates to protein stability (Gong et al. 2013) and
that mutational effects on stability tend to be conserved in a
site-independent manner (Ashenberg et al. 2013). Because
the experiments generally examine each mutation in combi-
nation with several other mutations (the average clone has
between two and three codon mutations; fig. 1), the site-
specific amino acid preferences are not simply selection
coefficients for specific mutations. Instead, they reflect the
effect of each mutation averaged over a set of genetic
backgrounds.

Specifically, let �r,a denote the preference of site r for
amino acid a, with

P
a �r,a ¼ 1. Figure 3 indicates that

most observed mutations are the result of the desired
codon mutagenesis but that there is also a low rate of appar-
ent mutations arising from Illumina sequencing errors and
reverse transcription. The expected frequency fr,x of mutant
codon x at site r in the mutant viruses is related to the pref-
erence �r,A xð Þ for its encoded amino acid A xð Þ by

fr,x ¼ �r,x + �r,x +
�r,x��r,A xð ÞP

y
�r,y��r,A yð Þ

where �r,x is the frequency

that site r is mutagenized to codon x in the plasmid mutant
library, "r,x is the frequency the site is erroneously identified as
x during sequencing, �r,x is the frequency the site is mutated
to x during reverse transcription, y is summed over all codons,
and the probability that a site experiences multiple mutations
or errors in the same clone is taken to be negligibly small. The
observed codon counts are multinomially distributed around
these expected frequencies, so by placing a symmetric
Dirichlet-distribution prior over �r,a and jointly estimating

FIG. 2. Design of the deep mutational scanning experiment. The sequenced samples are in yellow. Blue text indicates sources of mutation and selection;
red text indicates sources of errors. The comparison of interest is between the mutation frequencies in the mutDNA and mutvirus samples, because
changes in frequencies between these samples represent the action of selection. However, because some of the experimental techniques have the
potential to introduce errors, the other samples are also sequenced to quantify these unintended sources of error. Each of the two experimental
replicates (replicates A and B) involved independently repeating the entire viral rescue, viral passaging, and sequencing process for each of the four
plasmid mutant libraries (WT-1, WT-2, N334H-1, and N334H-2).
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the error ("r,x and �r,x) and mutation (�r,x) rates from the
appropriate samples in figure 2, it is possible to infer the
posterior mean for all amino acid preferences by Markov
chain Monte Carlo (MCMC, see Materials and Methods).

A basic check on the consistency of the overall experimen-
tal and computational approach is to compare the amino
acid preferences inferred from different replicates or different
viral passages of the same replicate. Figure 5A and B shows
that the preferences inferred from the first and second vi-
ral passages within each replicate are extremely similar, indi-
cating that most selection occurs during initial viral creation

and passage and that technical variation (preparation of sam-
ples, stochasticity in sequencing, etc.) has little impact.
A more crucial comparison is between the preferences in-
ferred from the two independent experimental replicates.
This comparison (fig. 5C) shows that preferences from the
independent replicates are substantially but less perfectly
correlated—probably the imperfect correlation is because
the mutant viruses created by reverse genetics independently
in each replicate are different incomplete samples of the
many clones in the plasmid mutant libraries. Nonetheless,
the substantial correlation between replicates shows that

A

B

FIG. 3. Per-codon mutation frequencies for each library (WT-1, WT-2, N334H-1, and N334H-2) in (A) replicate A or (B) replicate B. The samples are
named as in figure 2. Errors due to Illumina sequencing (DNA sample), reverse transcription (RNA sample), and viral replication (virus-p1 and virus-p2
samples) are rare and are mostly single-nucleotide changes. The codon-mutant libraries (mutDNA) contain a high frequency of single- and multi-
nucleotide changes as expected from Sanger sequencing (rightmost bars of this plot and fig. 1; note that Sanger sequencing is not subject to Illumina
sequencing errors that affect all other samples). Mutations are reduced in mutvirus samples relative to mutDNA plasmids used to create these mutant
viruses, with most of the reduction in stop-codon and nonsynonymous mutations—as expected if deleterious mutations are purged by purifying
selection. Details of the analysis used to generate these figures are at http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.
html (last accessed May 31, 2014).
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the sampling is sufficient to clearly reveal inherent preferences
despite these experimental imperfections. Presumably better
inferences can be made by aggregating data via averaging of
the preferences from both replicates. Figure 5D shows such
average preferences from the first passage of both replicates.
These preferences are consistent with existing knowledge
about NP function and stability. For example, at the con-
served residues in NP’s RNA binding interface (Ye et al.
2006), the amino acids found in natural sequences tend to
be the ones with the highest preferences (table 4). Similarly,
for mutations that have been experimentally characterized as
having large effects on NP protein stability (Ashenberg et al.
2013; Gong et al. 2013), the stabilizing amino acid has the
higher preference (table 5).

The Experimentally Determined Evolutionary Model

The final step is to use the amino acid preferences to estimate
the fixation probabilities Fr,xy, which can then be combined
with the mutation rates to create a fully experimentally
determined evolutionary model. Intuitively, it is obvious
that the amino acid preferences provide information about
the fixation probabilities. For instance, it seems reasonable to

expect that a mutation from x to y at site r will be more likely
to fix (relatively larger value of Fr,xy) if amino acid A yð Þ is
preferred to A xð Þ at this site (if �r,A yð Þ > �r,A xð Þ ) and less
likely to fix if �r,A yð Þ < �r,A xð Þ. However, the exact relation-
ship between the amino acid preferences and the fixation
probabilities is unclear. A rigorous derivation would require
knowledge of unknown and probably unmeasurable popula-
tion-genetics parameters for both the deep mutational
scanning experiment and the naturally evolving populations
that gave rise to the sequences being analyzed phylogeneti-
cally. Instead, I provide two heuristic relationships. Both rela-
tionships satisfy detailed balance (reversibility), such that
�r,A xð Þ � Fr,xy ¼ �r,A yð Þ � Fr,yx, meaning that Fr,xy defines a
Markov process with �r,A xð Þ proportional to its stationary
state when all amino acid interchanges are equally probable.

It is helpful to first consider what the amino acid prefer-
ences values actually represent. Most NP variants in the deep
mutational scanning libraries contain multiple mutations, so
the amino acid preferences represent the mutational effects
averaged over the nearby genetic neighborhood of the parent
protein. Therefore, one interpretation is that a preference is
proportional to the fraction of genetic backgrounds in which
a mutation is tolerated, such that a mutation from x to y

A

B

FIG. 4. The completeness with which mutations were sampled in the mutant plasmids and viruses, as assessed by the counts for each multinucleotide
codon mutation in the combined libraries of (A) replicate A or (B) replicate B. Restricting these plots to multinucleotide codon mutations avoids
confounding effects from sequencing errors, which typically generate single-nucleotide codon mutations. Very few multinucleotide codon mutations
are observed more than once in the unmutagenized controls (DNA, RNA, virus-p1, and virus-p2). Nearly all multinucleotide codon mutations are
observed many times in the mutant plasmid libraries (mutDNA). About half the multinucleotide codon mutations are found at least five times in the
mutant viruses (mutvirus-p1 and mutvirus-p2), indicating that at least half the possible mutations were incorporated into a virus. However, this is only a
lower bound, because deleterious mutations will be absent from the mutant viruses due to purifying selection. If the analysis is restricted to synonymous
multinucleotide codon mutations (which are less likely to be deleterious), then over 75% of the possible mutations were incorporated into a virus. This is
still only a lower bound, because even synonymous mutations are sometimes strongly deleterious to influenza (Marsh et al. 2008). The completeness
with which amino acid mutations are sampled is higher due to the redundancy of the genetic code. Note that replicate A is superior to replicate B in
terms of the completeness with which the mutations are sampled by the mutant viruses. Details of the analysis used to generate these figures are at
http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.html (last accessed May 31, 2014).
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FIG. 5. Amino acid preferences. (A) and (B) Preferences inferred from passages 1 and 2 are similar within each replicate, indicating that most selection
occurs during initial viral creation and passage and that technical variation is small. (C) Preferences from the two independent replicates are also
correlated but less perfectly. The increased variation is presumably due to stochasticity during the independent viral creation from plasmids for each
replicate. (D) Preferences for all sites in NP (the N-terminal Met was not mutagenized) inferred from passage 1 of the combined replicates. Letters’
heights are proportional to the preference for that amino acid and are colored by hydrophobicity. RSA and secondary structure are overlaid for residues
in crystal structure. Correlation plots show Pearson’s R and P value. Numerical data for (D) are in supplementary file S1, Supplementary Material online.
The preferences are consistent with existing knowledge about mutations to NP (tables 4 and 5). The computer code used to generate this figure is at
http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.html (last accessed May 31, 2014).
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is always tolerated if �r,A yð Þ > �r,A xð Þ but is only sometimes
tolerated if �r,A xð Þ < �r,A yð Þ. In this interpretation, there
should be strong selection during initial viral growth depend-
ing on whether the mutation is tolerated in the particular
genetic background in which it occurs, and then there
should be little further enrichment or depletion during
subsequent viral passages—loosely consistent with fig. 5A,B,
which shows that the amino acid preferences inferred af-
ter two viral passages are very similar to those inferred after
one passage. Note that this interpretation can be related
to the selection-threshold evolutionary dynamics described
in Bloom et al. (2007). An equation that describes this
scenario is

Fr,xy ¼
1 if �r,A yð Þ � �r,A xð Þ

�r,A yð Þ

�r,A xð Þ
otherwise:

�
ð3Þ

This equation is equivalent to the Metropolis acceptance
criterion (Metropolis et al. 1953).

An alternative interpretation is that �r,A xð Þ reflects the
selection coefficient for the amino acid A xð Þ at site r. In
this case, if the �r,a values represent the expected amino
acid equilibrium frequencies in a hypothetical evolving pop-
ulation in which all amino acid interchanges are equally likely,
and assuming (probably unrealistically) that this hypothetical
population and the actual population in which NP evolves are
in the weak-mutation limit (i.e., the population is mostly

Table 4. For Residues Involved in NP’s RNA-Binding Groove, the Preferences and Expected Evolutionary Equilibrium Frequencies from the
Experiments Correlate Well with the Amino Acid Frequencies in Naturally Occurring Sequences.

Residue Frequencies in
Natural

Sequences

Experimentally Measured
Amino Acid Preferences

Expected Equilibrium
Evolutionary Frequencies

from Experiments

65 R (0.83), K (0.17) R (0.40), K (0.10), N (0.06) R (0.58), S (0.07)

150 R (1.00) R (0.46), K (0.06), P (0.05), L (0.05) R (0.63), L (0.07)

152 R (1.00) R (0.52), K (0.07), Q (0.07) R (0.71)

156 R (1.00) R (0.52), Q (0.06) R (0.69), S (0.06)

174 R (1.00) R (0.58), N (0.06), T (0.05) R (0.75)

175 R (1.00) R (0.46), K (0.16) R (0.66), K (0.08), S (0.05)

195 R (1.00) R (0.51) R (0.69)

199 R (1.00) R (0.44), M (0.08), Y (0.06), V (0.05) R (0.64), V (0.05)

213 R (1.00) R (0.51), N (0.06) R (0.69)

214 R (0.72), K (0.28) K (0.24), H (0.09), R (0.09), Q (0.08),
M (0.06), N (0.06), A (0.06), I (0.06)

R (0.19), K (0.17), A (0.09), H (0.07),
I (0.06), L (0.06), Q (0.06)

221 R (1.00) R (0.46), E (0.07), K (0.07) R (0.66), L (0.05)

236 R (0.94), K (0.06) K (0.32), R (0.30) R (0.51), K (0.18)

355 R (1.00) R (0.29), L (0.13), K (0.09) R (0.43), L (0.19)

357 K (0.56), Q (0.44) K (0.38), E (0.09), N (0.07), Y (0.05) K (0.31), R (0.09), E (0.08), N (0.06)

361 R (1.00) R (0.53), V (0.13) R (0.68), V (0.11)

391 R (1.00) R (0.59), K (0.09) R (0.77)

148 Y (1.00) Y (0.54), I (0.06) Y (0.44), I (0.07), T (0.07), P (0.06), S (0.06)

NOTE.—Shown are the 17 residues in the NP RNA-binding groove in Ye et al. (2006). The second column gives the frequencies of amino acids in all 21,108 full-length NP
sequences from influenza A (excluding bat lineages) in the Influenza Virus Resource as of January 31, 2014. The third column gives the experimentally measured amino acid
preferences (fig. 5D). The fourth column gives the expected evolutionary equilibrium frequency of the amino acids (fig. 6). Only residues with frequencies or preferences � 0:05
are listed. In all cases, the most abundant amino acid in the natural sequences has the highest expected evolutionary equilibrium frequency. In 15 of 17 cases, the most abundant
amino acid in the natural sequences has the highest experimentally measured preference—in the other two cases, the most abundant amino acid in the natural sequences is
among those with the highest preference.

Table 5. For Residues Where Mutations Have Previously Been Characterized as Having Large Effects on the Stability of the A/Aichi/2/1968 NP, the
More Stable Amino Acid Has a Higher Preference and Is Also More Frequent in Actual NP Sequences.

Residue Stability Measurement Frequencies in
Natural Sequences

Experimentally
Measured Amino
Acid Preferences

Expected Equilibrium
Evolutionary Frequencies

from Experiments

259 L259S is destabilizing (�Tm ¼ �3:9�C) L (0.98), S (0.02) L (0.23), S (0.04) L (0.36), S (0.06)

280 V280A is destabilizing (�Tm ¼ �3:5�C) V (0.89), A (0.10) V (0.19), A (0.02) V (0.25), A (0.03)

334 N334H is stabilizing (�Tm ¼ 4:5�C) H (0.93), N (0.07) H (0.28), N (0.12) H (0.23), N (0.10)

384 R384G is destabilizing (�Tm ¼ �4:8�C) R (0.80), G (0.17) R (0.22), G (0.04) R (0.39), G (0.04)

NOTE.—The second column gives the experimentally measured change in melting temperature (�Tm) induced by the mutation to the A/Aichi/2/1968 NP as measured in (Gong
et al. 2013); these mutational effects on stability are largely conserved in other NPs (Ashenberg et al. 2013). The third column gives the frequencies of the amino acids in all
21,108 full-length NP sequences from influenza A (excluding bat lineages) in the Influenza Virus Resource as of January 31, 2014. The fourth column gives the experimentally
measured amino acid preferences (fig. 5D). The fifth column gives the expected evolutionary equilibrium frequency of the amino acids (fig. 6).
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homogenous, see Desai and Fisher 2007) and have identical
constant effective population sizes, then Halpern and Bruno
(1998) derive

Fr,xy ¼

1 if �r,A xð Þ ¼ �r,A yð Þ

ln
�r,A yð Þ
�r,A xð Þ

� �
1�

�r,A xð Þ
�r,A yð Þ

otherwise:

8><
>: ð4Þ

Given one of these definitions for the fixation probabilities
and the mutation rates defined by equation (2), the experi-
mentally determined evolutionary model is defined by equa-
tion (1). For the mutation rates and fixation probabilities used
here, this evolutionary model defines a stochastic process
with a unique stationary state for each site r. These stationary
states give the expected amino acid frequencies at evolution-
ary equilibrium. These evolutionary equilibrium frequencies
are shown in figure 6 and are somewhat different than the
amino acid preferences because they also depend on the
structure of the genetic code (and the mutation rates when
these are nonsymmetric). For example, if arginine and lysine
have equal preferences at a site, arginine will be more evolu-
tionarily abundant because it has more codons.

Phylogenetic Analyses

The experimentally determined evolutionary model can be
used to compute phylogenetic likelihoods, thereby enabling
its comparison to existing models. To perform these compar-
isons, I first used codonPhyML (Gil et al. 2013) to infer max-
imum-likelihood trees (fig. 7) for NP sequences from human
influenza using the Goldman–Yang (GY94) (Goldman and
Yang 1994) and the Kosiol et al. (2007, KOSI07 + F) codon
substitution models. These tree topologies were then fixed,
and the branch lengths and model parameters were opti-
mized by maximum likelihood for each of the models.

These models differ in their number of free parameters.
A “free parameter” is any variable with a value that is deter-
mined from the same naturally occurring NP sequences that
are being analyzed phylogenetically. The experimentally de-
termined evolutionary model has no free parameters, because
all of the properties of this model were determined by exper-
iments that did not utilize information from naturally occur-
ring NP sequences (the amino acid preferences are inferred
from the experiments using a symmetric prior, so in the ab-
sence of experimental data all 20 amino acids would be in-
ferred as equally preferable at each site). Similarly, although
the KOSI07 + F model has a large number of exchangeability
variables that were determined empirically, these variables are
not free parameters because they were specified ahead of
time from analysis of a general set of gene homologs that
did not include NP. However, both GY94 and KOSI07 + F also
contain free parameters that are estimated from the NP
sequences that are being analyzed phylogenetically. In the
simplest form, GY94 contains 11 such free parameters (nine
equilibrium frequencies plus transition–transversion and
synonymous–nonsynonymous ratios), whereas KOSI07 + F
contains 62 parameters (60 frequencies plus transition–

transversion and synonymous–nonsynonymous ratios).
More complex variants add parameters allowing variation
in substitution rate (Yang 1994) or synonymous–nonsynon-
ymous ratio among sites or lineages (Yang and Nielsen 1998;
Yang et al. 2000). For all these models, HYPHY (Pond et al.
2005) was used to calculate the likelihood after optimizing
branch lengths and model parameters on the fixed tree
topologies.

Comparison of these likelihoods strikingly validates the su-
periority of the experimentally determined model (tables 6
and 7). Adding free parameters generally improves a model’s
fit to data, and this is true within GY94 and KOSI07 + F.
However, the parameter-free experimentally determined evo-
lutionary model describes the sequence phylogeny with a
likelihood far greater than even the most highly parameter-
ized GY94 and KOSI07 + F variants. Interpreting the amino
acid preferences as the fraction of genetic backgrounds that
tolerate a mutation (eq. 3) outperforms interpreting them as
selection coefficients (eq. 4), although either interpretation
yields evolutionary models for NP far superior to GY94 or
KOSI07 + F. Comparison using Akaike information content
(AIC) to penalize parameters (Posada and Buckley 2004) even
more emphatically highlights the superiority of the experi-
mentally determined models.

There is also a clear correlation between the quality and
volume of experimental data and the phylogenetic fit: Models
from individual experimental replicates give lower likelihoods
than both replicates combined, and the technically superior
replicate A (recall the comparison in fig. 4) gives a better
likelihood than replicate B (tables 6 and 7). This fact suggests
that improvements in experimental methodology that
improve the accuracy of the measured mutational effects
should lead to even better experimentally determined evolu-
tionary models.

In tables 6 and 7, the site-specific experimentally deter-
mined model is compared with variants of two general
models (GY94 and KOSI07 + F) that apply broadly to all pro-
teins. More recently, it has become possible to estimate non-
site-specific (identical across sites) codon and amino acid
models using naturally occurring sequences from specific pro-
teins or viruses (Dang et al. 2010; De Maio et al. 2013). One
could therefore ask if the experimentally determined model is
superior because it is site specific or simply because it is
experimentally derived from deep mutational scanning of
influenza. To address this question, I created “randomized”
experimentally determined models in which the deep muta-
tional scanning data were randomly shuffled among protein
sites. These randomized models are still derived from deep
mutational scanning of influenza but have lost their linkage
to site-specific experimental information. These random-
ized models are greatly inferior to all of the other models
considered here (tables 6 and 7). Therefore, the superiority
of the experimentally determined model is due to its utili-
zation of site-specific information from the deep muta-
tional scanning—if this site specificity is lost, the model
becomes far worse than general models such as GY94 or
KOSI07 + F.
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Discussion
These results establish that an experimentally determined
evolutionary model is far superior to existing models for
describing the phylogeny of NP gene sequences. The
extent of this superiority is striking. The parameter-free evo-
lutionary model dramatically outperforms even the most
highly parameterized existing models using the parameter-
penalizing metric of AIC—but more remarkably, it also
outperforms these parameterized models by over 400

log-likelihood units even in the absence of parameter penal-
ization (table 6). The reason for this superiority is easy to
understand: Proteins have strong and fairly conserved pref-
erences for specific amino acids at different sites (Ashenberg
et al. 2013), but these site-specific preferences are ignored by
most existing phylogenetic models. Inspection of the over-
laid bars in figure 5D illustrates the inadequacy of trying to
capture these preferences simply by classifying sites based
on gross features of protein structure (Thorne et al. 1996;

FIG. 6. The expected frequencies of the amino acids at evolutionary equilibrium using the experimentally determined evolutionary model from passage
1 of the combined replicates and equation (3) for the fixation probabilities. Note that these expected frequencies are slightly different than the amino
acid preferences in figure 5D due to the structure of the genetic code. For instance, when arginine and lysine have equal preferences at a site, arginine
will tend to have a higher evolutionary equilibrium frequency because it is encoded by more codons. The numerical data are in supplementary file S2,
Supplementary Material online. The computer code used to generate this plot is at http://jbloom.github.io/phyloExpCM/example_2013Analysis_
Influenza_NP_Human_1918_Descended.html (last accessed May 31, 2014).
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Goldman et al. 1998)—the site-specific amino acid prefer-
ences are not simply related to secondary structure or
solvent accessibility. The complexity of the preferences in
figure 5D also show the limitations of attempting to infer
amino acid preference parameters for a small number of site
classes from sequence data (Lartillot and Philippe 2004; Le
et al. 2008; Wang et al. 2008; Wu et al. 2013), as it is clear that
each site is unique. Direct experimental measurement there-
fore represents a highly attractive method for determining
the idiosyncratic constraints that affect the evolution of
each site in a gene.

Another appealing aspect of an experimentally determined
evolutionary model is interpretability. A frustrating aspect of
existing evolutionary models is the inability to interpret many
of their free parameters directly in evolutionary or molecular
terms. For example, the equilibrium frequency parameters
used by most existing models reflect some unknown combi-
nation of mutational bias and selection for specific codons or
amino acids—but the relative contributions of these factors
in determining the parameter values is unclear. On the other
hand, all aspects of the experimentally determined evolution-
ary model can be related to direct measurements, making
them more amenable to direct interpretation. So even if

such a model were eventually augmented with a few free
parameters, this could be done in a way that allowed these
parameters to retain a clear connection to the molecular
processes of biology and evolution.

The results presented here also demonstrate that phylo-
genetic evolutionary models can be greatly improved while re-
taining the assumption of independence of sites. Phylogenetic
evolutionary models make two assumptions that are egre-
giously bad from the perspective of the protein chemist: First,
these models assume that sites are identical (or at least can be
described by a small number of classes), and second, they
assume that sites are independent. The experimentally deter-
mined model eliminates the first assumption but does noth-
ing to relax the second. Is this model therefore inconsistent
with the idea that epistasis is common during protein evolu-
tion (Lunzer et al. 2010)? In fact, experiments show that a
general conservation of site-specific amino acid preferences is
entirely consistent with epistasis. For instance, there is known
epistasis among some of the mutations fixed along the NP
phylogenetic tree analyzed here (Gong et al. 2013)—but the
site-specific compatibilities of amino acids with the protein’s
structural stability are largely conserved among homologs on
this tree, even for sites involved in epistatic interactions

A

B

FIG. 7. Phylogenetic tree of NPs from human influenza descended from a close relative of the 1918 virus. Black: H1N1 from 1918 lineage; green: seasonal
H1N1; red: H2N2; blue: H3N2. Maximum-likelihood trees constructed using codonPhyML (Gil et al. 2013) with (A) the GY94 substitution model or (B)
the KOSI07 + F substitution model. Up to three NP sequences per year from each subtype were used to build the tree. The A/Aichi/2/1968 NP that was
the subject of this experiment was not one of the NP sequences randomly subsampled for the tree, so its name is indicated close to a nearly identical
sequence that is shown in the tree. The computer code used to generate this tree is at http://jbloom.github.io/phyloExpCM/example_2013Analysis_
Influenza_NP_Human_1918_Descended.html (last accessed May 31, 2014).
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(Ashenberg et al. 2013). The reason is that evolutionary rele-
vant epistasis can arise from subtle and transient fluctuations
in properties such as protein stability, whereas the phyloge-
netic improvements from a site-specific model probably
come mostly from capturing basic information about the
compatibility of amino acids with a protein’s evolutionarily
conserved structure. Models that assume independence
among sites can therefore still lead to major improvements
if the site-specific amino acid preferences are accurately
represented.

The major drawback of the experimentally determined
evolutionary model is its lack of generality. Although this
model is clearly superior for influenza NP, it is entirely unsui-
table for other genes. At first blush, it might seem that the
arduous experiments described here provide data that is un-
likely to ever become available for most situations of interest.
However, it is worth remembering that today’s arduous ex-
periment frequently becomes routine in a few years. For
example, the very gene sequences that are the subjects of
molecular phylogenetics were once rare pieces of data—
now such sequences are so abundant that they easily over-
whelm modern computers. The experimental ease of the
deep mutational scanning approach used here is on a com-
parable trajectory: Similar approaches have already been

applied to several proteins (Fowler et al. 2010; Traxlmayr
et al. 2012; Melamed et al. 2013; Roscoe et al. 2013; Starita
et al. 2013), and there continue to be rapid improvements in
techniques for mutagenesis (Firnberg and Ostermeier 2012;
Jain and Varadarajan 2014) and sequencing (Hiatt et al. 2010;
Schmitt et al. 2012; Lou et al. 2013). Given these prospects for
technical improvements in deep mutational scanning, it is
therefore especially encouraging that the phylogenetic fit of
the NP evolutionary model improves with the quality and vol-
ume of experimental data from which it is derived (table 6).
The increasing availability of similar high-throughput data
for a vast range of proteins has the potential to transform
phylogenetic analyses by greatly increasing the accuracy
of evolutionary models, while at the same time replacing a
plethora of free parameters with experimentally measured
quantities that can be given clear biological and evolutionary
interpretations.

Materials and Methods

Availability of Data and Computer Code

Illumina sequencing data are available at the Sequence Read
Archive (SRA) (accession SRP036064, http://www.ncbi.nlm.
nih.gov/sra/?term=SRP036064, last accessed May 31, 2014).

Table 6. Likelihoods Computed Using Various Evolutionary Models After Optimizing the Branch Lengths for the Fixed Tree Topology Inferred
Using the GY94 model (fig. 7).

Model "AIC Log Likelihood Parameters
(Optimized + Empirical)

Experimental, combined replicates 0.0 �12,338.9 0 (0 + 0)

Experimental, replicate A 67.9 �12,372.8 0 (0 + 0)

Experimental, replicate B 106.1 �12,392.0 0 (0 + 0)

Halpern and Bruno, combined replicates 357.9 �12,517.9 0 (0 + 0)

Halpern and Bruno, replicate A 393.0 �12,535.4 0 (0 + 0)

Halpern and Bruno, replicate B 455.5 �12,566.7 0 (0 + 0)

GY94, beta x plus positive, one rate (M8) 1,136.8 �12,893.3 14 (5 + 9)

GY94, three-category x, one rate (M2a) 1,209.5 �12,929.7 14 (5 + 9)

GY94, gamma x, one rate (M5) 1,218.0 �12,935.9 12 (3 + 9)

GY94, one x, gamma rates 1,485.7 �13,069.8 12 (3 + 9)

KOSI07 + F, three-category x, one rate (M2a) 1,679.7 �13,113.8 65 (5 + 60)

KOSI07 + F, M8 rates-one 1,680.5 �13,114.1 65 (5 + 60)

GY94, one x, one rate (M0) 1,754.1 �13,205.0 11 (2 + 9)

KOSI07 + F, gamma x, one rate 1,757.7 � 13,154.8 63 (3 + 60)

KOSI07 + F, one x, gamma rates 1,831.1 �13,191.5 63 (3 + 60)

GY94, branch-specific x, gamma rates (M5) 1,972.3 �12,769.1 556 (547 + 9)

KOSI07 + F, one x, one rate (M0) 2,254.2 �13,404.0 62 (2 + 60)

KOSI07 + F, branch-specific x, gamma rates 2,319.5 �12,891.7 607 (547 + 60)

Randomized experimental, combined replicates 3,741.0 �14,209.4 0 (0 + 0)

Randomized experimental, replicate A 3,809.6 �14,243.7 0 (0 + 0)

Randomized experimental, replicate B 3,840.4 �14,259.1 0 (0 + 0)

Randomized Halpern and Bruno, combined replicates 4,388.7 �14,533.3 0 (0 + 0)

Randomized Halpern and Bruno, replicate B 4,559.1 �14,618.5 0 (0 + 0)

Randomized Halpern and Bruno, replicate A 4,622.1 �14,649.9 0 (0 + 0)

NOTE.—Experimentally determined models vastly outperform GY94 or KOSI07 + F. Models are sorted by �AIC (Posada and Buckley 2004) but note that the experimentally
determined models all have much higher log likelihoods even before penalizing parameters. The experimentally determined models fit best if the amino acid preferences are
interpreted as the fraction of genetic backgrounds that tolerate a mutation (eq. 3) rather than as selection coefficients (eq. 4). Randomizing the experimentally determined
preferences among sites makes the models far worse. All variants of GY94 and KOSI07 + F contain empirical equilibrium frequencies plus a transition–transversion ratio and
synonymous–nonsynonymous ratio (!) optimized by likelihood. Some variants allow ! to vary across sites using discrete categories (M2a), a gamma distribution (M5), or a beta
distribution plus a category (M8). Some variants allow a different ! for each branch. Some variants allow the rate of substitution to be gamma distributed.
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A description and links to the source code used to analyze the
sequencing data and infer the amino acid preferences is at
http://jbloom.github.io/mapmuts/example_2013Analysis_
Influenza_NP_Aichi68.html (last accessed May 31, 2014). A
description and links to the source code used for the phylo-
genetic analyses is at http://jbloom.github.io/phyloExpCM/
example_2013Analysis_Influenza_NP_Human_1918_
Descended.html (last accessed May 31, 2014).

Experimental Measurement of Mutation Rates

To measure mutation rates, I generated GFP-carrying viruses
with all genes derived from A/WSN/1933 (H1N1) by reverse
genetics as described previously (Bloom et al. 2010). These
viruses were repeatedly passaged at limiting dilution in
MDCK-SIAT1-CMV-PB1 cells (Bloom et al. 2010) using low
serum media (Opti-MEM I with 0.5% heat-inactivated fetal
bovine serum, 0.3% BSA, 100 U/ml penicillin, 100mg/ml strep-
tomycin, and 100mg/ml calcium chloride)—a moderate
serum concentration was retained and no trypsin was
added because viruses with the WSN HA and NA are trypsin
independent (Goto and Kawaoka 1998). These passages were
performed for 27 replicate populations. For each passage,
100ml containing the equivalent of 2ml of virus collection
was added to the first row of a 96-well plate. The virus was
serially diluted 1:5 down the plate, such that at the conclusion
of the dilutions, each well contained 80ml of virus dilution.
MDCK-SIAT1-CMV-PB1 cells were then added to each well in

a 50ml volume containing 2.5� 103 cells. The plates were
grown for approximately 80 h, and wells were examined for
cytopathic effect indicative of viral growth. The last well with
cytopathic effect was collected and used as the parent pop-
ulation for the next round of limiting-dilution passage.

After 25 limiting-dilution passages, 10 of the 27 viral pop-
ulations no longer caused any visible GFP expression in the
cells in which they caused cytopathic effect, indicating fixa-
tion of a mutation that ablated GFP fluorescence. The 17
remaining populations all caused fluorescence in infected
cells, although in some cases the intensity was visibly
reduced—these populations therefore must have retained
at least a partially functional GFP. Total RNA was purified
from each viral population, the PB1 segment was reverse
transcribed using the primers CATGATCGTCTCGTATTAGTAG
AAACAAGGCATTTTTTCATGAAGGACAAGC and CATGATCGTC

TCAGGGAGCGAAAGCAGGCAAACCATTTGATTGG, and the re-
verse-transcribed cDNA was amplified by conventional PCR
using the same primers. For 22 of the 27 replicate viral pop-
ulations, this process amplified an insert with the length ex-
pected for the full GFP-carrying PB1 segment. For two of the
replicates, this amplified inserts between 0.4 and 0.5 kb
shorter than the expected length, suggesting an internal de-
letion in part of the segment. For three replicates, this failed to
amplify any insert, suggesting total loss of the GFP-carrying
PB1 segment, a very large internal deletion, or rearrangement
that rendered the reverse-transcription primers ineffective.

Table 7. Likelihoods for the Various Evolutionary Models for the Tree Topology Inferred with CodonPhyML Using KOSI07 + F.

Model "AIC Log Likelihood Parameters
(Optimized + Empirical)

Experimental, combined replicates 0.0 �12,334.6 0 (0 + 0)

Experimental, replicate A 67.9 �12,368.5 0 (0 + 0)

Experimental, replicate B 106.2 �12,387.7 0 (0 + 0)

Halpern and Bruno, combined replicates 356.8 �12,513.0 0 (0 + 0)

Halpern and Bruno, replicate A 391.5 �12,530.3 0 (0 + 0)

Halpern and Bruno, replicate B 454.8 �12,562.0 0 (0 + 0)

GY94, beta x plus positive, one rate (M8) 1,183.4 �12,912.3 14 (5 + 9)

GY94, three-category x, one rate (M2a) 1,209.4 �12,925.3 14 (5 + 9)

GY94, gamma x, one rate (M5) 1,219.6 �12,932.4 12 (3 + 9)

GY94, one x, gamma rates 1,493.1 �13,069.1 12 (3 + 9)

KOSI07 + F, three-category x, one rate (M2a) 1,676.0 �13,107.6 65 (5 + 60)

KOSI07 + F, M8 rates-one 1,676.6 �13,107.9 65 (5 + 60)

KOSI07 + F, gamma x, one rate 1,753.3 �13,148.2 63 (3 + 60)

GY94, one x, one rate (M0) 1,762.2 �13,204.7 11 (2 + 9)

KOSI07 + F, one x, gamma rates 1,834.3 �13,188.7 63 (3 + 60)

GY94, branch-specific x, gamma rates (M5) 1,980.8 �12,769.0 556 (547 + 9)

KOSI07 + F, one x, one rate (M0) 2,256.8 �13,401.0 62 (2 + 60)

KOSI07 + F, branch-specific x, gamma rates 2,324.0 �12,889.6 607 (547 + 60)

Randomized experimental, combined replicates 3,741.3 �14,205.2 0 (0 + 0)

Randomized experimental, replicate A 3,809.4 �14,239.3 0 (0 + 0)

Randomized experimental, replicate B 3,841.4 �14,255.3 0 (0 + 0)

Randomized Halpern and Bruno, combined replicates 4,387.6 �14,528.4 0 (0 + 0)

Randomized Halpern and Bruno, replicate B 4,557.9 �14,613.6 0 (0 + 0)

Randomized Halpern and Bruno, replicate A 4,620.8 �14,645.0 0 (0 + 0)

NOTE.—This table differs from table 6 in that it optimizes the likelihoods on the tree topology inferred with KOSI07 + F rather than GY94.

1969

Evolutionary Model Improves Phylogenetic Fit . doi:10.1093/molbev/msu173 MBE

amino-acid
http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.html
http://jbloom.github.io/mapmuts/example_2013Analysis_Influenza_NP_Aichi68.html
http://jbloom.github.io/phyloExpCM/example_2013Analysis_Influenza_NP_Human_1918_Descended.html
http://jbloom.github.io/phyloExpCM/example_2013Analysis_Influenza_NP_Human_1918_Descended.html
http://jbloom.github.io/phyloExpCM/example_2013Analysis_Influenza_NP_Human_1918_Descended.html
 -- 
ours
 -- 
-
<br/>
2 
3 


For the 24 replicates from which an insert could be amplified,
the GFP coding region was Sanger sequenced to determine
the consensus sequence. The results are in tables 1 and 2.

To estimate Rm!n, it is necessary to normalize by the nu-
cleotide composition of the GFP gene. The numbers of each
nucleotide in this gene are NA ¼ 175, NT ¼ 103, NC ¼ 241,
and NG = 201. Given that the counts in table 2 come after 25
passages of 24 replicates:

Rm!n ¼ Rmc!nc
¼

1

24� 25� 2
�

Nm!n + Nmc!nc
+ 1

Nm + Nmc

ð5Þ

where Nm!n is the number of observed mutations from m to
n in table 2, mc indicates the complement of DNA nucleotide
m (e.g., Ac = T). The one in the numerator is a pseudocount
added to the observed counts of each type of mutation to
avoid estimating rates of zero. The values of Rm!n estimated
from equation (5) give the probability that a nucleotide that
is already m will mutate to n in a single tissue-culture
generation.

Construction of NP Codon-Mutant Libraries

The goal was to construct a mutant library with an average of
two to three random codon mutations per gene. Most tech-
niques for creating mutant libraries of full-length genes, such
as error-prone PCR (Cirino et al. 2003) and chemical muta-
genesis (Neylon 2004), introduce mutations at the nucleotide
level, meaning that codon substitutions involving multiple
nucleotide changes occur at a negligible rate. Recently, several
groups have developed strategies for introducing codon mu-
tations along the lengths of entire genes (Firnberg and
Ostermeier 2012; Jain and Varadarajan 2014, Kitzman J and
Shendure J, personal communication). Most of these strate-
gies are designed to create exactly one codon mutation per
gene. For my experiments, it was desirable to introduce a
distribution of around one to four codon mutations per
gene to examine the average effects of mutations in a variety
of closely related genetic backgrounds. Therefore, I devised a
codon-mutagenesis protocol specifically for this purpose.

This technique involved iterative rounds of low-cycle PCR
with pools of mutagenic synthetic oligonucleotides that each
contain a randomized NNN triplet at a specific codon site.
Two replicate libraries each of the WT and N334H variants
of the Aichi/1968 NP were prepared in full biological dupli-
cate, beginning each with independent preps of the plasmid
templates pHWAichi68-NP and pHWAichi68-NP-N334H.
The sequences of the NP genes in these plasmids are provided
in Gong et al. (2013). To avoid cross-contamination, all puri-
fication steps used an independent gel for each sample, with
the relevant equipment thoroughly washed to remove resid-
ual DNA.

First, for each codon except for that encoding the initiating
methionine in the 498-residue NP gene, I designed an oligo-
nucleotide that contained a randomized NNN nucleotide trip-
let preceded by the 16 nucleotides upstream of that codon in
the NP gene and followed by the 16 nucleotides downstream
of that codon in the NP gene. I ordered these oligonucleotides

in 96-well plate format from Integrated DNA Technologies
and combined them in equimolar quantities to create the
forward-mutagenesis primer pool. I also designed and ordered
the reverse complement of each of these oligonucleotides and
combined them in equimolar quantities to create the reverse-
mutagenesis pool. The primers for the N334H variants dif-
fered only for those that overlapped the N334H codon. I also
designed end primers that annealed to the termini of the NP
sequence and contained sites appropriate for BsmBI cloning
into the influenza reverse-genetics plasmid pHW2000
(Hoffmann et al. 2000). These primers are 5’-BsmBI-Aichi68-
NP (catgatcgtctcagggagcaaaagcagggtagataat-
cactcacag) and 3’-BsmBI-Aichi68-NP (catgatcgtctcg
tattagtagaaacaagggtatttttcttta).

I set up PCR reactions that contained 1ml of 10 ng/ml
template pHWAichi68-NP plasmid (Gong et al. 2013), 25ml
of 2� KOD Hot Start Master Mix (product number 71842,
EMD Millipore), 1.5ml each of 10mM solutions of the end
primers 5’-BsmBI-Aichi68-NP and 3’-BsmBI-Aichi68-NP, and
21ml of water. I used the following PCR program (referred to
as the amplicon PCR program in the remainder of this article):

1) 95 �C for 2 min.
2) 95 �C for 20 s.
3) 70 �C for 1 s.
4) 50 �C for 30 s cooling to 50 �C at 0.5 �C/s.
5) 70 �C for 40 s.
6) Repeat steps 2 through 5 for 24 additional cycles.
7) Hold 4 �C.

The PCR products were purified over agarose gels using
ZymoClean columns (product number D4002, Zymo
Research) and used as templates for the initial codon muta-
genesis fragment PCR.

Two fragment PCR reactions were run for each template.
The forward-fragment reactions contained 15ml of 2� KOD
Hot Start Master Mix, 2ml of the forward mutagenesis primer
pool at a total oligonucleotide concentration of 4.5mM, 2ml
of 4.5mM 3’-BsmBI-Aichi68-NP, 4ml of 3 ng/ml of the afore-
mentioned gel-purified linear PCR product template, and 7ml
of water. The reverse-fragment reactions were identical
except that the reverse mutagenesis pool was substituted
for the forward mutagenesis pool and that 5’-BsmBI-
Aichi68-NP was substituted for 3’-BsmBI-Aichi68-NP. The
PCR program for these fragment reactions was identical to
the amplicon PCR program except that it utilized a total of 7
rather than 25 thermal cycles.

The products from the fragment PCR reactions were di-
luted 1:4 in water. These dilutions were then used for the
joining PCR reactions, which contained 15ml of 2� KOD
Hot Start Master Mix, 4ml of the 1:4 dilution of the
forward-fragment reaction, 4ml of the 1:4 dilution of the re-
verse-fragment reaction, 2ml of 4.5mM 5’-BsmBI-Aichi68-NP,
2ml of 4.5mM 3’-BsmBI-Aichi68-NP, and 3ml of water. The
PCR program for these joining reactions was identical to the
amplicon PCR program except that it utilized a total of
20 rather than 25 thermal cycles. The products from these
joining PCRs were purified over agarose gels.
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The purified products of the first joining PCR reactions
were used as templates for a second round of fragment reac-
tions followed by joining PCRs. These second-round products
were used as templates for a third round. The third-round
products were purified over agarose gels, digested with BsmBI
(product number R0580L, New England Biolabs), and ligated
into a dephosphorylated (Antarctic Phosphatase, product
number M0289L, New England Biolabs) BsmBI digest of
pHW2000 (Hoffmann et al. 2000) using T4 DNA ligase. The
ligations were purified using ZymoClean columns, electropo-
rated into ElectroMAX DH10B T1 phage-resistant competent
cells (product number 12033-015, Invitrogen), and plated
on LB plates supplemented with 100mg/ml of ampicillin.
These transformations yielded between 400,000 and 800,000
unique transformants per plate, as judged by plating a 1:4,000
dilution of the transformations on a second set of plates.
Transformation of a parallel no-insert control ligation yielded
approximately 50-fold fewer colonies, indicating that self
ligation of pHW2000 only accounts for a small fraction of
the transformants. For each library, I performed three trans-
formations, grew the plates overnight, and then scraped
the colonies into liquid LB supplemented with ampicillin
and mini-prepped several hours later to yield the plasmid
mutant libraries. These libraries each contained in excess of
106 unique transformants, most of which will be unique
codon mutants of the NP gene.

I sequenced the NP gene for 30 individual clones drawn
from the four mutant libraries. As shown in figure 1, the
number of mutations per clone was approximately Poisson
distributed and the mutations occurred uniformly along the
primary sequence. If all codon mutations are made with equal
probability, 9/63 of the mutations should be single-nucleotide
changes, 27/63 should be two-nucleotide changes, and 27/63
should be three-nucleotide changes. This is approximately
what was observed in the Sanger-sequenced clones. The nu-
cleotide composition of the mutated codons was roughly
uniform, and there was no tendency for clustering of multiple
mutations in primary sequence. The results of this Sanger
sequencing are compatible with the mutation frequencies
obtained from deep sequencing the “mutDNA” samples
after subtracting off the sequencing error rate estimated
from the DNA samples (fig. 3), especially considering that
the statistics from the Sanger sequencing are subject to sam-
pling error due to the limited number of clones analyzed.

Viral Growth and Passage

Two independent replicates of viral growth and passage were
performed (replicates A and B). The procedures were similar
between replicates, but there were a few small differences.
In the actual experimental chronology, replicate B was
performed first, and the modifications in replicate A were
designed to improve the sampling of the mutations by the
created mutant viruses. These modifications may be the
reason why replicate A slightly outperforms replicate B
by two objective measures: The viruses more completely
sample the codon mutations (fig. 4), and the evolutionary
model derived solely from replicate A gives a higher likelihood

than the evolutionary model derived solely from replicate B
(tables 6 and 7).

For replicate B, I used reverse genetics to rescue viruses
carrying the Aichi/1968 NP or one of its derivatives, PB2 and
PA from the A/Nanchang/933/1995 (H3N2), a PB1 gene seg-
ment encoding GFP, and HA/NA/M/NS from A/WSN/1933
(H1N1) strain. With the exception of the variants of NP used,
these viruses are identical to those described in Gong et al.
(2013) and were rescued by reverse genetics in 293 T-CMV-
Nan95-PB1 and MDCK-SIAT1-CMV-Nan95-PB1 cells as de-
scribed in that reference. The previous section describes four
NP codon-mutant libraries, two of the WT Aichi/1968 gene
(WT-1 and WT-2) and two of the N334H variant (N334H-1
and N334H-2). I grew mutant viruses from all four mutant
libraries and four paired unmutated viruses from indepen-
dent preps of the parent plasmids. A major goal was to main-
tain diversity during viral creation by reverse genetics—the
experiment would obviously be undermined if most of the
rescued viruses derived from a small number of transfected
plasmids. I therefore performed the reverse genetics in 15-cm
tissue culture dishes to maximize the number of transfected
cells. Specifically, 15 cm dishes were seeded with 107 293T-
CMV-Nan95-PB1 cells in D10 media (DMEM with 10% heat-
inactivated fetal bovine serum, 2 mM L-glutamine, 100 U/ml
penicillin, and 100mg/ml streptomycin). At 20 h postseeding,
the dishes were transfected with 2.8mg of each of the eight
reverse-genetics plasmids. At 20 h posttransfection, about
20% of the cells expressed GFP (indicating transcription by
the viral polymerase of the GFP encoded by pHH-PB1flank-
eGFP), suggesting that many unique cells were transfected.
At 20 h posttransfection, the media was changed to the low
serum media described above. At 78 h posttransfection, the
viral supernatants were collected, clarified by centrifugation
at 2,000� g for 5 min, and stored at 4 �C. The viruses were
titered by flow cytometry as described previously (Gong et al.
2013). A control lacking the NP gene yielded no infectious
virus as expected.

The virus was then passaged in MDCK-SIAT1-CMV-
Nan95-PB1 cells. These cells were seeded into 15 cm dishes,
and when they had reached a density of 107 per plate, they
were infected with 106 infectious particles (multiplicity of
infection (MOI) of 0.1) of the transfectant viruses in low
serum media. After 18 h, 30–50% of the cells were green as
judged by microscopy, indicating viral spread. At 40 h
posttransfection, 100% of the cells were green, and many
showed clear signs of cytopathic effect. At this time, the
viral supernatants were again collected, clarified, and stored
at 4 �C. NP cDNA isolated from these viruses was the source
the deep-sequencing samples “virus-p1” and “mutvirus-p1” in
figure 2. The virus was then passaged a second time exactly as
before (again using an MOI of 0.1). NP cDNA from these
twice-passaged viruses constituted the source for the samples
“virus-p2” and “mutvirus-p2” in figure 2.

For replicate A, all viruses (both the four mutant viruses
and the paired unmutated controls) were regrown indepen-
dently from the same plasmid preps used for replicate B. The
experimental process was identical to that used for replicate B
except for the following: Standard influenza viruses (rather
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than the GFP-carrying variants) were used, so plasmid
pHW-Nan95-PB1 (Gong et al. 2013) was substituted for
pHH-PB1flank-eGFP during reverse genetics, and 293T and
MDCK-SIAT1 cells were substituted for the PB1-expressing
variants. Rather than creating the viruses by transfecting a
single 15-cm dish, each sample was created by transfecting
two 12-well dishes, with the dishes seeded at 3� 105 293T
and 5� 104 MDCK-SIAT1 cells prior to transfection. The pas-
saging was then done in four 10 cm dishes for each sample,
with the dishes seeded at 4� 106 MDCK-SIAT1 cells 12–14 h
prior to infection. The passaging was still done at an MOI of
0.1. These modifications were designed to increase diversity in
the viral population. These viruses were titered by TCID50
rather than flow cytometry.

Sample Preparation and Illumina Sequencing

For each sample, a PCR amplicon was created to serve as the
template for Illumina sequencing. The steps used to generate
the PCR amplicon for each of the seven sample types (fig. 2)
are listed below. Once the PCR template was generated, for all
samples the PCR amplicon was created using the amplicon
PCR program described above in 50ml reactions consisting of
25ml of 2� KOD Hot Start Master Mix, 1.5ml each of 10mM
of 5’-BsmBI-Aichi68-NP and 3’-BsmBI-Aichi68-NP, the indi-
cated template, and ultrapure water. A small amount of
each PCR reaction was run on an analytical agarose gel to
confirm the desired band. The remainder was then run on its
own agarose gel without any ladder (to avoid contamination)
after carefully cleaning the gel rig and all related equipment.
The amplicons were excised from the gels, purified over
ZymoClean columns, and analyzed using a NanoDrop to
ensure that the absorbance at 260 nm was at least 1.8 times
that at 230 nm and 280 nm. The templates were as follows:

� DNA: The templates for these amplicons were 10 ng of the
unmutated independent plasmid preps used to create the
codon mutant libraries.
� mutDNA: The templates for these amplicons were 10 ng of

the plasmid mutant libraries.
� RNA: This amplicon quantifies the net error rate of tran-

scription and reverse transcription. Because the viral RNA
is initially transcribed from the reverse-genetics plasmids
by RNA polymerase I, but the bidirectional reverse-genetics
plasmids direct transcription of RNA by both RNA poly-
merases I and II (Hoffmann et al. 2000), the RNA templates
for these amplicons were transcribed from plasmids de-
rived from pHH21 (Neumann et al. 1999), which only di-
rects transcription by RNA polymerase I. The unmutated
WT and N334H NP genes were cloned into this plasmid to
create pHH-Aichi68-NP and pHH-Aichi68-NP-N334H.
Independent preparations of these plasmids were trans-
fected into 293T cells, transfecting 2mg of plasmid into
5� 105 cells in six-well dishes. After 32 h, total RNA was
isolated using Qiagen RNeasy columns and treated with
the Ambion TURBO DNA-free kit (Applied Biosystems
AM1907) to remove residual plasmid DNA. This RNA
was used as a template for reverse transcription with
AccuScript (Agilent 200820) using the primers 5’-BsmBI-

Aichi68-NP and 3’-BsmBI-Aichi68-NP. The resulting cDNA
was quantified by quantitative PCR (qPCR) specific for NP
(see below), which showed high levels of NP cDNA in the
reverse-transcription reactions but undetectable levels in
control reactions lacking the reverse transcriptase, indicat-
ing that residual plasmid DNA had been successfully re-
moved. A volume of cDNA that contained at least 2� 106

NP cDNA molecules (as quantified by qPCR) was used as
template for the amplicon PCR reaction. Control PCR
reactions using equivalent volumes of template from the
no reverse-transcriptase control reactions yielded no
product.
� virus-p1: This amplicon was derived from virus created

from the unmutated plasmid and collected at the end of
the first passage. Clarified virus supernatant was ultracen-
trifuged at 64,000� g for 1.5 h at 4 �C, and the supernatant
was decanted. Total RNA was then isolated from the viral
pellet using a Qiagen RNeasy kit. This RNA was used as a
template for reverse transcription with AccuScript using
the primers 5’-BsmBI-Aichi68-NP and 3’-BsmBI-Aichi68-
NP. The resulting cDNA was quantified by qPCR, which
showed high levels of NP cDNA in the reverse-transcrip-
tion reactions but undetectable levels in control reactions
lacking the reverse transcriptase. A volume of cDNA that
contained at least 107 NP cDNA molecules (as quantified
by qPCR) was used as template for the amplicon PCR
reaction. Control PCR reactions using equivalent volumes
of template from the no reverse-transcriptase control
reactions yielded no product.
� virus-p2, mutvirus-p1, and mutvirus-p2: These amplicons

were created as for the virus-p1 amplicons but used the
appropriate virus as the initial template as outlined in
figure 2.

An important note: It was found that the use of relatively
new RNeasy kits with b-mercaptoethanol (a reducing agent),
freshly added per the manufacturer’s instructions, was neces-
sary to avoid what appeared to be oxidative damage to
purified RNA.

The overall experiment only makes sense if the sequenced
NP genes derive from a large diversity of initial template mol-
ecules. Therefore, qPCR was used to quantify the molecules
produced by reverse transcription to ensure that a suffi-
ciently large number were used as PCR templates to create
the amplicons. The qPCR primers were 5’-Aichi68-NP-for
(gcaacagctggtctgactcaca) and 3’-Aichi68-NP-rev
(tccatgccggtgcgaacaag). The qPCR reactions were
performed using the SYBR Green PCR Master Mix (Applied
Biosystems 4309155) following the manufacturer’s instruc-
tions. Linear NP PCR-ed from the pHWAichi68-NP plasmid
was used as a quantification standard—the use of a linear
standard is important, because amplification efficiencies differ
for linear and circular templates (Hou et al. 2010). The stan-
dard curves were linear with respect to the amount of NP
standard over the range from 102 to 109 NP molecules. These
standard curves were used to determine the absolute number
of NP cDNA molecules after reverse transcription. Note that
the use of only 25 thermal cycles in the amplicon PCR
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program provides a second check that there are a substantial
number of template molecules, as this moderate number of
thermal cycles will not lead to sufficient product if there are
only a few template molecules.

To allow the Illumina sequencing inserts to be read in both
directions by paired-end 50 nt reads (supplementary fig. S1,
Supplementary Material online), it was necessary to us an
Illumina library-prep protocol that created NP inserts that
were roughly 50 nt in length. This was done via a modification
of the Illumina Nextera protocol. First, concentrations of the
PCR amplicons were determined using PicoGreen (Invitrogen
P7859). These amplicons were used as input to the Illumina
Nextera DNA Sample Preparation kit (Illumina FC-121-1031).
The manufacturer’s protocol for the tagmentation step was
modified to use 5-fold less input DNA (10 ng rather than
50 ng) and 2-fold more tagmentation enzyme (10ml rather
than 5ml), and the incubation at 55 �C was doubled from 5 to
10 min. Samples were barcoded using the Nextera Index Kit
for 96 indices (Illumina FC-121-1012). For index 1, the barcod-
ing was DNA with N701, RNA with N702, mutDNA with
N703, virus-p1 with N704, mutvirus-p1 with N705, virus-p2
with N706, and mutvirus-p2 with N707. After completion of
the Nextera PCR, the samples were subjected to a ZymoClean
purification rather than the bead cleanup step specified in the
Nextera protocol. The size distribution of these purified PCR
products was analyzed using an Agilent 200 TapeStation
Instrument. If the NP sequencing insert is exactly 50 nt in
size, then the product of the Nextera PCR should be 186 nt
in length after accounting for the addition of the Nextera
adaptors. The actual size distribution was peaked close to
this value. The ZymoClean-purified PCR products were quan-
tified using PicoGreen and combined in equal amounts into
pools: A WT-1 pool of the seven samples for that library, a
WT-2 pool of the seven samples for that library, etc. These
pools were subjected to further size selection by running
them on a 4% agarose gel versus a custom ladder containing
171 and 196 nt bands created by PCR from a GFP template
using the forward primer gcacggggccgtcgccg and the
reverse primers tggggcacaagctggagtacaac (for the
171 nt band) and gacttcaaggaggacggcaacatcc (for
the 196 nt band). The gel slice for the sample pools corre-
sponding to sizes between 171 and 196 nt was excised and
purified using a ZymoClean column. A separate clean gel was
run for each pool to avoid cross contamination.

Library QC and cluster optimization were performed using
Agilent Technologies qPCR NGS Library Quantification Kit
(Agilent Technologies, Santa Clara, CA). Libraries were intro-
duced onto the flow cell using an Illumina cBot (Illumina, Inc.,
San Diego, CA) and a TruSeq Rapid Duo cBot Sample Loading
Kit. Cluster generation and deep sequencing was performed
on an Illumina HiSeq 2500 using an Illumina TruSeq Rapid PE
Cluster Kit and TruSeq Rapid SBS Kit. A paired-end, 50 nt
read-length (PE50) sequencing strategy was performed in
rapid run mode. Image analysis and base calling were per-
formed using Illumina’s Real Time Analysis v1.17.20.0 soft-
ware, followed by demultiplexing of indexed reads and
generation of FASTQ files, using Illumina’s CASAVA v1.8.2
software (http://www.illumina.com/software.ilmn, last

accessed May 31, 2014). These FASTQ files were uploaded
to the Sequence Read Archive (SRA) under accession
SRP036064 (see http://www.ncbi.nlm.nih.gov/sra/?term=
SRP036064, last accessed May 31, 2014).

Read Alignment and Quantification of Mutation
Frequencies

A custom Python software package, mapmuts, was created to
quantify the frequencies of mutations from the Illumina se-
quencing. A description of the software as utilized in this work
is available at http://jbloom.github.io/mapmuts/example_
2013Analysis_Influenza_NP_Aichi68.html (last accessed May
31, 2014). Briefly:

1) Reads were discarded if either read in a pair failed the
Illumina chastity filter, had a mean Q-score less than 25,
or had more than two ambiguous (N) nucleotides.

2) The remaining paired reads were aligned to each other,
and retained only if they shared at least 30 nt of overlap,
disagreed at no more than one site, and matched the
expected terminal Illumina adaptors with no more than
one mismatch.

3) The overlap of the paired reads was aligned to NP,
disallowing alignments with gaps or more than six nu-
cleotide mismatches. A small fraction of alignments cor-
responded exclusively to the noncoding termini of the
viral RNA; the rest contained portions of the NP coding
sequence.

4) For every paired read that aligned with NP, the codon
identity was called if both reads concurred for all three
nucleotides in the codon. If the reads disagreed or con-
tained an ambiguity in that codon, the identity was not
called.

Inference of the Amino Acid Preferences

The approach described here is based on the assumption that
there is an inherent preference for each amino acid at each
site in the protein. This assumption is clearly not completely
accurate, as the effect of a mutation at one site can be influ-
enced by the identities of other sites. However, experimental
work with NP (Gong et al. 2013) and other proteins (Serrano
et al. 1993; Bloom et al. 2005, 2006; Bershtein et al. 2006)
suggests that at an evolutionary level, sites interact mostly
through generic effects on stability and folding. Furthermore,
the effects of mutations on stability and folding tend to be
conserved during evolution (Serrano et al. 1993; Ashenberg
et al. 2013). So one justification for assuming site-specific but
site-independent preferences is that selection on a mutation
is mostly determined by whether the protein can tolerate its
effect on stability or folding, so stabilizing amino acids will be
tolerated in most genetic backgrounds, whereas destabilizing
amino acids will only be tolerated in some backgrounds, as
has been described experimentally (Gong et al. 2013) and
theoretically (Bloom et al. 2007). A more pragmatic justifica-
tion is that the work here builds off this assumption to create
evolutionary models that are much better than existing
alternatives.
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Assume that the preferences are entirely at the amino acid
level and are indifferent to the specific codon (the study of
preferences for synonymous codons is an interesting area for
future work). Denote the preference of site r for amino acid a
as �r,a, where X

a

�r,a ¼ 1: ð6Þ

Define �r,a=�r,a0 as the expected ratio of amino acid a to a0

after viral growth if both are initially introduced into the
mutant library at equal frequency. Mutations that enhance
viral growth will have larger values of �r,a, whereas mutations
that hamper growth will have lower values of �r,a. However,
�r,a=�r,a0 cannot be simply interpreted as the fitness effect of
mutating site r from a to a0: Because most clones have mul-
tiple mutations, this ratio summarizes the effect of a mutation
in a variety of related genetic backgrounds. A mutation can
therefore have a ratio greater than one due to its inherent
effect on viral growth or its effect on the tolerance for other
mutations (or both). This analysis does not separate these
factors, but experimental work (Gong et al. 2013) has shown
that it is fairly common for one mutation to NP to alter the
tolerance to a subsequent one.

The most naive approach is to set �r,a proportional to the
frequency of amino acid a in mutvirus-p1 divided by its fre-
quency in mutDNA and then apply the normalization in
equation (6). However, such an approach is problematic for
several reasons. First, it fails to account for errors (PCR, reverse
transcription) that inflate the observed frequencies of some
mutations. Second, estimating ratios by dividing finite counts
is notoriously statistically biased (Pearson 1910; Ogliore et al.
2011). For example, in the limiting case where a mutation is
counted once in mutvirus-p1 and not at all in mutDNA, the
ratio is infinity—yet in practice such low counts give little
confidence that enough variants have been assayed to esti-
mate the true effect of the mutation.

To circumvent these problems, I used an approach that
explicitly accounts for the sampling statistics. The approach
begins with prior estimates that the �r,a values are all equal
and that the error and mutation rates for each site are equal
to the library averages. Multinomial likelihood functions give
the probability of observing a set of counts given the �r,a

values and the various error and mutation rates. The posterior
mean of the �r,a values is estimated by MCMC.

Use the counts in DNA to quantify errors due to PCR and
sequencing. Use the counts in RNA to quantify errors due to
reverse transcription. Assume that transcription of the viral
genes from the reverse-genetics plasmids and subsequent
replication of these genes by the influenza polymerase intro-
duces a negligible number of new mutations. The second of
these assumptions is supported by the fact that the mutation
frequency in virus-p1 is close to that in RNA (fig. 3). The first
of these assumptions is supported by the fact that stop
codons are no more frequent in RNA than in virus-p1
(fig. 3)—deleterious stop codons arising during transcription
will be purged during viral growth, while those arising from
reverse transcription and sequencing errors will not.

At each site r, there are ncodon codons, indexed by i = 1,
2, . . . ncodon. Let wt rð Þ denote the WT codon at site r. Let
NDNA

r be the total number of sequencing reads at site r in
DNA, and let nDNA

r,i be the number of these reads that report
codon i at site r, so that

P
i

nDNA
r,i ¼ NDNA

r . Similarly, let
NmutDNA

r , NRNA
r , and Nmutvirus

r be the total number of reads
at site r and let nmutDNA

r,i , nRNA
r,i , and nmutvirus

r,i be the total
number of these reads that report codon i at site r in
mutDNA, RNA, and mutvirus-p1, respectively.

First consider the rate at which site r is erroneously read as
some incorrect identity due to PCR or sequencing errors. Such
errors are the only source of non-WT reads in the sequenc-
ing of DNA. For all i 6¼ wt rð Þ, define "r,i as the rate at which
site r is erroneously read as codon i in DNA. Define
�r,wt rð Þ ¼ 1�

P
i6¼wt rð Þ �r,i to be the rate at which site r is

correctly read as its WT identity of wt rð Þ in DNA. Then

�r,i ¼ E nDNA
r,i =NDNA

r

h i
where E denotes the expectation

value. Define �r
!
¼ �r,1, . . . ,�r,ncodon

� �
and

nDNA
r

��!
¼ nDNA

r,1 , . . . ,nDNA
r,ncodon

� �
as vectors of the "r,i and nDNA

r,i

values, so the likelihood of observing nDNA
r

��!
given �r
! and NDNA

r

is

Pr nDNA
r

��!
jNDNA

r , �r
!

� 	
¼ Mult nDNA

r

��!
; NDNA

r , �r
!

� 	
ð7Þ

where Mult denotes the multinomial distribution.
Next consider the rate at which site r is erroneously copied

during reverse transcription. These reverse-transcription
errors combine with the PCR/sequencing errors defined by
�r
! to create non-WT reads in RNA. For all i 6¼ wt rð Þ, define
�r,i as the rate at which site r is miscopied to i during reverse
transcription. Define �r,wt rð Þ ¼ 1�

P
i6¼wt rð Þ �r,i as the

rate at which site r is correctly reverse transcribed. Ignore as
negligibly rare the possibility that a site is subject to both
a reverse transcription and sequencing/PCR error within
the same clone (a reasonable assumption as both �r,i

and �r,i are very small for i 6¼ wt rð Þ). Then

�r,i + �r,i � �i,wt rð Þ ¼ E nRNA
r,i =NRNA

r

h i
where �i,wt rð Þ is the

Kronecker delta (equal to one if i ¼ wt rð Þ and zero other-

wise). The likelihood of observing nRNA
r

��!
given �r

!, �r
!, and

NRNA
r is

Pr nRNA
r

��!
jNRNA

r ,�r
!, �r
!

� 	
¼ Mult nRNA

r

��!
; NRNA

r , �r
!+ �r
!
� �r
!

� 	
:

ð8Þ

where �r
!
¼ �1,wt rð Þ, . . . ,�ncodon,wt rð Þ

� �
is a vector that is all

zeros except for the element wt rð Þ.
Next consider the rate at which site r is mutated to some

other codon in the plasmid mutant library. These mutations
combine with the PCR/sequencing errors defined by �r

! to
create non-WT reads in mutDNA. For all i 6¼ wt rð Þ, define�r,i

as the rate at which site r is mutated to codon i in the mutant
library. Define �r,wt rð Þ ¼ 1�

P
i6¼wt rð Þ �r,i as the rate at

which site r is not mutated. Ignore as negligibly rare the
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possibility that a site is subject to both a mutation and a
sequencing/PCR error within the same clone. Then

�r,i + �r,i � �i,wt rð Þ ¼ E nmutDNA
r,i =NmutDNA

r

h i
. The likelihood

of observing nmutDNA
r

����!
given �r

!, �r
!, and NmutDNA

r is

Pr nmutDNA
r

����!
jNmutDNA

r ,�r
!, �r
!

� 	

¼ Mult nmutDNA
r

����!
; NmutDNA

r ,�r
!+ �r
!
� �r
!

� 	
:

ð9Þ

Finally, consider the effect of the preferences of each site r
for different amino acids, as denoted by the �r,a values.
Selection due to these preferences is manifested in
“mutvirus.” This selection acts on the mutations in the
mutant library (�r,i), although the actual counts in mutvirus
are also affected by the sequencing/PCR errors ("r,i) and re-
verse-transcription errors (�r,i). Again ignore as negligibly rare
the possibility that a site is subject to more than one of
these sources of mutation and error within a single clone.
Let A ið Þ denote the amino acid encoded by codon i. Let
�r
! be the vector of �r,a values. Define the vector-valued
function C

!
as

C
!

�r
!
� �

¼ �r,A 1ð Þ, . . . ,�r,A ncodonð Þ

� �
, ð10Þ

so that this function returns a ncodon-element vector con-

structed from �r
!. Because the selection in mutvirus due to

the preferences �r,A ið Þ occurs after the mutagenesis �r,i

but before the reverse-transcription errors �r,i and the

sequencing/PCR errors "r,i, then E nmutvirus
r,i =Nmutvirus

r

h i
¼

�r,i + �r,i + �r � �r,A ið Þ � �r,i � 2� �i,wt rð Þ where

�r ¼
P

i

�r,A ið Þ�r,i

� 	�1

¼ C
!

�r
!
� �

� �r
!

� ��1

(where � de-

notes the dot product) is a normalization factor that accounts
for the fact that changes in the frequency of one variant due
to selection will influence the observed frequency of other

variants. The likelihood of observing nmutvirus
r

����!
given

�r
!, �r
!, �r
!, �r
!, and Nmutvirus

r is therefore

Pr nmutvirus
r

����!
j �r
!, �r
!,�r
!,�r
!

,Nmutvirus
r

� 	

¼ Mult nmutvirus
r

����!
; Nmutvirus

r , �r
!+ �r
!+

C
!

�r
!
� �

� �r
!

C
!

�r
!
� �

� �r
!
� 2 �r
!

0
B@

1
CA:
ð11Þ

where � is the Hadamard (entry wise) product.
Specify priors over �r

!, �r
!, �r
!, and �r

! in the form of
Dirichlet distributions (denoted here by Dir). For the priors
over the mutation rates �r

!, I choose Dirichlet-distribution
parameters, such that the mean of the prior expectation for

the mutation rate at each site r and codon i is equal to the
average value for all sites, estimated as the frequency in
mutDNA minus the frequency in DNA (fig. 3), denoted by
��. So the prior is

Pr �r
!� �
¼ Dir �r

!; ncodon � �� � 	�,r
�!� �

ð12Þ

where 	�,r
�! is the ncodon-element vector with elements

	�,r,i ¼ ��+ �i,wt rð Þ 1� ncodon ��ð Þ and �� is the scalar con-
centration parameter.

For the priors over "r,i and �r,i, the Dirichlet-distribution
parameters again represent the average value for all sites but
now also depend on the number of nucleotide changes in the
codon mutation because sequencing/PCR and reverse-
transcription errors are far more likely to lead to single-
nucleotide codon changes than multiple-nucleotide codon
changes (fig. 3). LetM wt rð Þ,ið Þ be the number of nucleotide
changes in the mutation from codon wt rð Þ to codon i. For
example, M GCA,ACAð Þ ¼ 1 and M GCA,ATAð Þ ¼ 2. Let
�1, �2, and �3 be the average error rates for one-, two-, and
three-nucleotide codon mutations, respectively—these are
estimated as the frequencies in DNA. So the prior is

Pr �r
!� �
¼ Dir �r

!; ncodon � �� � 	�,r
�!� �

ð13Þ

where 	�,r
�! is the ncodon-element vector with elements

	�,r,i ¼ �M wt rð Þ,ið Þ where �0 ¼ 1� 9� �1 � 27� �2 � 27
��3, and where �� is the scalar concentration parameter.

Similarly, let �1, �2, and �3 be the average reverse-
transcription error rates for one-, two-, and three-nucleotide
codon mutations, respectively—these are estimated as the
frequencies in RNA minus those in DNA. So the prior is

Pr �r
!� �
¼ Dir �r

!; ncodon � �� � 	�,r
�!� �

ð14Þ

where 	�,r
�! is the ncodon-element vector with elements

	�,r,i ¼ �M wt rð Þ,ið Þ where �0 ¼ 1� 9� �1 � 27� �2 � 27
��3, and where �� is the scalar concentration parameter.

Specify a symmetric Dirichlet-distribution prior over �r
!

(note that any other prior, such as one that favored WT,
would implicitly favor certain identities based empirically
on the WT sequence, and so would not be in the spirit of
the parameter-free derivation of the �r,a values employed
here). Specifically, use a prior of

Pr �r
!
� �

¼ Dir �r
!; �� � ~1
� �

ð15Þ

where ~1 is the naa-element vector that is all ones, and �� is the
scalar concentration parameter.

It is now possible to write expressions for the likelihoods

and posterior probabilities. Let N r ¼

n
nDNA

r

��!
,nmutDNA

r

����!
,nRNA

r

��!
,

nmutvirus
r

����!
,NDNA

r ,NmutDNA
r ,NRNA

r ,Nmutvirus
r

o
denote the full set

of counts for site r. The likelihood of N r given values for
the preferences and mutation/error rates is
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Pr N r j �r
!

, �r
!,�r
!,�r
!

� �

¼ Pr nDNA
r

��!
jNDNA

r , �r
!

� 	
� Pr nRNA

r

��!
jNRNA

r , �r
!,�r
!

� 	

� Pr nmutDNA
r

����!
jNmutDNA

r , �r
!,�r
!

� 	

� Pr nmutvirus
r

����!
jNmutvirus

r , �r
!,�r
!,�r
!,�r
!

� 	

ð16Þ

where the likelihoods that compose equation (16) are defined
by equations (7–11). The posterior probability of a specific
value for the preferences and mutation/error rates is

Pr �r
!

, �r
!,�r
!,�r
!
jN r

� �
¼ Cr � Pr N r j �r

!
, �r
!,�r
!,�r
!

� �
�

ð17Þ

Pr �r
!� �
� Pr �r

!� �
� Pr �r

!� �
� Pr �r

!
� �

ð18Þ

where Cr is a normalization constant that does not need to be
explicitly calculated in the MCMC approach used here. The
posterior over the preferences �r

! can be calculated by inte-
grating over equation (17) to give

Pr �r
!
jN r

� �
¼

Z Z Z
Pr �r
!

, �r
!,�r
!,�r
!
jN r

� �
d �r
!d�r
!d�r
!,

ð19Þ

where the integration is performed by MCMC. The posterior
is summarized by its mean,

h�r
!
i ¼

Z
�r
!
� Pr �r

!
j N

k
r j 1 � k � R

n o� �
d�r
!: ð20Þ

In practice, each replicate consists of four libraries (WT-1,
WT-2, N334H-1, and N334H-2)—the posterior mean prefer-
ences inferred for each library within a replicate are averaged
to give the estimated preferences for that replicate. The pref-
erences within each replicate are highly correlated regardless
of whether mutvirus-p1 or mutvirus-p2 is used as the mut-
virus data set (fig. 5A and B). This correlation between pas-
sages is consistent with the interpretation of the preferences
as the fraction of genetic backgrounds that tolerate a muta-
tion (if it was a selection coefficient, there should be further
enrichment upon further passage). The preferences averaged
over both replicates serve as the “best” estimate and are dis-
played in figure 5D. This figure was created using the
WebLogo 3 program (Schneider and Stephens 1990; Crooks
et al. 2004).

Figure 5D also shows relative solvent accessibility (RSA)
and secondary structure for residues present in chain C of
NP crystal structure PDB 2IQH (Ye et al. 2006). The total
accessible surface area (ASA) and the secondary structure
for each residue in this monomer alone were calculated
using DSSP (Kabsch and Sander 1983; Joosten et al. 2011).
The RSAs are the total ASA divided by the maximum ASA
defined in Tien et al. (2013). The secondary structure codes
returned by DSSP were grouped into three classes: Helix

(DSSP codes G, H, or I), strand (DSSP codes B or E), and
loop (any other DSSP code).

Phylogenetic Analyses

A set of NP coding sequences was assembled for human
influenza lineages descended from a close relative the 1918
virus (H1N1 from 1918 to 1957, H2N2 from 1957 to 1968,
H3N2 from 1968 to 2013, and seasonal H1N1 from 1977 to
2008). All full-length NP sequences from the Influenza Virus
Resource (Bao et al. 2008) were downloaded, and up to three
unique sequences per year from each of the four lineages
described above were retained. These sequences were aligned
using EMBOSS needle (Rice et al. 2000). Outlier sequences
that correspond to heavily lab-adapted strains, lab recombi-
nants, misannotated sequences, or zoonotic transfers (e.g., a
small number of human H3N2 strains are from zoonotic
swine variant H3N2 rather than the main human H3N2 lin-
eage) were removed. This was done by first removing known
outliers in the influenza databases (Krasnitz et al. 2008) and
then using an analysis with RAxML (Stamatakis 2006) and
Path-O-Gen (http://tree.bio.ed.ac.uk/software/pathogen/, last
accessed May 31, 2014) to remove remaining sequences that
were extreme outliers from the molecular clock. The final
alignment after removing outliers consisted of 274 unique
NP sequences.

Maximum-likelihood phylogenetic trees were constructed
using codonPhyML (Gil et al. 2013). Two substitution models
were used. The first was GY94 (Goldman and Yang 1994)
using CF3x4 equilibrium frequencies (Pond et al. 2010), a
single transition–transversion ratio optimized by maximum
likelihood, and a synonymous–nonsynonymous ratio drawn
from four discrete gamma-distributed categories with mean
and shape parameter optimized by maximum likelihood
(Yang et al. 2000). The second was KOSI07 + F (Kosiol et al.
2007), optimizing the relative transversion–transition ratio by
maximum likelihood, and letting the relative synonymous–
nonsynonymous ratio again be drawn from four gamma-
distributed categories with mean and shape parameter
optimized by maximum likelihood. The trees produced by
codonPhyML are unrooted. These trees were rooted using
Path-O-Gen (http://tree.bio.ed.ac.uk/software/pathogen/,
last accessed May 31, 2014) and visualized with FigTree
(http://tree.bio.ed.ac.uk/software/figtree/, last accessed May
31, 2014) to create the images in figure 7. The tree
topologies are extremely similar for both models.

The evolutionary models were compared by using them to
optimize the branch lengths of the fixed tree topologies in
figure 7 so as to maximize the likelihood using HYPHY (Pond
et al. 2005) for sites 2–498 (site 1 was not included, because
the N-terminal methionine is conserved and was not mu-
tated in the plasmid mutant libraries). HYPHY was used to
calculate all likelihoods (even for models that could be han-
dled by codonPhyML) for consistency in case these programs
differ slightly in numerical accuracy. The results are shown in
tables 6 and 7. Regardless of which tree topology was used, the
experimentally determined evolutionary models outper-
formed all variants of GY94 and KOSI07 + F. The
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experimentally determined evolutionary models performed
best when using the preferences determined from the com-
bined data from both replicates and using equation (3) to
compute the fixation probabilities. Using the data from just
one replicate also outperforms GY94 and KOSI07 + F, al-
though the likelihoods are slightly worse. In terms of the
completeness with which mutations are sampled in the
mutant viruses, replicate A is superior to replicate B as dis-
cussed above—and the former replicate gives higher likeli-
hoods. If the fixation probabilities are instead determined
using the method of Halpern and Bruno (Halpern and
Bruno 1998) as in equation (4), the experimentally deter-
mined models still outperform GY94 and KOSI07 + F—but
the likelihoods are substantially worse. To check that the ex-
perimentally determined models really do utilize the site-spe-
cific preferences information, the preferences were
randomized among sites and likelihoods were computed.
These randomized models perform vastly worse than any of
the alternatives.

The variants of GY94 and KOSI07 + F tested are listed in
table 6. Various methods were used to estimate the non-
synonymous–synonymous ratio (!): A single ! optimized
by maximum likelihood; three discrete categories of !< 1,
!= 1, and !> 1 with the proportions and the ! values 6¼ 1
estimated by maximum likelihood; ! drawn from four
gamma-distributed categories with mean and shape esti-
mated by maximum likelihood; and a beta distribution (ten
categories) plus an additional category of !> 1 with the
shape parameters, !> 1 value, and proportion in the final
category estimated by maximum likelihood. These models are
referred to M0, M2a, M5, and M7 in the literature (Yang et al.
2005). Another model optimized a different ! for each
branch. Another model optimized a single ! but allowed
the rates to be drawn from four gamma-distributed catego-
ries. Parameters were counted as follows: All contained equi-
librium frequency parameters that were empirically estimated
from the sequences under analysis: There are nine such pa-
rameters for GY94 using CF3x4 (Goldman and Yang 1994;
Pond et al. 2010) and 60 such parameters for KOSI07 + F
(Kosiol et al. 2007). In addition, all variants contain a transi-
tion–transversion ratio optimized by likelihood. Finally, all
variants contain one or more ! parameters as described
above.

Supplementary Material
Supplementary figures S1 and S2 and files S1 and S2 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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