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Abstract. Malignant mesothelioma (MM) is thought to 
arise from the direct effect of asbestos on mesothelial cells. 
However, MM takes a long time to develop following exposure 
to asbestos, which suggests that the effects of asbestos are 
complex. The present study examined the effects of asbestos 
exposure on the cell growth of MeT‑5A human mesothelial 
cells via cytokines produced by immune cells. Peripheral 
blood mononuclear cells (PBMCs) were stimulated with 
antibodies against cluster of differentiation (CD)3 and CD28 
upon exposure to the asbestos chrysotile A (CA) or crocidolite 
(CR); the growth of MeT‑5A cells in media supplemented 
with PBMC culture supernatants was subsequently examined. 
MeT‑5A cells exhibited an increase in proliferation when 
grown in supernatant from the 7‑day PBMC culture exposed 
to CA or CR. Analysis of cytokine production demonstrated 
increased levels of granulocyte colony‑stimulating factor 
(G‑CSF), granulocyte‑macrophage colony‑stimulating factor 
(GM‑CSF), interleukin (IL)‑1α, IL‑1β, IL‑3, IL‑5, IL‑13 and 
IL‑17A in supernatants. Individual administration of these 
cytokines, excluding G‑CSF and GM‑CSF, led to an increase 
in cell growth of MeT‑5A, whereas this effect was not observed 
following the combined administration of these cytokines. 
The results indicate that cytokines secreted by immune cells 
upon exposure to asbestos cause an increase in the growth 
activity of mesothelial cells, suggesting that alterations in the 
production of cytokines by immune cells may contribute to 
tumorigenesis in individuals exposed to asbestos.

Introduction

Malignant mesothelioma (MM) is an aggressive tumor with a 
poor prognosis; asbestos (e.g., chrysotile, crocidolite or amosite) 
exposure is indisputably a major factor in the development of 
this tumor (1). Asbestos is the generic name for a group of sili-
cate minerals (complexes containing metals, such as iron and 
magnesium) and is categorized as a Group I carcinogen by the 
International Agency for Research on Cancer (2). The accu-
mulation of DNA damage due to asbestos‑induced production 
of reactive oxygen/nitrogen species is considered to be one 
of the predominant mechanisms underlying the development 
of MM (3). However, MM is typically observed to develop a 
long time after asbestos exposure (4), which suggests that the 
effects of asbestos are complex, and leads to the hypothesis 
that immunological abnormalities may be associated with the 
development of MM.

Previously, our group reported that the T cell line MT‑2, 
when continuously exposed to asbestos, exhibited resistance 
to apoptosis, indicating that asbestos could enhance the 
survival of cluster of differentiation (CD)4+CD25+ regulatory 
T ce11s (5‑7). In addition, human natural killer cells exposed 
to asbestos exhibited decreased cytotoxicity and altered 
expression of activating receptors in vitro (6). Most recently, 
we reported that asbestos exposure suppressed the induction 
of cytotoxic T lymphocytes during a mixed lymphocyte reac-
tion (8). These findings indicate that asbestos exposure has 
the potential to influence immune responses, which may be 
associated with the pathogenesis of MM following exposure 
to asbestos.

Consideration of the relationship between alteration of 
immune responses and pathogenesis of mesothelioma may 
indicate that asbestos exposure has the potential to cause 
impairment of tumor immunity; transformed cells may be 
able to escape tumor immunity and develop MM (5,9‑11). 
Alternatively, altered production of cytokines by immune cells 
upon exposure to asbestos is another potential mechanism 
that may contribute to the pathogenesis of mesothelioma. 
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It is possible that cytokines produced by immune cells 
existing in or migrating into the pleural cavity, or cytokines 
transported through the blood stream following their produc-
tion in lymphoid organs, may affect the function of pleural 
cells  (11‑15). Previous studies have reported high serum 
levels of granulocyte colony‑stimulating factor (G‑CSF), 
transforming growth factor β, interleukin (IL)‑6 and IL‑10 
in patients with mesothelioma  (16‑18). However, it is still 
unknown whether cytokines derived from immunocompetent 
cells exposed to asbestos influence normal mesothelial cells.

Therefore, in the current study, peripheral blood mono-
nuclear cells (PBMCs) from healthy donors were directly 
exposed to asbestos under stimulation with antibodies against 
CD3 and CD28, and the effects of the resulting culture super-
natants on the cell growth of mesothelial cells were examined 
in  vitro. The aforementioned antibodies were utilized to 
stimulate T lymphocytes in the PBMC cultures, due to the 
well‑known production of various kinds of cytokines by these 
cells to control immune responses (19). The concentrations 
of various cytokines in the culture supernatants were subse-
quently assayed. Finally, the cell growth of mesothelial cells in 
media supplemented with the cytokines that had been found to 
increase in the supernatants of PBMC cultures under exposure 
to asbestos was examined.

Materials and methods

In vitro exposure of PBMCs to asbestos and stimulation with 
antibodies to CD3 and CD28. PBMCs were collected using 
the Ficoll‑Hypaque density gradient method from 20 ml of 
heparinized blood from three healthy donors, as reported 
previously (20). The present study was approved by the Ethics 
Committee of Kawasaki Medical School (Kurashiki, Japan; 
approval no., 883‑2). Tissue culture plates (96‑well; AGC 
Techno Glass, Shizuoka, Japan) were coated overnight with 
100 µl of anti‑CD3 (monoclonal mouse anti‑human; catalog 
no., IM1304; Beckman‑Coulter, Fullerton, CA, USA) diluted 
with phosphate‑buffered saline to a concentration of 0.5 µg/ml. 
The PBMCs (1x105 cells per well) were then cultured in 200 µl 
of medium containing 0, 5  or 20  µg/ml of chrysotile  A 
(CA) or crocidolite (CR). CA and CR were provided by the 
Department of Occupational Hygiene, National Institute for 
Occupational Health (Johannesburg, South Africa). Each 
medium contained 0.5  µg/ml of anti‑CD28 (monoclonal 
mouse anti‑human; catalog no., IM1376; Beckman‑Coulter). 
The basic medium was RPMI‑1640 medium (Sigma‑Aldrich, 
St. Louis, MO, USA) supplemented with 10% fetal bovine 
serum (Sigma‑Aldrich), and the antibiotics streptomycin and 
penicillin (Meiji Seika Pharma Co., Ltd., Tokyo, Japan). After 
2 and 7 days of incubation in a humidified atmosphere of 5% 
CO2 at 37˚C, the cells and supernatants were harvested, and 
the supernatants were separated from the cells and asbestos by 
centrifugation for 10 min at 1710 x g. These supernatants were 
divided into aliquots and stored at ‑20˚C prior to use.

Cell culture. The non‑malignant simian virus 40‑transformed 
human pleural mesothelial cell line MeT‑5A was obtained from 
the biological resource center of the American Type Culture 
Collection (Manassas, VA, USA) through the distributor in 
Japan (Summit Pharmaceuticals International, Tokyo, Japan). 

MeT‑5A cells were cultured on Falcon™ 10‑cm plates (Thermo 
Fisher Scientific, Carlsbad, CA, USA). The basic medium and 
culture conditions were the same as those used for the culture 
of PBMCs.

Measurement of cytokines. A total of 26 different cytokines 
and chemokines were assayed simultaneously in the superna-
tants of the cultured PBMCs using a Milliplex MAP Human 
Cytokine/Chemokine Pre‑mixed 26 Plex Panel (catalog no., 
MPXHCYTO60KPMX26; EMD Millipore, Billerica, MA, 
USA) according to the manufacturer's instructions. This kit 
is designed to assay concentrations of IL‑1α, IL‑1β, IL‑2, 
IL‑3, IL‑4, IL‑5, IL‑6, IL‑7, IL‑8, IL‑10, IL‑12p40, IL‑12p70, 
IL‑13, IL‑15, IL‑17A, Eotaxin, G‑CSF, GM‑CSF, intereron 
(IFN)‑α2, IFN‑γ, IFN γ‑induced protein  10, monocyte 
chemotactic protein 1, macrophage inflammatory protein 
(MIP)‑1α, MIP‑1β, tumor necrosis factor (TNF)‑α and 
TNF‑β. Fluorescence‑labeled beads were incubated with the 
supernatants at 4˚C overnight, and then washed with detec-
tion antibodies at room temperature for an hour followed by 
incubation with streptavidin‑phycoerythrin. Finally, the fluo-
rescence intensity of the beads was measured and analyzed 
for the concentration of cytokines and chemokines using 
the Luminex 200™ xPONENT System version 3.1 (EMD 
Millipore). Relative values of the cytokines were obtained by 
dividing each value by the average of the values obtained for 
each cytokines.

Assay of cell proliferation. MeT‑5A cells were plated at a 
density of 3x105 cells per 10‑cm dish and cultured 72 h prior 
to the following experiments. The cells were then cultured in 
96‑well tissue culture plates (6x103 cells per well) in 100 µl 
of medium containing 12.5 µl of the supernatant collected 
from the PBMC culture. After 48 h of culture, the growth 
properties were analyzed using a water‑soluble tetrazolium 
salt (WST‑1) assay, as described previously (21). MeT‑5A cells 
were also treated with the following recombinant cytokines: 
G‑CSF (1.0 ng/ml; catalog no., 561701; BioLegend, San Diego, 
CA, USA), GM‑CSF (10 ng/ml; catalog no., 572902), IL‑1α 
(2.5 ng/ml; catalog no., 570002), IL‑1β (2.5 ng/ml; catalog 
no., 579402), IL‑3 (1.0  ng/ml; catalog no., 560503), IL‑5 
(1.0 ng/ml; catalog no., 560701), IL‑13 (5.0 ng/ml; catalog no., 
571102) and IL‑17A (50 ng/ml; catalog no., 570502) for 48 h; 
the concentrations of cytokines were determined according 
to the supernatant of PBMCs. The WST‑1 assay was then 
performed using the same protocol. Optical density at 450 nm 
(OD450 nm) was measured and normalized to a standard 
condition, which was the OD450 nm without supernatants or 
cytokines.

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism version  6.07 software (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Values are expressed as the 
mean ± standard deviation. For cytokine measurements, data 
were analyzed using an unpaired t‑test and differences were 
considered significant at P<0.01 compared to the control. For 
the WST‑1 test, differences among experimental groups were 
determined using Kruskal‑Wallis one‑way analysis of vari-
ance followed by a Dunn multiple comparisons post‑hoc test. 
Differences were considered significant at P<0.01.
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Results

Cell growth is enhanced in mesothelial cells exposed to 
supernatants from asbestos‑exposed PBMCs. To evaluate the 
cell growth of mesothelial cells as affected by PBMC super-
natants, MeT‑5A cells were cultured in media supplemented 
with supernatant collected from PBMCs that had been cultured 
for 2 or 7 days with 5 µg/ml CA or CR (CA5 and CR5) and 
20 µg CA or CR (CA20 and CR20) under stimulation with 
anti‑CD3 and anti‑CD28 antibodies. MeT‑5A cells were assayed 
for cell growth. PBMC supernatant without asbestos was used 
as the control. In the 2‑day group, growth was not signifi-
cantly enhanced compared with the control group, although a 
marginal increase in growth was observed in the group exposed 
to the 5 µg/ml CA culture supernatant (OD450 nm: Control, 
1.357±0.304; CA5, 1.750±0.401, P=0.033; CR5 1.579±0.536, 
P>0.999; CA20, 1.132±0.208, P=0.184; CR20, 1.066±0.169, 
P=0.043). In the 7‑day group, the MeT‑5A cells exposed to 
supernatants from PBMC cultures with 20 µg/ml of CA or CR 
exhibited significantly enhanced proliferation; MeT‑5A cells 
exposed to supernatants from cultures with 5 µg/ml of CA or 
CR exhibited a slight, non‑significant tendency for increased 
proliferation (Fig. 1) (OD450 nm: Control 1.219±0.216; CA5, 
1.665±0.344, P=0.026; CR5, 1.583±0.331, P=0.028; CA20, 
2.085±0.586, P<0.0001; CR20, 1.908±0.632, P<0.0001). The 
difference in the effects on MeT‑5A cells between culture super-
natants of 5 and 20 µg/ml asbestos doses were also compared. 
Supernatants from cultures with 5 µg/ml of CA or CR were 
associated with a tendency for enhanced proliferation of MeT‑5A 
cells compared with supernatants of 20 µg/ml in the 2‑day group 
(P=0.001 and P=0.07, respectively). By contrast, there was no 
significant difference in cell proliferation between 5 µg/ml and 
20 µg/ml doses in the 7‑day group. Additionally, there were no 
significant differences between the effects of CA and CR when 
comparing equivalent doses and durations of treatment. These 
results indicate that cell growth of mesothelial cells is enhanced 
by secretory factors derived from PBMCs exposed to asbestos, 
and that the factors produced later during the PBMC cultures 
are more effective than those produced in the earlier stages.

Profile of cytokines in supernatants of PBMC cultures with 
asbestos. The aforementioned results indicated the existence 

of certain factors in supernatants that enhance the cell 
growth of mesothelial cells. Therefore, the concentrations 
of various cytokines and chemokines in the supernatants of 
PBMC cultures were examined using Luminex technology. 
Among the 26  cytokines assayed, the concentrations of 
8  cytokines, comprising G‑CSF, GM‑CSF, IL‑1α, IL‑1β, 
IL‑3, IL‑5, IL‑13 and IL‑17A, were significantly higher in 
PBMC supernatants cultured with asbestos than in control 
supernatants (Table I; Fig. 2); the kinetics of these cytokine 
productions were dependent on the dose and type of asbestos, 
as well as the duration of the culture period. IL1‑α and IL‑1β 
increased in the 2‑ and 7‑day groups, in which CA exposure 
was more effective in increasing concentrations than CR. The 
concentrations of 6 cytokines were higher in the 7‑day group 
compared with the 2‑day group: IL‑3, IL‑5, IL‑13 and IL‑17A 
increased significantly following exposure to 20 µg/ml of 
CA or CR for 7 days, with both types of asbestos exposure 
producing a dose‑dependent increase in the production of 
cytokines (Fig. 2). The concentration of GM‑CSF increased 
following exposure to 5 µg/ml of CA or CR, and 20 µg/ml of 
CA (P<0.001, P=0.006 and P=0.006, respectively); however, 
exposure to 20 µg/ml of CR had no significant effect. Further-
more, there were significant increases in G‑CSF in response to 
cultures with 5 or 20 µg/ml of CA and 5 µg/ml of CR. These 
results indicate that asbestos exposure may lead to increases in 
G‑CSF, GM‑CSF, IL‑1α, IL‑1β, IL‑3, IL‑5, IL‑13 and IL‑17A 
production by PBMCs upon T‑cell stimulation. Notably, the 
majority of the increases occurred at a later time during the 
culture period.

Cell growth of mesothelial cells in the presence of cytokines. 
To screen the effect of these cytokines on the cell growth of 
mesothelial cells, MeT‑5A cells were cultured in media supple-
mented with recombinant G‑CSF, GM‑CSF, IL‑1α, IL‑1β, IL‑3, 
IL‑5, IL‑13 or IL‑17A. The exposure concentrations of the 
cytokines were defined as approximately equal to the highest 
level observed in the PBMC supernatants (Fig. 2). The results 
indicated that the cytokines other than G‑CSF and GM‑CSF 
increased cell growth significantly in comparison to that of 
control cells (P<0.01) (OD450  nm: Control, 1.000±0.035; 
G‑CSF, 1.051±0.049, P=0.021; GM‑CSF, 1.032±0.041, P=0.516; 
IL‑1α, 1.087±0.059, P<0.0001; IL‑1β, 1.071±0.049, P=0.0002; 

Figure 1. The effects of supernatants from PBMC cultures with asbestos on cell growth of human mesothelial cells. MeT‑5A human mesothelial cells were 
cultured in media supplemented with supernatants from PBMC cultures: PBMCs were cultured with 5 or 20 µg/ml of CA or CR upon stimulation with 
antibodies against CD3 and CD28 for (A) 2 or (B) 7 days, and culture supernatants were harvested and used for MeT‑5A cultures. Cell growth was evalu-
ated using water‑soluble tetrazolium salt assays. Values are expressed as the mean ± standard deviation. Statistical significance is expressed as *P<0.01 vs. 
controls. PBMC, peripheral blood mononuclear cells; CA, chrysotile A; CR, crocidolite; CD, cluster of differentiation; CA5, 5 µg/ml CA; CR5, 5 µg/ml CR; 
CA20, 20 µg/ml, CA; CR20, 20 µg/ml CR; OD450 nm, optical density at 450 nm. 
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IL‑3, 1.115±0.067, P<0.0001; IL‑5, 1.086±0.082, P<0.0001; 
IL‑13, 1.106±0.053, P<0.0001; IL‑17A, 1.116±0.062, 
P<0.0001), although the differences were not large (Fig. 3). 
Notably, when all cytokines were included the culture simul-
taneously, the growth of the MeT‑5A cells did not differ 
from that of the control (OD450 nm, 1.027±0.089; P=0.803). 
Subsequently, the potential additive effects of several selected 
cytokines on the growth of MeT‑5A cells were examined. 
However, no increase in cell growth was observed in these 
cultures (OD450  nm: Control, 1.000±0.078; IL3/13/17, 
0.942±0.054, P=0.102; IL‑1α/3/13/17A, 0.954±0.058, 
P=0.400; IL‑3/5/13/17A, 0.948±0.052, P=0.413). These results 
indicate that IL‑1α, IL‑1β, IL‑3, Il‑5, Il‑13 and IL‑17A have the 
potential to augment the growth activity of mesothelial cells, 

although these effects are not strong and are altered in the 
presence of other cytokines.

Discussion

In the current study, PBMCs were exposed to asbestos under 
stimulation with anti‑CD3 and anti‑CD28 antibodies to drive 
T‑cell activation in vitro (19). The results demonstrated that 
supernatants from PBMC cultures upon exposure to 20 µg/ml 
of asbestos for 7 days significantly enhanced the cell growth 
of MeT‑5A, and exhibited markedly higher levels of IL‑1α, 
IL‑1β, IL‑3, IL‑5, IL‑13 and IL‑17A. These cytokines are 
often reported as pro‑inflammatory cytokines (22). In addi-
tion, these cytokines were confirmed to be able to enhance 

Figure 2. Increased production of cytokines by asbestos‑exposed PBMCs upon T‑cell stimulation. PBMCs were cultured with 5 or 20 µg/ml of CA or CR upon 
stimulation with antibodies against CD3 and CD28 for 2 or 7 days, and culture supernatants were harvested and assayed for cytokine levels using a Luminex 
system. Among the 26 cytokines assayed, the levels of 8 cytokines exhibited significant increases. All values were corrected as the ratio relative to the averages 
of all samples for each cytokine. Values are expressed as the mean ± standard deviation. Statistical significance is expressed as *P<0.05 or **P<0.01 vs. controls. 
PBMC, peripheral blood mononuclear cell; CA, chrysotile A; CR, crocidolite; CD, cluster of differentiation; CA5, 5 µg/ml CA; CR5, 5 µg/ml CR; CA20, 20 µg/ml 
CA; CR20, 20 µg/ml CR; G‑CSF, granulocyte‑colony stimulating factor; GM‑CSF, granulocyte‑macrophage colony‑stimulating factor; IL, interleukin.
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the proliferation of MeT‑5A cells. Collectively, these results 
indicate that cytokines secreted by immune cells upon expo-
sure to asbestos cause an increase in the growth activity of 
mesothelial cells, suggesting the possibility that pleural cells 
may be influenced by these cytokines in individuals exposed 
to asbestos.

It is often reported that chronic inflammation has the 
potential to contribute to carcinogenesis; however, this 
mechanism is complex (23,24). Inhalation of asbestos also 
causes inflammatory responses that include production of 
free radicals and cytokines, as well as induction of cell death, 
which is thought to be important carcinogenesis resulting 
from asbestos exposure (25). One notable finding from the 
present study is the relationship between immune cells and 
mesothelial cells as mediated by IL‑1α and IL‑1β, which are 
representative types of inflammatory cytokines. IL‑1α and 
IL‑1β have a biologically similar function and promote tumor 
angiogenesis, invasion and metastasis through activating 
nuclear factor‑κB (26). Alveolar macrophages collected from 
asbestosis patients exhibit increased levels of IL‑1β  (27). 
It is well known that asbestos can induce activation of 
caspase‑1 mediated by the NLRP3 inflammasome; IL‑1β is 
produced by cleavage of the inactive pro‑IL‑1β precursor by 
caspase‑1 (28,29).

IL‑5 was originally identified as a B‑cell growth factor in 
mice. IL‑5 stimulates B‑cell proliferation and activation, and 
regulates eosinophil differentiation through Ras‑mitogen‑acti-
vated protein kinase (MAPK), phosphoinositide 3‑kinase and 
Janus kinase‑signal transducer and activator of transcrip-
tion (JAK‑STAT) pathways (30). IL‑5 is critical in allergic 
diseases, such as asthma and rhinitis; however, little is known 
with regard to the effects of IL‑5 on mesothelial cells. Several 
studies have reported that IL‑5 is one of the cytokines that 
exhibits increased levels in asbestos‑exposed murine bron-
choalveolar lavage (BAL) fluid (31,32). IL‑5 is upregulated in 
invasive bladder cancer and stimulates the invasion of bladder 
cancer cell lines through the Ras‑MAPK and JAK‑STAT 
pathways, which are also important in MM (33).

IL‑13 is secreted by activated T helper (Th) type 2 cells 
and shares numerous biological activities with IL‑4  (34). 
Although there is insufficient data concerning the involvement 
of IL‑13 in mesothelioma or asbestosis, increased IL‑13 has 
been observed in a peritoneal mesothelial cell line exposed to 
asbestos, and lymphocytes co‑cultured with asbestos‑exposed 
human alveolar macrophages are reported to produce 
IL‑13  (35,36). Takenouchi  et  al  (37) reported that IL‑13 
receptor α2 (IL‑13Ra2) was upregulated by treatment with the 
DNA methylation inhibitor 5‑aza‑2'‑deoxycytidine and that 
the anti‑IL‑13Ra2 antibody exerted a tumor suppressive effect 
in mesothelioma cells. Silencing of IL‑13Ra2 has also been 
demonstrated to decrease migration and invasion in colorectal 
cancer cells, while IL‑13 has increased these events (38).

IL‑17A is predominantly secreted by Th17 cells and 
is important in the development of autoimmune diseases, 
including rheumatoid arthritis and multiple sclerosis  (39). 
Additionally, significant upregulation of IL‑17A has been 
observed with acute alveolitis induced in experimental mouse 
silicosis (40). The suggested role of IL‑17A in the development 
of cancer is controversial: Poor prognosis of colorectal cancer 
patients with high expression of Th17 has been suggested (41); 
however, a tumor suppressive effect has also been reported (42).

It has been reported that inhaled asbestos fibers relocate 
and accumulate in the lymph nodes from the lung via the 
lymphatic system (43,44). Therefore, immunocompetent cells, 
including T cells, may be chronically exposed to asbestos. 
Numerous studies have investigated cytokines in peripheral 
blood, BAL fluid or the pleural effusion of asbestos‑exposed 
workers, or in a murine model (32,45,46). In the present study, 
PBMCs were directly exposed to asbestos and secreted cyto-
kines were measured, before their effects on mesothelial cells 
were investigated.

Various studies of cancer immunology have identified 
subpopulations of T cells, in particular noting the balance of 
Th2 and Th1 cells systematically or in tumor sites (47‑50). Th1 
cytokines predominantly mediate cellular immunity, while Th2 
cytokines mediate hormonal immunity; each type of cytokine 

Figure 3. The effects of recombinant cytokines on cell growth of human mesothelial cells. MeT‑5A cells were cultured with (A) G‑CSF, GM‑CSF, IL‑1α, 
IL‑1β, IL‑3, IL‑5, IL‑13 or IL‑17A, and cell growth was evaluated using WST‑1 assays. Some groups of cells were cultured with a mixture of all cytokines 
or (B) with various combinations of cytokines. Concentrations were selected according to the concentrations of cytokines in peripheral blood mononuclear 
cell cultures determined by the Luminex system. Values are expressed as the ratio relative to the control and as the mean ± standard deviation. Statistical 
significance is expressed as *P<0.01 vs. controls. G‑CSF, granulocyte‑colony stimulating factor; GM‑CSF, granulocyte‑macrophage colony‑stimulating factor; 
IL, interleukin; OD450 nm, optical density at 450 nm.
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can suppress the other type of cytokine, and the Th1/Th2 
balance is thus considered to be an important factor in various 
diseases. A disorder in this balance may lead to autoimmune 
diseases (51,52). In cancer, Th1 cytokines support the activa-
tion of cytotoxic T cells that can promote apoptosis in cancer 
cells (47), and a predominance of Th2 may cause suppression 
of cancer immunity. The present study identified significant 
upregulation of IL‑5 and IL‑13, which are categorized as Th2 
cytokines; by contrast, Th1 cytokines, such as IFN‑γ, did not 
increase upon exposure to asbestos. Such a predominance of 
Th2 cytokines upon exposure to asbestos may promote cancer 
development in MM.

The current study demonstrated that secretory factors 
derived from PBMCs exposed to asbestos cause an increase in 
the growth of mesothelial cells. In fact, several cytokines were 
associated with increased cell growth. However, the increases 
observed with recombinant cytokines were smaller than those 
caused by PBMC supernatants upon exposure to asbestos. In 
addition, the combined administration of the cytokines did not 
induce an increase in cell growth. These findings highlighted 
two issues that must be resolved. The first issue is to identify the 
optimal combination of cytokines and their adequate concen-
trations for the growth of mesothelial cells. Although a number 
of experiments were conducted to explore these aspects, these 
properties were not identified in the present study. The second 
issue is to examine other secretory factors, including cytokines 
not assayed in the present study, and non‑cytokine molecules, 
such as lipid mediators, hormones and catecholamines. Future 
study of these issues will further clarify the relationship 
between mesothelial cells and the secretory factors derived 
from immune cells exposed to asbestos, and will contribute to 
a greater understanding of the pathogenesis of mesothelioma.

In conclusion, the results of the present study indicate that 
chronic exposure of immunocompetent cells to asbestos may 
stimulate the secretion of pro‑inflammatory cytokines and Th2 
cytokines. These cytokines increase the growth activity of meso-
thelial cells. The effects of cytokines produced by immune cells 
upon exposure to asbestos may contribute to the development 
of MM in individuals exposed to asbestos, in addition to the 
direct effect of asbestos on mesothelial cells (3). Further studies 
are required to evaluate the association between immunological 
disturbances caused by asbestos and the pathogenesis of MM.
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