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Objective: To improve the ability of psychiatry researchers to build, deploy, maintain, reproduce, and
share their own psychophysiological tasks. Psychophysiological tasks are a useful tool for studying
human behavior driven by mental processes such as cognitive control, reward evaluation, and
learning. Neural mechanisms during behavioral tasks are often studied via simultaneous electro-
physiological recordings. Popular online platforms such as Amazon Mechanical Turk (MTurk) and
Prolific enable deployment of tasks to numerous participants simultaneously. However, there is
currently no task-creation framework available for flexibly deploying tasks both online and during
simultaneous electrophysiology.
Methods: We developed a task creation template, termed Honeycomb, that standardizes best
practices for building jsPsych-based tasks. Honeycomb offers continuous deployment configurations
for seamless transition between use in research settings and at home. Further, we have curated a
public library, termed BeeHive, of ready-to-use tasks.
Results: We demonstrate the benefits of using Honeycomb tasks with a participant in an ongoing
study of deep brain stimulation for obsessive compulsive disorder, who completed repeated tasks both
in the clinic and at home.
Conclusion: Honeycomb enables researchers to deploy tasks online, in clinic, and at home in more
ecologically valid environments and during concurrent electrophysiology.
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Introduction

Psychophysiological tasks are a useful tool for studying
mental functions, such as cognitive control, learning, and
reward evaluation.1-3 Deficits in executive functioning are
a core feature of psychiatric disorders,4 and analysis of
behavioral task performance has revealed significant
differences between healthy and psychiatric cohorts.5-8

Assessing function across specific behavioral constructs,
such as those defined by the Research Domain Criteria
(RDoC), may provide insight into functional deficits that
gold standard clinical assessments may not capture.9,10

Online tools enable assessment of psychiatric symptoms
alongside cognitive performance in large numbers of
participants and allow for better delineation of functional
deficits that cut across multiple clinical diagnoses. For
example, groundbreaking work by Gillan et al.8 to elucidate

symptom dimensions associated with deficits in goal-
directed control was made possible by large-scale online
studies. Further, analysis of task behavior in large popu-
lations and at repeated intervals may help researchers
better understand heterogeneity of phenotypes within
a single diagnosis and variability in function over time
within individuals.

Conducting electrophysiological recordings during psy-
chophysiological tasks may help elucidate the neural
mechanisms of functional impairments across psychiatric
disorders.11-15 Electrophysiological recordings, such as
scalp electroencephalography (EEG) or intracranial elec-
troencephalography (iEEG), are most commonly con-
ducted in formal research settings such as a laboratory
or clinic. However, recent advances in implantable
neuromodulation devices present new opportunities for
administering tasks during chronic intracranial wireless
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recordings in the home environment.16,17 As noted earlier,
these new technologies present particularly exciting
opportunities for neural biomarker exploration in severe
cases of psychiatric disorders, such as obsessive compul-
sive disorder (OCD), where the neural underpinnings of
symptoms remain unknown.18,19 Electrophysiological stu-
dies require extensive time commitment from researchers
and participants alike, and are therefore typically limited to
a small number of research participants. Conversely, online
task deployment enables the study of population behavior
with limited burden on researchers and participants, but
this advantage can come at the expense of data quality
and participant engagement.

Amazon Mechanical Turk (MTurk) (https://www.mturk.
com/) is an internet crowd-sourcing labor marketplace
that allows individuals, research groups, and businesses
to quickly outsource their jobs to a virtual workforce.
Originally intended for human intelligence validation tasks
(e.g., labeling images for computer vision algorithm
development) and survey participation, MTurk has been
heavily used in the past decade for behavioral and
psychological studies,20 revolutionizing psychological
science research. Given the platform’s initial intention,
an open-source software called psiTurk was developed
to help researchers interface with MTurk and run online
studies without the need to create their own server
software.21 Prolific (Prolific, Oxford, UK), an alternative
to MTurk, has gained recent popularity in behavioral
research due to its flexible prescreening features. While
Prolific does not provide hosting and database manage-
ment, there are cloud solutions like Firebase (https://
firebase.google.com/) and Supabase (https://github.com/
supabase/supabase) that can be leveraged as an easy-
to-set-up and cost-effective solution.

Deploying the same behavioral task online and in a
research setting during concurrent electrophysiology is
useful for comparing research participants’ behavior to
that of a broader population. However, each deployment
scenario has unique experimental needs. Online tasks
require browser compatibility, whereas conducting con-
current electrophysiological recordings requires time
synchronization of task behavior with the external record-
ing system. Desktop-based applications allow event
codes or ‘‘triggers’’ to be sent out from the machine
running the task during important task events. Event
codes are then recorded by the external system and
provide a mechanism for precise time alignment between
electrophysiological recordings and saved task data.
Event code transmission is not possible during online
task deployment; browsers are sandboxed environ-
ments without access to the system at large, including
ports, for security and safety considerations. Today,
enabling task deployment in different configurations
and environments would likely require two different
versions of the task maintained in separate software
packages, which may impact task presentation and task
performance. To our knowledge, there are currently no
standardized methods to deploy psychophysiological
tasks from a single code-base consistently to multiple
targets online or in lab, and with or without concurrent
electrophysiology.

Here, we have combined, into an open-source task-
template repository, well-accepted practices and technol-
ogies from the cognitive science and web development
communities to build psychophysiological tasks that are
ready for deployment to different settings (desktop or
online) and support electrophysiological recordings, with-
out significant changes to the code base. Deployment
specifications are abstracted as parameters that are
easy to configure, and application building is automated
via GitHub actions, providing continuous delivery of easy-
to-download executables, easing setup burden across
research sites. The same code-base is used to maintain
and deploy the identical task on Mechanical Turk, Prolific,
and in research settings during concurrent electrophysio-
logical recordings. We describe our best practice strategy
for guaranteeing accuracy in the alignment of task events
and electrophysiology with 612 ms latency precision, and
contribute plans for a low cost, open-source event trigger
device that is compatible with Honeycomb and adaptable
to most electrophysiology systems. Further, we demon-
strate the utility of Honeycomb in psychiatric research by
presenting task performance metrics over time from one
participant with deep brain stimulation (DBS) for OCD
that performed the Multi-Source Interference Task
(MSIT) at repeated intervals in the clinic and at home.
While the use of Honeycomb in the study of OCD is
an example to showcase the utility of the approach,
this work applies to a wide array of use cases beyond
the example mentioned here (e.g., Honeycomb enables
EEG, fMRI, and MEG studies to compare behavioral
data against a complementary database from online
studies). Lastly, we have curated a library of ready-
to-use tasks made publicly available online on The
Behavioral Task Hub, termed Beehive, to foster repro-
ducible research across groups. The ability to write
one codebase and use it flexibly across settings (with
guaranteed consistency in instructions, timing, and other
aspects) is an important advance that is highly relevant
for psychiatry researchers and beyond.

Method

Honeycomb is a task template repository that standar-
dizes the configuration of jsPsych-based psychophysio-
logical tasks to maintain readability while supporting the
flexibility required to enable varied deployment scenar-
ios. Honeycomb provides functionality for web-based
and desktop application-based deployment, where the
latter requires communication to peripherals for the synchro-
nization of electrophysiological recordings.22 Honeycomb
addresses the key challenge of using a single code base to
deliver a task in multiple environments. Tasks built using
Honeycomb can easily be deployed as web applications
and as cross-platform desktop applications.

The architecture of Honeycomb is summarized in Fig-
ure 1 and explained in greater detailed in the online-only
supplementary material. Relevant definitions, detailed
instructions on how to get started on Honeycomb, and
the link to a central and open registry of behavioral
tasks (Beehive) are also available as supplementary
material.
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To achieve deployment flexibility, Honeycomb is
architected in a way that the task core, which is coded
with jsPsych and React (Figures 1.1 and 1.2), can be built
either as a desktop or a web application (Figure 1, paths A
and B, respectively). A task built with Honeycomb can
be easily deployed as a static (serverless) web application
to services like GitHub Pages, Firebase Hosting, Heroku,
or others. This type of deployment can be used with
services like Prolific. Furthermore, deploying a psiTurk task
requires additional steps that are facilitated by included
scripts (Figure 1.4). To build cross-platform desktop
applications, Honeycomb includes all the necessary files,
helper functions, and scripts that create the installers and
executables for Linux, MacOS, and Windows (Figure 1.3).
While a researcher can choose to manually build the
applications, Honeycomb leverages GitHub Actions to
preconfigure and automate the different deployment work-
flows (Figure 1.5). Finally, to ensure that data are properly
managed under the different deployments, Honeycomb
supports different formats and mechanisms for saving
data (Figures 1.8, 1.9, and 1.10).

Case study

One participant (P1) underwent DBS surgery for treatment
of severe, intractable OCD. The participant performed the
MSIT at repeated intervals in the clinic and at home. To
compare task performance between different locations, we
deployed the same Honeycomb-based MSIT (Figure 2A
and 2B) both when participant P1 visited the clinic for DBS

programming and when the participant was at home.
Response times during the MSIT have been found to
improve in response to effective DBS treatment for OCD.23

Clinical assessments, including the Yale-Brown Obsessive
Compulsive Scale (YBOCS), YBOCS II, Hamilton Depres-
sion Rating Scale (HDRS), and Young’s Mania Rating
Scale (YMRS) were administered at each clinical visit.

Ethics statement

The participant gave informed consent and data pre-
sented were collected in accordance with recommenda-
tions of the federal human subjects regulations and under
protocol H-40255 approved by the Baylor College of
Medicine Institutional Review Board.

Multi-source interference task

The MSIT was designed to reliably elicit cognitive conflict
in human participants.24,25 MSIT consists of eight 48-trial
blocks. Each trial begins with a 2-second fixation period
followed by an image of three integers ranging from 0 to 3.
The participant was given a keypad and asked to identify
the unique number (‘‘target’’) ignoring its position. Con-
gruent and incongruent trials are illustrated in Figure 2A
and 3B. The trial was congruent if the distractor was
flanked by invalid targets (0). The trial was incongruent if
the distractor was flanked by valid targets, and if the
identity of the target did not match its keypad position. Task
code is available at https://github.com/brown-ccv/task-msit.

Figure 1 Honeycomb architecture and workflow. Grey boxes show the pieces that are provided with Honeycomb. White boxes
represent what the end-user will interact with. Icons on top left represent the language each piece is written on ( javascript,

python, GitHub Actions workflow). Dashed line indicates that continuous integration/continuous delivery (CI/CD) happens
on GitHub’s servers. Path A (gray arrows) summarizes the flow to generate native desktop applications, while path B (black
arrows) show options for web-based deployments. 1. jsPsych is the core of Honeycomb. 2. React is a wrapper around jsPsych
allowing for modularity and for setting up connections with backends. The arrows show that the same core code base can
be used to create desktop applications via (3) Electron.js, or web applications either via (4) psiTurk, or directly as a React
application. 5. The provided workflow files will trigger builds and deployments on GitHub servers via GitHub Actions. These
actions can build desktop applications for Windows, Mac, and Linux and create an installer that the users/researchers can
download to a desktop or tablet for use in the clinic or at home. In addition, GitHub Actions workflows can build and deploy web
applications for access via a web browser. 8. Desktop applications are used in the clinic and at home. In this case the data are
saved to the device’s file system. 9. psiTurk can be used to manage crowdsourcing via MTurk and the data are saved in the
psiTurk database. 10. Researchers can choose to send a link directly to the participants or use other crowd-sourcing services,
such as Prolific to distribute the link. In this case the data can be saved to any database (not provided by Honeycomb), or using
services like Firebase to host the application and store the data.
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Figure 2 Task overview and event latency testing. A, B) For the Multi Source Interference Task (MSIT), participants are asked
to report the one number that is different from the other two using a button box corresponding to the numbers 1, 2, and 3. Trials
consist of a fixation period followed by the stimulus. In congruent trials (A), the distractor numbers are zeros and in incongruent
trials (B) distractors are other valid numbers. C) Start timing for the fixation and stimulus events were saved in three streams:
photodiode pulses, numeric event codes, and timestamps in JavaScript Object Notation (JSON). D-I) Timing latencies between
the three streams (D/G: event codes – JSON, E/H: photodiode – JSON, F/I: event codes – photodiode) using BrainVision (D/E/
F) and Open Ephys (G/H/I) were estimated by computing the difference in timing for each event. Normal distributions (black)
were fit to the latency data and points within the 95% range are indicated in blue and those outside the range are indicated in
orange. RT = response time.
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Electroencephalography recordings

Two systems were used to record EEG during MSIT:
a 64-channel ActiCap BrainVision system with a Brain-
Vision Trigger Box and photodiode (Brain Vision, Morrisville,
USA) sampled at 5 kHz, and an Open Ephys acquisition
board (Open Ephys, Cambridge, USA) with an open-source
event trigger device and photodiode sampled at 30 kHz.

Synchronization of task behavior to external recording
system

Previous studies have shown that stimulus and response
timing varies across online and application-based experi-
ment generators. Application-based deployment has
been found to have 1 ms precision in saving behavioral
timing data (e.g., stimulus presentation and response
times), led by packages such as PsychToolBox and Psy-
choPy, while most online packages, including jsPsych,
achieved sub 10 ms precision in saving behavioral timing
data.26 While application-based deployment enables higher
timing precision, some groups have concluded that the
sub 10 ms precision provided by online deployment is
also suitable for measuring response times in behavioral
research.27 During concurrent electrophysiological record-
ings, an additional form of latency should be considered;
the latency between the experiment generator (saved
task behavior) and the event triggers detected on the
external recording system. We thus propose a best
practice method for synchronization of EEG and saved
behavioral timing data and estimate the timing error for
the method.

To guarantee robust synchronization of EEG with
saved task behavior, we utilized both a photodiode placed
on the screen of the task monitor and event codes sent
from the COM port of the task computer to either the
BrainVision Trigger Box or the open-source event trigger
device. The photodiode captures changes in brightness
on the screen at very small latencies and is considered
to be a ground truth estimate for when new stimuli are
presented on a screen.28 For example, during the MSIT,
the lower right-hand corner of the screen was pro-
grammed to show a white dot for 40 ms when new stimuli
were presented. The change in brightness is captured in
an analog recording channel that provides an accurate
time estimation of when the event happened but provides
no information about what happened. The event codes
can be programmed to carry information about what
happened on the screen. For example, during MSIT,
fixation crosses send a ‘‘1’’ code, and stimulus presenta-
tion sends a ‘‘2’’ code (Figure 2C). Due to latencies of
COM port communication however, timing of event codes
is less accurate than that of the photodiode.

Time synchronization error between task behavior and
external recording system

We quantified the latency between the photodiode record-
ing, event codes, and jsPsych JSON saving to estimate
the accuracy at which we can align task behavior to
electrophysiological data. A single MSIT run (eight 48-trial

blocks) from participant P1 was used to evaluate each
acquisition system: the BrainVision/Trigger Box system
and the Open Ephys/open-source event trigger system.
Timing information for events was saved in three streams:
elapsed time in JSON, photodiode pulses, and numeric
event codes. Photodiode crossings were computed by
finding the base of peaks in the difference time series
identified using the MATLAB (MathWorks, Natick, USA)
function findpeaks. In order to align the three streams,
the time for the first photodiode threshold crossing was
subtracted from the timing for all other photodiode and
event code markers, and the corresponding event time in
JSON was subtracted from all the JSON times. Differences
in timing between the three streams were then computed
for each event. The mean of each distribution of differences
was then subtracted to account for any offset in the initial
alignment point, and normal distributions were fit to the
data using the MATLAB function fitdist. To quantify time
synchronization error, we computed the latencies corre-
sponding to the 2.5 and 97.5% percentiles of the normal
distribution, and reported the absolute deviation from
the mean. When using BrainVision, 95% of the latencies
were within 23 ms between the JSON and event codes
(Figure 2D), within 12 ms between the JSON and
photodiode (Figure 2E), and within 25 ms between the
photodiode and event codes. When using Open Ephys
with the open-source event trigger, 95% of the latencies
were within 42 ms between the JSON and event codes
(Figure 2D), within 16 ms between the JSON and
photodiode (Figure 2E), and within 45 ms between the
photodiode and event codes.

Utilizing the photodiode led to the least amount of error
in time synchronization between EEG and task behavior
(B 12 ms using the BrainVision Trigger Box andB 16 ms
using our open-source event trigger with Open Ephys).
These time delays are dependent on the latency between
when the stimulus is updated on the screen and the
aforementioned latency (B 10 ms) between the jsPsych
call and the saved timestamp in the output JSON (inhe-
rent to the experiment generator). The display of task
stimuli on a presentation screen is dependent on-screen
refresh rate. For example, 60 Hz screen refresh rate leads
to a maximum of 16 ms of potential error between when
the jsPsych call is made, and when the task stimulus is
presented. We recommend including both the photodiode
sensor and event trigger during a task, as it is beneficial
both for redundancy and improved synchronization accu-
racy. The open-source event trigger device has a 20 ms
increase in latency when compared to the BrainVision
Trigger Box, however, in both cases, the photodiode will
alleviate any latencies occurring due to COM port
communication.

Synchronization of task behavior to electrophysiological
data collected on the same device

Collecting synchronized task data and electrophysiology
in the home environment presents different needs than a
typical laboratory or clinic scenario. External electrophy-
siological recording systems are typically not available in
the home environment, and therefore the event codes
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and photodiode cannot be used to aid in synchronization.
Wireless, implantable neuromodulation devices are ideal
for enabling participants to trigger their own recordings at
home. Electrophysiological data were recorded using the
Summit RC+S (Medtronic, Minneapolis, USA) via wire-
less data streaming from implanted electrodes to the
tablet running the task. Each Summit RC+S data packet
contains timing information for when it was received
and an estimate for the latency between data creation
and receipt. Together, these variables can be used to
estimate the time of day when each packet was sampled.
Task-related timestamps are saved to JSON on the same
clock, allowing for direct alignment between the electro-
physiological data and the task JSON file. The accuracy
of this alignment will depend on the reliability of the
estimate for the time between data generation and
receipt, and latency inherent to the experiment generator.
Without timing correction provided by the photodiode, we
rely on JavaScript task timing accurate to the sub 10 ms
level, as reported by Bridges et al.26

Results

The participant met responder status (4 35% reduction
in YBOCS score) at B 180 days after DBS (Figure 3A).
The participant performed the task accurately, and as
expected we found a significant decrease in accuracy
(Figure 3B and 3C) and significant increase in response
time (Figure 3D and 3E) for incongruent trials compared
to congruent trials. We found that, overall, the partici-
pant’s MSIT performance in the clinic and at home
followed a similar trend. Accuracy and response time in
the clinic and at home were not significantly different
(t test, p 4 0.05) after accounting for the effect of drift
over time. We also found that the characteristic conflict
effects in the incongruent trials (i.e., lower accuracy and
longer response time) were not only observed in the clinic
(triangles in Figures 3C and 3E), but also at home (dots in
Figures 3C and 3E). Collecting behavioral data at home
did not compromise the quality of the data collected
during the MSIT. Moreover, the flexibility of deploying a
task at home has enabled ongoing data collection during
the COVID-19 pandemic. We were able to keep collecting
data despite restrictions on in-person interaction and travel.

Discussion

Currently, using a single code base to build online
and desktop-based applications is time-consuming and
difficult in popular task creation frameworks such as
psychoPy, jsPsych, and PsychToolBox.29 Maintaining
separate code bases for online and desktop-based
deployment is time-consuming and error prone. We
developed software infrastructure for maintaining and
deploying behavioral tasks both online and in research
settings during concurrent electrophysiological recordings.
We have organized all components that are common to
task development and deployment into a template reposi-
tory that follows best practices in web-deployment and
psychophysiological task creation. This template allows
for creation of new tasks that are easy to configure and

deployment ready. Further, we have shown that we can
accurately align Honeycomb task behavior with external
electrophysiology systems with a 6 12 ms latency, and
provide plans for a low-cost, open-source event trigger
device that is compatible with Honeycomb and is adap-
table to most electrophysiology recording platforms. Our
motivation was to reduce startup costs for psychology
and psychiatry researchers to build, deploy, maintain, and
share their own tasks. Simultaneous online and desktop-
based task deployment could enable characterization of
population behavior and neural biomarker discovery for
functional deficits underlying psychiatric disorders.

Administering behavioral tasks both in large popula-
tions online and in small participant cohorts during
electrophysiological recordings is important for furthering
computational psychiatry research.14,15 Assessing task
behavior in a large population of participants allows for
characterization of the full spectrum of behavior that
can be expected from a behavioral task. Researchers
can examine how subclinical measures of behavioral
constructs implicated in psychiatric disorders, such as
impulsivity or delusions, may predict task behavior in
large samples.30,31 For electrophysiological studies with
relatively small cohort sizes, a study participant’s behavior
can then be put in the context of a broader population.
Flexible deployment enables researchers to quantify
how subclinical measures and task behavior varies over
time within single participants with limited burden on
researchers and participants alike. Lastly, online deploy-
ment enables the collection of large samples for the
sake of task parameter optimizations to achieve desired
behavioral effects.

To demonstrate the utility of cross-platform deployment
in psychiatry, we presented MSIT performance over time
from one participant with DBS for OCD. This work is part
of an ongoing study aiming to identify neural biomarkers
of OCD symptoms and adverse side effects of DBS in
order to enable an adaptive DBS (aDBS) system for OCD.
MSIT engages brain circuits related to cognitive control,
and deficits in cognitive control have been found in
OCD.24,32-34 By monitoring MSIT performance both in
the clinic before regularly scheduled DBS programming
sessions and at home, we are able to quantify subtle
changes in MSIT performance that may be reflected in
or provide supplemental information to routine clinical
assessments such as the YBOCS, YBOCS-II, HDRS,
and YMRS. Honeycomb enabled us to avoid inconsis-
tencies across the at-home and in clinic version of the
task, such as subtle differences in stimulus presentation
that could impact behavioral performance and the
conclusions drawn from analysis. Additionally, without
Honeycomb, it would have been time consuming to set up
and maintain the different versions of the task, especially
as minor tweaks (e.g., wording of instructions) were made
over time. Analyzing how MSIT performance metrics
change over time with clinical measures, both in the clinic
and at home, may allow us to draw conclusions about
how task performance may provide insight to functional
deficits that contribute to symptoms, which may be a more
productive avenue toward finding neural biomarkers
relevant to psychiatry.10,18 Further, in the future, we plan
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to use Honeycomb to compare MSIT performance in
OCD participants to that of a normative population in a
large-scale online study.

In order to choose a task platform and language that
would work for the complex needs of our experimen-
tal set up, customization was essential. Many groups
aim to create psychophysiological tasks with minimal
programming (more GUI based), however customizing

these tasks to synchronize with electrophysiology or con-
figure for flexible deployment is difficult or even impos-
sible. While Honeycomb requires programming skills,
which some may see as a disadvantage, tasks created
with Honeycomb support various deployment configura-
tions and can be extended beyond the functionality
provided by our template. Likewise, we acknowledge that
many laboratories and researchers have legacy code in

Figure 3 Task summary metrics collected in the clinic and at home are consistent over time. A) Clinical assessments
measured during each clinical visit for participant P1. The shaded area corresponds to pre-deep brain stimulation (DBS). Black
and grey dotted lines indicate the time of surgical implantation and the start of coronavirus disease (COVID-19) pandemic
escalation, respectively. The red star marks the criterion of becoming a responder to DBS treatment, measured as a 35%
decrease in YBOCS II score from pre-DBS baseline. (B, D) Participant P1’s MSIT task behavior measured in accuracy
(P(correct)) in (B) and median response time (median RT) in (D) as a function of days since DBS was turned on. Orange and
purple correspond to the congruent and incongruent task conditions, respectively. The triangles represent data collected in the
clinic, and the circles represent data collected at home. (C, E) Violin plot showing the distribution of accuracy and median RT in
congruent (orange) and incongruent (purple) trials for data collected at home (circles; lighter shade) and in the clinic (triangles;
darker shade). White dots indicate the median of the distributions. Note that the at home distributions are not significantly
different from the in-clinic distributions, after accounting for the influence of time (multiple linear regression with accuracy
(or median RT) as the dependent variable, days from DBS on and the recording location (home or clinic) as the regressors.
Congruent trials and incongruent trials were analyzed separately. In each case, the beta coefficient of the recording location is
not significant (t test, p 4 0.05). Also note that accuracies were lower and median RTs were longer in incongruent trials than in
congruent trials for both at-home data and in-clinic data (multiple linear regression with accuracy (or median RT) as the
dependent variable, days from DBS on and the trial type (congruent or incongruent) as the regressors. At-home and in-clinic data
were analyzed separately. In each case, the beta coefficient of the trial type variable is significant (t test, p o 0.05). HDRS =
Hamilton Depression Rating Scale; n.s. = non-significant; YBOCS II = the Second Edition of the Yale-Brown Obsessive-
Compulsive Scale; YBOCS = Yale-Brown Obsessive-Compulsive Scale; YMRS = Young Mania Rating Scale.
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other coding languages that do not allow for online
deployment. To take advantage of Honeycomb, legacy
code and new tasks would have to be converted to
JavaScript. While this does require a time investment up
front, there are several jsPsych tutorials to help program-
mers that are new to JavaScript get started.

In the future, we would like to expand the capabilities
of Honeycomb to be compatible with a greater variety
of external electrophysiological recording systems. Cur-
rently, Honeycomb event code messages are compatible
with the BrainVision Trigger Box, and our open-source
event trigger device. While the open-source plans for the
event trigger device provide most of the functionality for
integration with external electrophysiology systems, cus-
tom-built adapters are necessary to connect the output
of the event trigger device to the analog or digital input of
the electrophysiology rig. We would also like to provide
out-of-the-box builds for mobile platforms. Finally, we look
to continue enhancing modularity and maintainability by
introducing a command-line interface program that inter-
actively asks questions to the user and generates a starter
task according to the answers. This approach reduces the
size of the source code and the builds by removing unused
features and deployments. Moreover, upcoming changes
and improvements to jsPsych will need to be incorporated
to future versions of the Honeycomb.

Lastly, through flexible online deployment of behavioral
tasks, we hope to diversify the sample of the population
used to represent human behavior in psychology and
psychiatry research. Online deployment allows researchers
to access populations that would otherwise be impossible
to reach. Additionally, we aim to facilitate a way for
researchers to continue data collection during the corona-
virus disease 2019 (COVID-19) pandemic that can be
easily transitioned back to research settings with concur-
rent electrophysiology when the pandemic is over.

Data and material availability

Code used to produce this manuscript is available on
GitHub at https://github.com/brown-ccv/honeycomb.
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