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1. Introduction

Gastric cancer with peritoneal dissemination remains a significant clinical

challenge due to its poor prognosis and difficulty in early detection. This study
introduces a multimodal artificial intelligence-based risk stratification
assessment (RSA) model, integrating radiomic and clinical data to predict
peritoneal lavage cytology-positive (GC-CY1) in gastric cancer patients. The
RSA model is trained and validated across retrospective, external, and
prospective cohorts. In the training cohort, the RSA model achieved an area
under the curve (AUC) of 0.866, outperforming traditional clinical and
radiomic feature models. External validation cohorts confirmed its
robustness, with AUC values of 0.883 and 0.823 for predicting peritoneal
metastasis and recurrence, respectively. In a prospective validation involving
152 patients, the model maintained superior predictive performance (AUC =
0.835). The RSA model also demonstrated significant clinical benefits by
effectively identifying high-risk patients likely to benefit from specific
treatments, such as paclitaxel-based conversion therapy. These findings
suggest that the RSA model offers a reliable, non-invasive diagnostic tool for
gastric cancer, capable of improving early detection and treatment outcomes.
Further prospective studies are warranted to explore its full clinical potential.

Gastric cancer remains a significant global
health burden, ranking as one of the
leading causes of cancer-related mortal-
ity worldwide.l!l Despite advances in treat-
ment, the prognosis for patients with ad-
vanced gastric cancer, particularly those
with peritoneal dissemination, remains
poor.[23] Peritoneal lavage cytology is an es-
tablished diagnostic method used to detect
free cancer cells within the peritoneal cav-
ity, serving as a critical indicator of occult
peritoneal metastasis.[* Patients with peri-
toneal lavage cytology-positive (GC-CY1)
status often face a high risk of recur-
rence and reduced survival rates, even in
the absence of visible peritoneal disease,
necessitating more aggressive treatment
strategies.>®] Accurate detection of CY1-
positive status is therefore crucial for opti-
mizing therapeutic decisions and improv-
ing patient outcomes.
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Currently, the standard diagnostic approaches for detecting
peritoneal involvement in gastric cancer include computed to-
mography (CT) and laparoscopic exploration.”®] CT imaging is
widely utilized for the preoperative staging of gastric cancer, pro-
viding valuable information on the presence of distant metas-
tases and the extent of the primary tumor.l”! However, CT has
limited sensitivity for detecting early or microscopic peritoneal
metastasis, often failing to identify small peritoneal nodules or
free cancer cells in the peritoneal cavity.[') As a result, many pa-
tients with peritoneal involvement remain undetected until the
disease has significantly progressed, thereby limiting treatment
options and negatively impacting prognosis. Many new diagnos-
tic methods are now emerging that may provide new tools for
identifying cancer patients. For example, recent advancements
in nanotechnology have introduced innovative diagnostic strate-
gies, such as tumor-targeting nanorobots, which can precisely
recognize tumor cells and offer potential applications in early
cancer detection.['"12] However, these approaches are still in the
early stages of exploration and require further validation before
they can be truly applied in clinical practice.

Laparoscopic exploration, another common diagnostic tool, of-
fers a more direct method of evaluating the peritoneal cavity and
detecting peritoneal metastases.['314] While it provides higher
sensitivity compared to CT, it is an invasive procedure that car-
ries risks associated with surgery, such as infection, bleeding,
and anesthesia-related complications.[">} Moreover, laparoscopy
is limited by its dependence on the operator’s expertise and
the potential for sampling error, as small or isolated peritoneal
metastases may be missed.['®] Due to these limitations, there is
an urgent need for more advanced, non-invasive diagnostic meth-
ods that can reliably detect GC-CY1 at earlier stages, enabling
timely and targeted therapeutic interventions.

The advent of artificial intelligence (AI) and machine learn-
ing (ML) has introduced new possibilities for enhancing can-
cer diagnostics through the development of virtual biopsy
technologies.!'”® These technologies utilize Al algorithms to an-
alyze multimodal data (including imaging, cytology, genomics,
and histopathology) without the need for invasive tissue sam-
pling. By integrating multiple data sources, multimodal Al-based
approaches can provide a comprehensive and precise assessment
of cancer status, potentially overcoming the limitations of tradi-
tional diagnostic methods.!'2] In particular, virtual biopsy tech-
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nology holds promise for improving the detection of GC-CY1,
offering a non-invasive, accurate, and rapid alternative to current
diagnostic standards.

This study aims to evaluate the use of multimodal Al-based
virtual biopsy technology for diagnosing GC-CY1. We propose
a novel diagnostic approach that integrates advanced Al tech-
niques with diverse data types to enhance the detection of peri-
toneal metastasis. Our research explores the potential of this
technology to improve diagnostic accuracy and sensitivity, reduce
the need for invasive procedures, and ultimately contribute to bet-
ter patient management and outcomes.

2. Methods and Materials

2.1. Study Cohort

This study analyzed seven retrospective datasets and one prospec-
tive dataset (NCT 06759467) from six medical centers in China,
and details of these are provided in Table S1 (Supporting Infor-
mation). The retrospective study of GC-CY1 data were collected
between 2013 and 2019, comprising a total of 1286 patients with
locally advanced gastric cancer (LAGC) (Figure 1). The training
set consisted of 732 patients, including 546 from the Fourth Hos-
pital of Hebei Medical University (FHHMU) and 186 from Shiji-
azhuang People’s Hospital (SJZPH). The first external validation
cohort included 315 patients from two additional medical centers
in Hebei Province [Baoding Central Hospital (BDCH) and Heng-
shui People’s Hospital (HSPH)]. To further assess the model’s
generalizability and robustness, a second external validation co-
hort of 239 patients was selected from two other medical centers
[Wuhan University People’s Hospital (WHPH) and Nanjing Jin-
ling Hospital (NJJLH)] in China. The prospective dataset, part of
the clinical trial NCT 06759467, was collected from January to
June 2024 and included 152 patients with LAGC.

To further assess the broad applicability and clinical utility of
the model, we retrospectively analyzed cohorts from two clinical
trials on conversion therapy for GC-CY1 patients registered at the
FHHMU [ChiCTR 1 800 014 817 (n = 38) and NCT 0 371 8624
(n = 36)] to evaluate the model’s performance in predicting treat-
ment efficacy. Furthermore, we enrolled 213 patients with LAGC
from FHHMU and SJZPH who underwent laparoscopic explo-
ration to determine whether the model could be extended to pre-
dict peritoneal metastasis. Simultaneously, we identified 609 gas-
tric cancer patients who underwent radical surgery at four med-
ical centers in Hebei Province, using follow-up data to establish
a postoperative peritoneal recurrence validation cohort. This co-
hort was used to assess the model’s ability to predict peritoneal
recurrence after radical surgery.

To further validate the clinical applicability of the model, we
initiated a prospective clinical study (NCT 06759467). From Jan-
uary to June 2024, we prospectively recruited 152 patients with
LAGC at the FHHMU, following strict inclusion and exclusion
criteria. To evaluate the practical application of the model, we
also recruited 12 radiologists from 4 centers nationwide: 2 ex-
perts (with >10 years of experience), 4 senior radiologists (with
>5 years of experience), and 6 novice radiologists (with 1-2 years
of experience). None of the radiologists were involved in data col-
lection or preprocessing and were blinded to patient information,
CT reports, pathological results, and clinical diagnoses. An inde-
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pendent researcher (PAD) randomly assigned the radiologists to
either a group using Al-assisted diagnosis first or a group not
using Al-assisted diagnosis, in a 1:1 ratio, based on their profes-
sional experience (PAD was blinded to the radiologists’ identi-
ties). After a 2-week washout period, the groups were switched to
further assess the clinical effectiveness and practical application
of the model.

Gastric cancer patients with baseline RNA sequencing data
were selected from the Cancer Genome Atlas (TCGA) databases
for genomic immune infiltration analysis. In a prospective
dataset (NCT 06759467), RNA sequencing was performed on 12
fresh tumor samples for exploratory purposes. Functional en-
richment analysis was conducted to investigate the biological
roles of the identified features. Additionally, using data from the
TCGA and gene expression omnibus (GEO) databases, Cell-type
Identification by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT) and microenvironment cell populations-counter
(MCPcounter) were employed to infer cell types, states, and mul-
ticellular communities (referred to as cancer ecosystems) to elu-
cidate immune infiltration.

All patients underwent a pretreatment abdominal CT scan
and were restaged according to the 8th edition of the American
Joint Committee on Cancer (AJCC) staging system. Figure S1
(Supporting Information) provides detailed information on the
dataset, as well as the inclusion and exclusion criteria and treat-
ment regimen, while Supporting Materials outlines the CT scan-
ning protocol. The study was approved by the Institutional Re-
view Board of the FHHMU. Written informed consent was ob-
tained from all prospectively enrolled participants for mRNA
transcriptomic sequencing. For the retrospective component of
this observational study, written informed consent was not re-
quired.

2.2. Image Acquisition and Segmentation

In this study, patients underwent contrast-enhanced abdomi-
nal CT scans before therapy, specifically obtaining portal ve-
nous phase images through a picture archiving and communica-
tion system. Segmentation was performed using 3D Slicer soft-
ware (version 5.6.1; https://www.slicer.org), and the slice with the
largest tumor area was selected as the region of interest. Two ex-
perienced radiation oncologists delineated the regions of inter-
est, and a senior radiation oncologist with 15 years of experience
evaluated each delineation for intra- and inter-reader agreement.

2.3. Radiomic Signature Engineering

Feature engineering was performed using 3D Slicer software
(version 5.6.1; https://www.slicer.org). To standardize images

www.advancedscience.com

from different CT instruments, the CT images were resampled
to a voxel size of 1 X 1 X 1 mm with a bin width of 25 for voxel
intensities. A total of 1130 radiomic features were extracted from
the region of interest on each patient’s CT scan (Supporting Ma-
terials for further details).

2.4. Radiomics Features Selection and Radiomics Model
Construction

Before feature selection, we normalized the features to account
for differences in scale. Due to the high redundancy in the orig-
inal feature set, a univariate analysis was initially performed to
remove irrelevant features. The least absolute shrinkage and se-
lection operator (LASSO) algorithm was then used for further
feature reduction. The selection of the regularization parameter A
was performed using tenfold cross-validation with deviance min-
imization as the performance metric. Specifically, we used the
one-standard error criterion to identify the 4 value that achieves
a balance between model complexity and performance. Finally,
multivariate logistic regression was applied to fit the optimal fea-
ture set and generate the radiomic signature.

2.5. Clinical Model Construction

To select clinical variables for inclusion in the model, we per-
formed multivariate logistic regression analysis. All collected pa-
tient characteristics, including sex, age, tumor location, maxi-
mum tumor diameter, pathological type, T stage, N stage, East-
ern Cooperative Oncology Group (ECOG) score, prognostic nu-
tritional index (PNI), neutrophil to lymphocyte ratio (NLR), sys-
temic immune-inflammation index (SII), and platelet to lymphp-
cyte ratio (PLR), were included in the initial analysis (Supporting
Materials for further details). Features with p < 0.05 in the multi-
variate logistic regression were considered statistically significant
and subsequently used for model construction.

2.6. Nomogram Construction

A nomogram was constructed based on the radiomic signature.
To compare the radiomic signature with clinical predictors, two
additional nomograms were developed: one using clinical factors
alone (clinical model) and another combining the radiomic sig-
nature with selected clinical factors (comprehensive model). The
predictive abilities of these models for GC-CY1 were evaluated
using receiver operating characteristic (ROC) curve analysis, and
the area under the curve (AUC) was used to assess the perfor-
mance of radiomic imaging biomarkers across different cohorts.

Figure 1. Study design flow chart. This study involved 2334 eligible patients with LAGC from six medical centers in China, all of whom underwent abdom-
inal CT imaging before treatment. A,B) Radiology workflow: The process included manual segmentation after image acquisition, feature extraction, and
the establishment of radiomic features, followed by the development and validation of the RSA model to predict CY1-positivity. The model’s performance
was then evaluated. C) Prediction of conversion therapy efficacy: A retrospective analysis of two cohorts of GC-CY1 patients who previously underwent
conversion therapy was conducted to explore the relationship between the RSA model and treatment efficacy. D) Prediction of peritoneal metastasis and
recurrence: An extended analysis of the study cohort was carried out to predict peritoneal metastasis in newly diagnosed gastric cancer patients and peri-
toneal recurrence after radical surgery using the RSA model. E) Prospective validation: A total of 152 patients with LAGC were prospectively enrolled to
validate the RSA model’s predictive performance for CY1-positivity (NCT 06759467). F) Bioinformatics workflow: RNA sequencing was performed on 12
tissue samples from the prospective cohort. Bioinformatics analysis was conducted to investigate the biological characteristics and immune infiltration
features of GC-CY1 patients, providing insights into intratumor heterogeneity.
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To stratify patients into high-risk and low-risk groups, we per-
formed ROC curve analysis. The maximum Youden index was
used as the cutoff value to define the optimal threshold for risk
group classification. The Youden index is calculated as sensitiv-
ity + specificity — 1, providing the point on the ROC curve that
achieves the best trade-off between sensitivity and specificity.

2.7. Statistical Analysis

All statistical analyses were performed using SPSS version 28.0
(IBM) and R version 4.3.3 (http://www.r-project.org). Missing
data were addressed using multiple imputation by chained equa-
tions (MICE) through the mice package in R. Continuous vari-
ables were analyzed using an unpaired two-tailed t-test and the
Mann-Whitney U test, while categorical variables were evaluated
using the X’test and Fisher’s exact test. Univariate and multivari-
ate Cox regression analyses were conducted to assess the prog-
nostic ability of the variables for survival. ROC curves were used
to evaluate the predictive performance of the models, and the
AUC values were calculated with 95% confidence intervals (CI)
using DeLong’s method. Missing data were handled using Cen-
tral Tendency Imputation techniques to ensure the robustness
of the analysis and reduce potential bias. Detailed algorithms for
the statistical methods are provided in Supporting Materials. A
two-sided P-value of less than 0.05 was considered statistically
significant.

2.8. Ethics Approval and Consent to Participate

The study protocol was approved by the Ethics Committee of
the FHHMU (approval number: 2024KY199). For the prospective
component of the study, written informed consent was obtained
from all participants prior to their inclusion. For the retrospective
component, the requirement for written informed consent was
waived by the Ethics Committee due to the use of de-identified pa-
tient data, minimal risk to participants, and the retrospective na-
ture of the analysis. The study was conducted in accordance with
the ethical principles of the Declaration of Helsinki, and all au-
thors adhered to applicable ethical standards to ensure research
integrity, including the avoidance of duplication, fraud, and pla-
giarism.

2.9. Ethical Statement

All authors certify that they comply with the ethical guidelines
for authorship.

3. Results

3.1. Patient Characteristics

A total of 1286 eligible patients were included in this study to de-
velop and validate the GC-CY1 prediction model. The cohort con-
sisted 0f 984 (76.5%) males and 302 (23.5%) females, with a mean
age of 58 (IQR: 51.0-65.0) years. All patients underwent laparo-
scopic exploration and peritoneal lavage fluid testing, with CY1-
positivity observed in 121 (16.5%), 52 (16.5%), and 35 (14.6%) pa-
tients across the three cohorts. The clinical characteristics of the

Adv. Sci. 2025, 12, 2411490 2411490 (5 of 16)
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1286 patients in the training set and the two external validation
sets are summarized in Table 1. The distribution of characteris-
tics among the three data sets was similar (all p > 0.05).

3.2. Prediction Model Construction and Internal Validation

During the feature selection process, 936 radiomic features
with intra- and inter-observer intraclass correlation coefficients
greater than 0.75 were included. Univariate analysis identified
732 statistically significant radiomic features, from which 10
were selected using the LASSO method (Figure S2, Support-
ing Information). These 10 features were subsequently used in
a multivariate logistic regression analysis as independent prog-
nostic predictors of GC-CY1 (Table S2, Supporting Information).
A machine learning nomogram was then developed using these
10 features, weighted by their respective regression coefficients
(Figure S3, Supporting Information).

Further univariate and multivariate analyses identified patho-
logical type, infiltration depth (T stage), lymph node metastasis
(N stage), and the peripheral blood SII as independent factors
influencing GC-CY1 (Table S3, Supporting Information). A com-
prehensive nomogram was constructed to assess whether com-
bining radiomic features with clinical variables provided com-
plementary predictive value over individual features (Figure 2A).
The combination of radiomic features and clinical variables re-
sulted in the development of the Risk Stratification Assess-
ment (RSA) model, which demonstrated strong predictive abil-
ity for GC-CY1, with an AUC of 0.866 (95% CI: 0.829-0.920;
Figure 2B,D,E). A detailed comparison of different models is pro-
vided in Table S4 (Supporting Information). The DeLong test in-
dicated that the RSA model’s AUC was significantly higher than
that of the clinical model in the training set (0.866 versus 0.769;
p = 0.001). The model’s calibration curve further highlighted its
predictive accuracy (Figure 2C). Based on the Youden index, pa-
tients were classified into low-risk and high-risk groups. The two-
layer concentric circle plot revealed that the RSA model identified
more low-risk GC-CY1 patients than the clinical model (74.2%
versus 55.2%) (Figure 2F). Additionally, the clinical impact curve
confirmed that the RSA model had the greatest clinical benefit
(Figure S4A-C, Supporting Information).

Follow-up data showed that the 5-year overall survival (OS) and
disease-free survival (DFS) rates were significantly lower in high-
risk patients compared to low-risk patients (33.3% versus 55.6%
and 29.1% versus 51.9%, respectively; p < 0.001) (Figure 2G). Cox
proportional hazard regression analysis further confirmed the
above results. Compared with high-risk patients, the hazard ratio
(HR) of OS in low-risk patients was 0.488 (95% CI: 0.394-0.606, p
< 0.001), and the HR of DFS was 0.472 (95% CI: 0.383-0.581, p <
0.001) (Table S12, Supporting Information). The results showed
that the risk of recurrence and death in the high-risk group was
significantly higher than that in the low-risk group. The AUC
box plot, generated after tenfold cross-validation demonstrated
that the RSA model had superior discrimination ability, sen-
sitivity, and specificity compared to the clinical and radiomics
model (Figure 2H). Stratified analysis based on different periph-
eral blood tumor markers, HER2 and PDL1 expression in tissue
biopsies also showed that the RSA model outperformed both the
clinical and radiomics model in clinical prediction (Figure 2I-K).

© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Table 1. Patient characteristics in the training and validation cohorts.
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Characteristic Overall Training cohort Validation cohort | Validation cohort II
n=1286 n=1732 n=315 n=239
Gender
Male 984 (76.5%) 559 (76.4%) 241 (76.5%) 184 (77.0%)
Female 302 (23.5%) 173 (23.6%) 74 (23.5%) 55 (23.0%)
Age (IQR, years) 58.0 (51.0-65.0) 57.0 (50.0-64.0) 58.0 (50.0-64.0) 61.0 (53.0-68.0)
<65 872 (67.8%) 480 (65.6%) 230 (73.0%) 162 (67.8%)
>65 407 (32.2%) 252 (34.4%) 85 (27.0%) 77 (32.2%)
ECOG PS
0-1 1128 (87.7%) 655 (89.5%) 269 (85.4%) 204 (85.4%)
2 158 (12.3%) 77 (10.5%) 46 (14.6%) 35 (14.6%)
T stage
T2/T3 365 (28.4%) 182 (24.9%) 107 (34.0%) 76 (31.8%)
T4 921 (71.6%) 550 (75.1%) 208 (66.0%) 163 (68.2%)
N stage
NO 372 (28.9%) 193 (26.4%) 100 (31.7%) 79 (33.1%)
N+ 914 (71.1%) 539 (73.6%) 215 (68.3%) 160 (66.9%)
Primary site
Up1/3 451 (35.0%) 260 (35.5%) 100 (31.7%) 91 (38.1%)
Middle 1/3 213 (16.6%) 120 (16.4%) 55 (17.5%) 38 (15.9%)
Lower 1/3 622 (48.4%) 352 (48.1%) 160 (50.8%) 110 (46.0%)

Borrmann type

I 411 (32.0%)
/v 875 (68.0%)
Tumor size (IQR, cm) 4.6 (3.8-6.5)
<5 618 (48.1%)
>5 668 (51.9%)
Histology

None/Low 992 (77.1%)
High/Median 294 (22.9%)
si®

Low 561 (43.6%)
High 725 (56.4%)
PNI*

Low 222 (17.3%)
High 1064 (82.7%)
NLR"

Low 817 (63.5%)
High 469 (36.5%)
PLR"

Low 640 (49.8%)
High 646 (50.2%)

257 (35.1%
475 (64.9%
438 (4.1-6.8)
356 (48.6%
376 (51.4%

562 (76.8%)
170 (23.2%)

346 (47.3%)
386 (52.7%)

109 (14.9%)
623 (85.1%)

464 (63.4%)
268 (36.6%)

370 (50.5%)
362 (49.5%)

89 (28.3%)
226 (71.7%)
4.4 (3.3-5.8)
146 (46.3%
169 (53.7%

) 65 (27.2%)
) 174 (72.8%)
5.1 (4.1-7.1)
116 (48.5%)

)

) )
) ) 123 (51.5%
259 (82.2%)
56 (17.8%)

171 (71.5%)
68 (28.5%)

113 (35.9%)
202 (64.1%)

102 (42.7%)
137 (57.3%)

83 (26.3%)
232 (76.7%)

30 (12.6%)
209 (87.4%)

196 (62.29%)
119 (37.8%)

157 (65.7%)
82 (34.3%)

146 (46.3%)
169 (53.7%)

124 (51.9%)
115 (48.1%)

ECOG PS = Eastern cooperative oncology group performance status; SIl = Systemic immune-inflammation index; PNI = Prognostic nutritional index; NLR = Neutrophil to
lymphocyte ratio; PLR = Platelet to lymphpcyte ratio. * Using the median expression as the threshold, the cells were divided into high group and low group.

Additionally, the study systematically analyzed treatment strate-
gies for all GC-CY1 patients in the training set. Notably, the RSA
model’s risk stratification was more effective in identifying pa-
tients with cachexia (Figure 2L) and those likely to benefit from
paclitaxel-based conversion therapy (Figure 2M,N) than the clin-
ical and radiomics model. A detailed paclitaxel-based conversion
therapy protocol is provided in Supporting Materials.
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3.3. Multicenter External Validation of the Prediction Model

To further validate the model’s generalizability, we employed a
two-step external validation approach. First, 315 gastric cancer pa-
tients from two medical centers in Hebei Province (BDCH and
HSPH) were selected as the first external validation cohort (vali-
dation set I). To account for regional differences, we also included

© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 2. Training and Internal Validation of the RSA Model for Predicting GC-CY1. A) Development of a nomogram incorporating radiomic features and
clinical characteristics to predict GC-CY1. B) ROC curves of various prediction models in the training set. C) Calibration curves of the RSA model in the
training set. D) Radar plots illustrating performance indicators for different prediction models in the training set. E) Confusion matrices for the different
prediction models in the training set. F) Double-layer concentric circle plots demonstrating the clinical benefits of various prediction models in the
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239 patients from two other medical centers (WHPH and NJJLH)
in China as a second external validation cohort (validation set II).
The same statistical parameters from the training cohort were
applied to both validation cohorts, ensuring consistency across
datasets. In validation set I, the RSA model demonstrated supe-
rior predictive ability compared to both the clinical feature model
and the radiomic feature model (AUC = 0.883, 95% CI: 0.824—
0.943; Figure 3A, E upper, F; Table S4, Supporting Information).
Calibration curve analysis further confirmed the enhanced pre-
dictive accuracy (Figure 3C). Similar results were observed in the
second external validation set (Figure 3B, D, E lower, G; Table S4,
Supporting Information).

As shown in Figure 3H, a double-layer concentric circle plot re-
vealed that in both validation sets, the RSA model identified more
GC-CY1 patients in the high-risk group compared to the clinical
feature model (validation set I: 14.3% versus 11.4%; validation set
II: 12.6% versus 11.3%). In the low-risk group, the RSA model
also more accurately identified non-GC-CY1 patients (validation
set I: 2.2% versus 5.1%; validation set II: 2.1% versus 3.3%). Ad-
ditionally, the clinical impact curve (CIC) showed that the RSA
model provided the best performance across both external valida-
tion sets (Figure S4D-I, Supporting Information). In both valida-
tion cohorts, the RSA model effectively stratified gastir cancer pa-
tients, with low-risk patients showing significantly higher 5-year
OS (51.3% versus 31.7% in set I; 56.8% versus 29.9% in set II)
and DFS (46.6% versus 21.4% in set I; 51.2% versus 18.2% in set
II) compared to high-risk patients (all p < 0.001) (Figure 3L,J,L,M;
Table S12, Supporting Information).

We also assessed the effectiveness of conversion therapy and
the occurrence of cachexia in GC-CY1 patients across the two ex-
ternal validation sets. Consistent with the training set results, the
RSA model was more effective than the clinical and radiomic fea-
ture models in identifying patients with cachexia (Figure 3K,N)
and those likely to benefit from paclitaxel-based conversion ther-
apy (Figure 30-R). To further verify the RSA model’s effective-
ness in predicting conversion therapy outcomes in GC-CY1 pa-
tients, we retrospectively analyzed data from two prospective clin-
ical studies conducted at the FHHMU [ChiCTR 1 800 014 817 (n
= 38) and NCT 0 371 8624 (n = 36)]. The clinical characteristics
of these patients are detailed in Table S5 (Supporting Informa-
tion). Based on the RSA model’s high- and low-risk stratification,
both studies revealed that the objective response rate (ORR) and
disease control rate (DCR) were significantly worse for high-risk
patients compared to low-risk patients after receiving paclitaxel-
based conversion therapy (ORR: ChiCTR 1 800 014 817: 23.1%
versus 68.0%, p = 0.005; NCT 0 371 8624: 25.3% versus 91.3%,
p = 0.016; DCR: ChiCTR 1 800 014 817: 76.9% versus 100.0%,
p = 0.012; NCT 0 371 8624: 84.6% versus 100.0%, p = 0.124;
Figure 3S,T).

www.advancedscience.com

3.4. Extended Validation of the Prediction Model for Peritoneal
Metastasis and Recurrence

Based on the “seed and soil theory,” if free cancer cells in the
abdominal cavity are not promptly treated, they may lead to
visible peritoneal metastasis and subsequently worsen the pa-
tient’s prognosis. To evaluate whether the RSA model can be ex-
tended to predict peritoneal metastasis in newly diagnosed pa-
tients and peritoneal recurrence after radical surgery, we retro-
spectively selected 213 patients from the FHHMU and SJZPH
as the peritoneal metastasis validation cohort. The clinical char-
acteristics of these patients are presented in Table S6 (Support-
ing Information). All patients underwent laparoscopic explo-
ration and peritoneal biopsy to diagnose peritoneal metastasis
(Figure 4A). Additionally, we identified 609 gastric cancer pa-
tients who underwent radical surgery at four medical centers
in Hebei Province (FHHMU, SJZPH, BDCH and HSPH) and
were subsequently found to have peritoneal recurrence through
postoperative follow-up. These patients formed the postoperative
peritoneal recurrence validation cohort, with detailed informa-
tion provided in Table S7 (Supporting Information). For these
patients, whole-body PET-CT scans served as the gold standard
for diagnosing peritoneal recurrence (Figure 4B).

The RSA model demonstrated a strong ability to predict peri-
toneal metastasis, with an AUC of 0.831 (95% CI: 0.767-0.895),
outperforming the clinical and radiomics model (Figure 4C,E,G;
Table S8, Supporting Information). Calibration curve analysis
further confirmed its superior predictive accuracy (Figure 4I).
The double-layer concentric circle plot showed that the RSA
model identified more patients with peritoneal metastasis in the
high-risk group compared to the clinical feature model (17.8%
versus 12.7%) and more accurately identified non-metastasis
cases in the low-risk group (1.9% versus 7.0%, Figure 4F up-
per). Clinical impact curve analysis further supported the RSA
model’s greater clinical benefit compared to the other models
(Figure S5A-C, Supporting Information).

Similar results were observed in the external validation set
for predicting peritoneal recurrence after radical surgery, where
the RSA model also showed strong predictive ability (AUC =
0.823, 95% CI: 0.787-0.859; Figure 4D,E,H,]J; Table S8, Support-
ing Information). Additionally, the RSA model enabled more ac-
curate stratification of postoperative peritoneal recurrence risk
(Figure 4F lower; Figure S5D-F, Supporting Information).

Survival follow-up of all LAGC patients in the two valida-
tion sets revealed that low-risk patients, as stratified by the RSA
model, had significantly better 5-year OS and DFS rates com-
pared to high-risk patients. Low-risk patients showed signifi-
cantly better outcomes in both validation cohorts, with higher 5-
year OS and DFS rates in the peritoneal metastasis cohort (55.9%

training set. G) Log-rank test survival curves for patients in the training set, stratified into low- and high-risk groups based on the Youden index threshold
derived from the nomogram. H) Box plots of AUC, sensitivity, specificity, and accuracy analyses for different prediction models after tenfold cross-
validation. I) Comparison of AUC values among different prediction models in a stratified analysis based on peripheral blood tumor markers and HER2
and PDL1 expression in biopsy tissues. ]) Specificity comparison among different prediction models in a stratified analysis based on the expression
status of HER2 and PDL1 in peripheral blood tumor markers and biopsy tissues. K) Sensitivity comparison among different prediction models in a
stratified analysis based on the expression status of HER2 and PDL1 in peripheral blood tumor markers and biopsy tissues. L) Relationship between
high- and low-risk groupings of different prediction models and cachexia in GC-CY1 patients. M) Relationship between high- and low-risk groupings
of different prediction models and conversion therapy efficacy in GC-CY1 patients. N) Relationship between high- and low-risk groupings of different
prediction models and postoperative pathological regression grade after conversion therapy in GC-CY1 patients.
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Figure 3. External validation of the RSA model for predicting GC-CY1. A,B) ROC curves for different prediction models in two external validation sets.
C,D) Calibration curves of the RSA model in two external validation sets. E) Confusion matrices for different prediction models in the two external
validation sets. F,G) Radar plots displaying performance indicators for different prediction models in the two external validation sets. H) Double-layer
concentric circle plots illustrating the clinical advantages of various prediction models in the two external validation sets. I,]) Log-rank test survival curves
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versus 28.4% and 53.2% versus 18.6%, respectively) and the post-
operative peritoneal recurrence cohort (53.1% versus 42.6% and
48.7% versus 39.3%, respectively) compared to high-risk patients
(all p < 0.001) (Figure 4K-N, Table S12, Supporting Information).

3.5. Prospective Validation of the Prediction Model

To further validate the clinical applicability and practical value of
the RSA model, we registered a prospective clinical trial (NCT
06759467) for re-evaluation. This trial enrolled 152 gastric can-
cer patients who met the inclusion criteria at the FHHMU from
January to June 2024 (Figure 5A). Detailed clinical characteristics
of these patients are presented in Table S9 (Supporting Informa-
tion). In this prospective study, the RSA model demonstrated su-
perior performance in predicting GC-CY1 compared to the clini-
cal feature model (AUC = 0.771, 95% CI: 0.658-0.885) and the ra-
diomics feature model (AUC = 0.781, 95% CI: 0.678-0.884), with
an AUC of 0.835 (95% CI: 0.726-0.943) (Figure 5B—F, Table S10,
Supporting Information). The clinical impact curve further con-
firmed the RSA model’s superior predictive performance for GC-
CY1 (Figure 5G-I).

Additionally, we conducted a crossover trial based on this
prospective study to evaluate the performance and auxiliary ca-
pabilities of the RSA model (Figure 5]). When diagnosing based
on clinical information and CT images, the RSA model was more
sensitive than senior radiologists [0.810 (95% CI: 0.771-0.848)
versus 0.619 (95% CI: 0.581-0.657), p < 0.001] and more accu-
rate [0.809 (95% CI: 0.796-0.823) versus 0.722 (95% CI: 0.686—
0.758), p = 0.042]. The RSA model also outperformed novice
radiologists in sensitivity [0.810 (95% CI: 0.775-0.843) versus
0.546 (95% CI: 0.468-0.623), p < 0.001] and accuracy [0.784 (95%
CI: 0.763-0.805) versus 0.696 (95% CI: 0.586-0.806), p = 0.011]
(Figure 5K-M; Table S11, Supporting Information).

3.6. Biological Characteristics and Immune Infiltration

To explore the immunological characterization of this feature,
we performed Gene set variation analysis (GSVA) functional en-
richment analysis using RNA sequencing data of gastric cancer
samples (6 samples were high-risk and 6 samples were low-risk),
and found that immune-related pathways in the low-risk feature
included overall upregulation of interferon (IFN) and upregula-
tion of the TNFa pathway (Figure 6C). In addition, in further
Gene set enrichment analysis (GSEA) enrichment analysis, the
results also showed that the IFNy and TNFa pathways were up-
regulated in the low-risk feature (Figure 6D,E). Next, we focused

www.advancedscience.com

on the characterization of immune infiltration in the local im-
mune signaling environment. We calculated the immune infil-
tration score of each sample through ESTIMATE analysis, and
the results showed that the immune and ESTIMATE scores of pa-
tients in the low-risk group were significantly higher than those
in the high-risk group (Figure 6F-I). Since cell types vary with
local signaling networks and drive cell activity within tumors, we
studied whether cell states and multicellular communities dif-
fer between different features. We calculated the relative abun-
dance of each immune cell in tumor tissue using two algorithms,
CIRBERSORT and microenvironment cell populations-counter
(MCPcounter). In terms of cell status, both methods showed that
the abundance of NK cells in low-risk features was statistically
higher (Figure 6],N; Figure S6A,D, Supporting Information). In
addition, CIRBERSORT showed that the abundance of dendritic
cells was increased in high-risk features (Figure S6B, Supporting
Information), while microenvironment cell populations-counter
(MCPcounter) showed that T cells showed that the abundance
of dendritic cells was increased in low-risk features (Figure S6C,
Supporting Information). Further immune checkpoint analysis
results showed (Figure 6K) that the immune promotion-related
targets CD160 and CD226 were more highly expressed in low-
risk features (Figure 6L,M), while the immune suppression tar-
gets CEACAM1 and PVR were significantly increased in high-
risk features (Figure SGE,F, Supporting Information). These re-
sults indicate the potential role of immune checkpoint therapy
for low-risk populations.

In order to further explore the biological function that affects
this feature, we combined sequencing, The Cancer Genome Atlas
(TCGA) and GEO database to screen the genes related to the fea-
ture (Figure 6A), and displayed the gene expression by drawing a
heat map (Figure 6B). Next, we revealed the potential role of rele-
vant genes in the immune microenvironment through single-cell
transcriptome. We obtained 11 cell subpopulations (Figure 60,P)
through filtering, dimensionality reduction, clustering, and cell
grouping of single cell data, and showed the expression of six
genes in the immune microenvironment. The results showed
that the six genes were mostly expressed in epithelial cells and
metastasis groups (Figure S7, Supporting Information). By com-
paring the degree of differential changes of six genes in high-
and low-risk traits, NOX1 had the most significant differential
changes, so we selected NOX1 for in vitro experiments. EdU
(Figure 6Q; Figure S8A, Supporting Information), scratch heal-
ing (Figure 6R; Figure S8B, Supporting Information) and tran-
swell (Figure 6S; Figure S8C,D, Supporting Information) results
demonstrated that knockdown of NOX1 functionally promoted
AGS cell proliferation, migration and invasion abilities.

for patients in external validation set |, stratified into low- and high-risk groups based on the Youden index threshold derived from the nomogram. K)
Comparison of the relationship between high- and low-risk groups from different prediction models in external validation set | and cachexia in GC-CY1
patients. L,M) Log-rank test survival curves for patients in external validation set |, stratified into low- and high-risk groups according to the Youden index
threshold derived from the nomogram. N) Comparison of the relationship between high- and low-risk groups from different prediction models in external
validation set Il and cachexia in GC-CY1 patients. O) Comparison of the relationship between high- and low-risk groups from different prediction models
in external validation set | and conversion therapy efficacy in GC-CY1 patients. P) Comparison of the relationship between high- and low-risk groups
from different prediction models in external validation set | and postoperative pathological regression grade after conversion therapy in GC-CY 1 patients.
Q) Analysis of the relationship between high- and low-risk groups from different prediction models in external validation set Il and conversion therapy
efficacy in GC-CY1 patients. R) Analysis of the relationship between high- and low-risk groups from different prediction models in external validation set
Il and postoperative pathological regression grade after conversion therapy in GC-CY1 patients. S,T) Retrospective analysis of two prospective cohorts
of GC-CY1 patients undergoing conversion therapy (ChiCTR1800014817, NCT03718624) to investigate the relationship between the RSA model and
treatment efficacy.
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Figure 4. Extended validation of the RSA model for predicting peritoneal metastasis and recurrence. A) Standard peritoneal biopsy procedure and HE
staining results used for diagnosing peritoneal metastasis in newly diagnosed gastric cancer patients undergoing laparoscopic exploration. B) Typical
PET-CT images showing peritoneal recurrence during follow-up of patients after radical surgery for gastric cancer. C) ROC curves for different prediction
models in the peritoneal metastasis validation set. D) ROC curves for different prediction models in the peritoneal recurrence validation set. E) Confusion
matrices for various prediction models in both the peritoneal metastasis and peritoneal recurrence validation sets. F) Double-layer concentric circle plots
illustrating the clinical advantages of different prediction models in the peritoneal metastasis and recurrence validation sets. G,H) Radar plots showing
the performance indicators of different prediction models in the peritoneal metastasis and recurrence validation sets. I) Calibration curve of the RSA
model in the peritoneal metastasis validation set. |) Calibration curve of the RSA model in the peritoneal recurrence validation set. K,L) Log-rank test
survival curves of patients with peritoneal metastasis in the validation set, categorized into low-risk and high-risk groups based on the Youden index
thresholds derived from the nomogram. M,N) Log-rank test survival curves of patients with peritoneal recurrence in the validation set, categorized into
low-risk and high-risk groups according to the Youden index thresholds derived from the nomogram.
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Figure 5. Prospective Validation of the RSA Model for Predicting GC-CY1. A) Flowchart outlining the inclusion and exclusion criteria for patients in
the prospective study. B) ROC curves for different prediction models in the prospective validation set. C) Calibration curves for the RSA model in the
prospective validation set. D) Radar charts displaying the performance indicators of various prediction models in the prospective validation set. E)
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4, Discussion

This study presents a novel approach for diagnosing peritoneal
lavage cytology-positive gastric cancer (GC-CY1) using a multi-
modal artificial intelligence (AlI)-based virtual biopsy model, the
Risk Stratification Assessment (RSA) model. The RSA model
demonstrated superior performance compared to traditional
clinical and radiomics model, achieving high predictive accuracy
across multiple cohorts. Specifically, the model achieved an AUC
0f 0.866 in the training cohort and 0.835 in the prospective valida-
tion, with similar results observed in the external validation sets.
Additionally, the RSA model showed significant clinical benefits
in identifying patients at high risk of recurrence and those who
may benefit from specific treatments, such as paclitaxel-based
conversion therapy. These findings suggest that the RSA model
can provide a reliable non-invasive alternative to current diagnos-
tic methods, potentially leading to earlier detection and improved
management of GC-CY1.

Comparatively, previous studies have explored various diag-
nostic modalities for peritoneal involvement in gastric cancer, in-
cluding CT imaging, laparoscopic exploration, and the use of ra-
diomic biomarkers.[-24 Traditional diagnostic tools, such as CT
imaging, are commonly used for preoperative staging but have
limited sensitivity for detecting early or microscopic peritoneal
metastasis. Studies by Wang et al. and others have demonstrated
that CT has a high false-negative rate for small peritoneal nodules
or free cancer cells in the peritoneal cavity, often missing early
signs of metastasis.[®! In contrast, laparoscopic exploration of-
fers higher sensitivity but remains an invasive procedure with in-
herentrisks, including infection and sampling error, as described
by Feussner et al.?*] Radiomic biomarkers, such as those evalu-
ated by Jiang et al.,[?’] have shown promise in non-invasive detec-
tion, but their application has been limited by variability in imag-
ing protocols and the lack of standardized methodologies. In this
context, the RSA model’s ability to integrate multimodal data and
provide a comprehensive assessment of cancer status represents
a significant advancement over existing diagnostic approaches.

Furthermore, the RSA model compares favorably with other
Al-based diagnostic tools in oncology. For example, Li et al.[?®l
developed an AI model for predicting lymph node metastasis
in gastric cancer, achieving an AUC of 0.84, which is lower
than the RSA model’s performance for GC-CY1. Similarly, Chen
et al.[®] reported an Al model for diagnosing peritoneal metasta-
sis in gastric cancer with an AUC of 0.829, again demonstrating
that the RSA model achieves higher predictive accuracy. These
comparisons underscore the RSA model’s robustness in detect-
ing gastric cancer with peritoneal involvement. Additionally, the

www.advancedscience.com

RSA model’s design, which incorporates both radiomic and clin-
ical data, contrasts with previous studies that primarily focused
on single-modality data. This multimodal approach likely con-
tributes to the model’s enhanced diagnostic performance by pro-
viding a more comprehensive understanding of the tumor’s bio-
logical and clinical context.

The superior performance of the RSA model may be explained
by its integration of radiomic features and clinical variables, cap-
turing the molecular characteristics and microenvironmental fac-
tors that underlie GC-CY1. The molecular analysis in this study
revealed that immune-related pathways, including interferon
(IFN) and TNFa signaling, were upregulated in low-risk patients,
suggesting a more robust anti-tumor immune response. Con-
versely, high-risk patients exhibited increased expression of im-
mune suppression targets, such as CEACAM1 and PVR, which
may facilitate immune evasion. These findings align with previ-
ous reports on the role of immune checkpoint pathways in gastric
cancer progression and support the potential of the RSA model
to identify patients who may benefit from immunotherapy. More-
over, the presence of higher NK cell abundance and dendritic cell
activity in low-risk patients suggests an active engagement of the
innate immune system, which could be leveraged for therapeutic
interventions.3*-32] The identification of NOX1 as a differentially
expressed gene further highlights its role in gastric cancer biol-
ogy, with functional assays indicating that NOX1 promotes can-
cer cell proliferation, migration, and invasion, making it a poten-
tial target for future therapies.[3*34

Despite these promising results, the study has several limita-
tions that should be acknowledged. First, the RSA model’s per-
formance is partially dependent on the manual selection of tu-
mor regions during image preprocessing. The accuracy and sta-
bility of this process can be influenced by the radiologists’ ex-
pertise, leading to potential inter-observer variability and bias.
Standardizing tumor region delineation protocols or integrating
automated segmentation tools in future work will be essential
to minimize this variability and ensure consistent results. Sec-
ond, while the RSA model was validated across multiple external
cohorts, its performance may still vary in different populations
or clinical settings. This variation can be attributed to hetero-
geneity in imaging protocols, treatment strategies, and underly-
ing oncological characteristics of patient populations from differ-
ent geographic regions. For instance, tumor biology, genetic pre-
dispositions, and environmental factors may differ significantly,
potentially impacting model predictions. Further validation in
larger, more diverse cohorts, including international datasets, is
necessary to confirm the generalizability and robustness of the
model across different clinical and demographic contexts. More-

Figure 6. Biological characteristics and immune infiltration in high-risk and low-risk groups. A) Using appropriate transcriptome data from the TCGA
database, GEO database, and Venn diagrams of mRNA sequencing of 6 high-risk patients and 6 low-risk patients, 6 candidate mRNAs were found. B)
Heatmap shows the expression of 6 candidate mRNAs in high-risk and low-risk patients. C) Gene set variation analysis (GSVA) enrichment analysis
shows pathways enriched in high-risk and low-risk groups. D,E) Gene set enrichment analysis (GSEA) signature pathways of IFNy (D) and TNFa (E)
were found to be statistically enriched in low-risk features (p < 0.05). F-I) Violin plots show the differences in tumor purity (F), immune score (G),
ESTIMATE score (H), and stromal score (I) between high-risk and low-risk groups. J) By using the cell-type Identification by Estimating Relative Subsets
of RNA Transcripts (CIBERSORT) algorithm, the scores of combined cell types show the proportional diversity between features. K-M) Heatmaps (K)
and violin plots (L,M) show the expression and differences of immune checkpoint genes in high-risk and low-risk patients. N) The relative abundance
of each immune cell in tumor tissue was calculated by microenvironment cell populations-counter (MCPcounter) algorithm and displayed as a heat
map. O,P) t-SNE diagram of cell type (O) and metastasis type (P) from single cell data of gastric cancer patients. Q) EdU experiment to detect DNA
replication activity of AGS cells after silencing NOX1. R) Scratch healing assay to detect migration ability of AGS cells after silencing NOX1. S) Transwell
assay to detect migration and invasion ability of AGS cells after silencing NOX1.
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over, the reliance on retrospective data for model training and val-
idation may introduce selection and information biases, as data
collection is often incomplete or inconsistent. Prospective, multi-
center studies with standardized data acquisition protocols are
needed to address these limitations and validate the model in
real-world clinical practice. Lastly, while the RSA model incorpo-
rates a broad range of clinical and radiomic features, it currently
does not include genetic or epigenetic data, which may provide
additional insights into tumor behavior and prognosis. Future
research integrating molecular biomarkers with radiomic data
could further improve the model’s predictive power and clinical
utility.

5. Conclusion

In conclusion, this study demonstrates that the multimodal Al-
based RSA model is a powerful tool for diagnosing GC-CY1, of-
fering significant advantages over traditional diagnostic meth-
ods. By combining radiomic and clinical data, the model achieves
superior predictive performance, providing a non-invasive, accu-
rate, and rapid alternative for detecting peritoneal involvement
in gastric cancer. The findings suggest that the RSA model can
enhance clinical decision-making, allowing for earlier and more
targeted interventions, thereby improving patient outcomes. Fu-
ture studies should focus on validating the model in diverse pop-
ulations, integrating additional molecular data, and exploring its
potential applications in other cancer types.
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