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Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune
response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity
within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research
and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling
pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the
advancement of HSC expansion and transplantation in the future.

1. Introduction

Hematopoietic stem cells (HSC) are adult stem cells that
contain the potentiality in self-renew and differentiation
into specialized blood cells that function in some biological
activities: control homeostasis balance, immune function,
and response to microorganisms and inflammation. HSCs
can also differentiate into other specialized cell or so
called plasticity such as adipocytes [1], cardiomyocytes [2],
endothelial cells [3], fibroblasts/myofibroblasts [4], liver cells
[5, 6], osteochondrocytes [7, 8], and pancreatic cells [9].
Most HSCs are in quiescent state within the niches that
maintain HSC pool and will respond to the signals after the
balance of blood cells or HSC pool is disturbed from either
intrinsic or extrinsic stimuli.

In addition, HSCs have been studied extensively, espe-
cially, for the therapeutic purposes in the treatment of
blood diseases, inherited blood disorders, and autoimmune
diseases. Nonetheless, advanced development in this field
needs knowledge in the biological studies as a background
in performing strategy and maintaining of HSCs. Thus, HSC
source, origin, niches for HSC pool, and signaling pathways,
essential for the regulation of HSCs, will be discussed in this
review.

2. HSCs Origin and Development

In the hematopoietic system, the discovery of HSCs has shed
the light on stem cell biology studies including connection
to other adult stem cells through the basic concepts of
differentiation, multipotentiality, and self-renewal. In the
early period of those discoveries, lethally irradiated animals
were found to be rescued by spleen cells or marrow cells [17,
18]. After mouse bone marrow cells were transplanted into
irradiated mice, the clonogenic mixed colony of hematopoi-
etic cells (often composed of granulocyte/megakaryocyte
and erythroid precursors) were formed within the spleen,
which these colonies were then termed colony-forming unit
spleen (CFU-S) [19]. Some colonies of primary CFU-S
could reconstitute hematopoietic system in the secondary
irradiated mice after receiving transplantation [20]. Initially,
CFU-S was first proposed that it may be differentiated
from HSC, but subsequently, CFU-S was demonstrated to
be originated from more committed progenitor cells [21].
The discovery by Till and McCulloch embarked on a new
journey toward many investigations to clarify HSC biology,
functional characterization, purify, cultivation, and other
stem cells research.
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Figure 1: Source of blood cells during gestation through after birth.
Intraembryonic yolk sac is the first site of blood cells observation
at around E7.0–E7.5. The de novo hematopoiesis in the placenta
and AGM occurs at nearly similar wave of gestation (around E8.5–
E10.5) beforeit circulates into fetal liver where there is the large
HSC pool during gestation. At around E16.5, the HSCs migrate and
reside within the bone marrow which finally becomes the source of
HSC in adult life (adapted from [10]).

Hematopoiesis and HSC development are the key role to
improve efficient HSC expansion for the transplantations.
Embryogenesis study has been performed to identify HSC
origin and activity from various anatomical sites of several
kinds of animals such as zebrafish, chicken, and mouse
including human embryos model have been emerging.
Initially, Moore and Metcalf showed that hematopoietic cells
in the yolk sac could generate hematopoietic progenitors
that restricted to only erythroid and myeloid lineages
[22]. Moreover, the Runx1 (transcription factor for the
onset of definitive hematopoiesis) was first identified to
express at embryonic day 7.5 (E7.5) in the yolk sac, the
chorionic mesoderm, and parts of allantoic mesoderm [23].
However, HSCs found in the yolk sac lacked the definitive
hematopoietic stem cells which did not show long-term
hematopoietic reconstitution activity in mouse embryo prior
to E11.5 [24]. On the other hand, long-term repopulating
HSCs (LT-HSCs) were shown to increase largely in the
aorta-gonad mesonephros (AGMs) region of the mouse
embryo including the serially transplantable irradiated mice,
suggesting that AGM region is the first site for HSCs
detection [24, 25]. Vitelline and umbilical arteries were also

endowed with hematopoietic potential [26]. The presence
of HSC phenotype in the embryo was supported by the
evidence that a high number of nonerythroid progenitors
with high-proliferative potential was observed from which
the liver rudiment has been removed [27]. A dense pop-
ulation of CD34+ cells adhering to the ventral side of the
aortic endothelium within the embryonic compartment was
shown to display a cell-surface and molecular phenotype
of primitive hematopoietic progenitors (CD45+, CD34+,
CD31+, CD38−, negative for lineage markers, GATA-2+,
GATA-3+, c-myb+, SCL/TAL1+, c-kit+, flk-1/KDR+) [28, 29].
Moreover, the autonomously emergence of myelolymphoid
lineage from progenitors was found in splanchnopleural
mesoderm and derived aorta within the human embryo
proper, while restricted progenitors were generated in the
yolk sac [30]. Altogether, AGM region in the embryo is
suggested as the source of definitive hematopoiesis as the
generation occurs between E10.5 and E12.0 with the enhance
activity of HSC after mid-day 11 of gestation [10, 31–33].
Even though, the main source of fetal hematopoiesis was
considered in AGM including vitelline and umbilical arteries,
the question is raised whether the rare population produced
in those regions would be enough for the distribution into
fetal liver for alternative development of enormous HSCs
before the transition of hematopoiesis continues to occur in
the fetal thymus and bone marrow in postnatal life. Recently,
the placenta, an extraembryonic organ, has been considered
as the other hematopoietic organ for de novo hematopoiesis
[34, 35]. This may be due to the physiology of the
placenta containing highly vascularized blood vessels, and
cytokines and growth factors rich environment for proper
microenvironment of hematopoiesis and development [36].
Additionally, privilege site within the placenta may hide the
HSCs from the promoting signal into differentiation stage.
However, there is no experimental evidence to support that
HSCs are generated de novo in the extraembryonic tissues.
Therefore, future works will be needed to elucidate this
enigma. Summarization of the source of blood cells during
gestation through adult life has been elucidated in Figure 1.

The origin of HSC in the placenta is being questioned.
Understanding how theplacenta develops might be useful
to define the source and the niches supporting HSC
development. Mouse and human placentas are anatomically
similar and its genes have analogous identity [37, 38].
The placenta is formed from trophectoderm, mesodermal
tissues, chorionic mesoderm, and allantois (Figure 2) [39].
At E8.5 of mouse gestation, the allantois develops and fuses
with chorionic mesoderm through its distal part generating
the chorioallantoic mesenchyme in the chorionic plate and
continuing to form the fetal vascular compartment of the
placental labyrinth, while the proximal part becomes the
umbilical cord [11].

The umbilical cord (a constitution of the fetal arteries
and veins that inserted within chorionic plate of the placenta)
is attached to the center of fetal surface for uteroplacenta
circulation through maternal blood. Maternal blood passes
through the placenta from uterine arteries to spiral arteries
in the maternal decidua. Thereafter, the maternal blood
percolates through the villous tree in humans (or the
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Figure 2: Mouse placenta development. (a) At E3.5 of early embryogenesis, blastocyst is formed, containing inner cell mass located
at one side of the blastocoelic cavity and outer layer (trophectodermal epithelium) which give rise to the placenta. (b) Between E7.5–
E8.25 mesodermal precursors originating from the primitive streak grow into the allantois (light grey) which then develops toward the
ectoplacental cone (dark grey). (c) Chorioallantoic fusion between the allantoic and chorionic mesoderm at E8.5. After that, Chorionic villi
and vasculature are formed producing and generates extensive villous branching called labyrinth. (d) At E11.5, umbilical cord is fully formed
to connect the placenta with fetus where fetomaternal bloods circulate. (e) Cross-section of the placenta at E12.5 showing the chorioallantoic
mesenchyme lies cover the placenta labyrinth with fetal vessels lined by fetal endothelium (dark vessels with lumen) and trophoblast lined
by maternal blood spaces (grey vessels surrounded by dark trophoblasts). al, allantois; ch, chorion; am, amnion; epc, ectoplacental cone; ys,
yolk sac; psp, para-aortic splanchnopleura; da, dorsal aorta; ua, umbilical artery; va, vitelline artery; fl, fetal liver (modified from [11]).

labyrinth in mice) known as chorionic villi which created
and lined by fetal trophoblast cells [37, 39]. The inner core
of the chorionic villi consists of allantoic mesenchyme and
vasculature which is continuous with that of the umbilical
cord. The chorioallantoic vasculature connects the placenta
via the dorsal aorta and fetal liver through the umbilical
cord vessels. These regions are localized by an equally dense
network of fetal capillaries where the fetomaternal exchange
occurs [37].

Because of the mesoderm layer gives rise to all blood
cells, the chorionic and allantoic mesoderms are consid-
ered as the origin of HSC in the placenta. This can be
explained by the observation that hematopoietic potential
emerging from both tissues and has been identified with
myeloerythroid potential [40]. In addition, hematopoietic
cells (CD34+CD45+) collected from placental villi stroma
and highly expression of CD45+ cells that appear to be
budding from the vasculature have been found from human
placenta during midgestation [35]. Moreover, cells harvested
from term human placenta vessels and tissues could generate
human hematopoietic repopulation of nonobese diabetic
(NOD)-SCID mice, which harbored and/or amplified in
vascular labyrinth placenta niche [35]. These observations
imply that the placenta is the HSC source along with
umbilical cord blood. At E10.5, first HSC emerge in the
dorsal aorta before the onset of heart beat where the
circulation has not been formed. One study showed that in
the absence of heat beat in Ncx1 (the sodium and calcium
exchange pump1) knockout embryos, the HSC development
was verified to initiate in the placental vasculature [41].
Additionally, multilineage hematopoietic potential could be
obtained from placentas of Ncx1 knockout embryos. Thus,
within the extraembryonic tissues, fetal HSCs were observed
in placenta, vitelline, and umbilical arteries.

The true origin of HSC in the intraembryonic hemato-
poiesis remains controversial. One of the main hypotheses

is hemangioblasts or hemogenic endothelial while the alter-
native model is mesodermal precursors. The blood islands
originated in the yolk sac are derived from mesodermal
cell aggregates, which contain the ability to differentiate
into both hematopoietic and endothelial cells. The common
precursor by those lineages is suggested to be so called the
hemangioblast [42]. Hematopoietic phenotype originated
from hemogenic endothelium has been found in avian and
mouse during ontogeny [43, 44]. Imaging and cell-tracking
study explored that hemogenic endothelial cells could give
rise to hematopoietic cells [45]. By time-lapse imaging study
in single-cell mouse mesodermal cells demonstrated that it
could generate endothelial sheet colonies and some colonies
developed the hematopoietic morphology that upregulating
the blood-specific proteins CD45, CD41, and CD11b and
losing their intact morphology. Recently, this evidence has
been supported by the observation on time-lapse confocal
imaging from live mouse aorta showing that HSCs (Sca+,
c-kit+, CD41+) could emerge directly from ventral aortic
endothelial cells [46]. Moreover, Oberlin and colleagues
proved that the origin of adult bone marrow HSCs which
most of them derived were from the vascular endothelial-
cadherin ancestor [47]. Taken together, these studies pin-
point the evidence that definitive hematopoietic stem and
progenitor cells emerge from the hemogenic endothelium at
the AGM region.

3. HSC Niches

Homing of HSC from other definitive hematopoiesis to
fetal bone marrow is thought to involve some signal-
ing factors such as stromal derived factor-1 (SDF-1 or
CXCL12)/chemokine C-X-C receptor 4 (CXCR4) axis [48,
49]. Soluble factors are not only mediated in fetal bone
marrow but also in adult bone marrow to maintain HSC
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in undifferentiated state and regulate HSC in proliferative
and differentiated states within the specific microenviron-
ments termed “niche” throughout the life [12]. Stem cell
niche was first proposed by Schofield [21], with the later
identification in Drosophila melanogester’s ovary to confirm
the existence of HSC niche [50]. Germline stem cells resided
in the Drosophila ovary that is surrounded by differentiated
somatic cells have been shown to be essential for maintaining
stem cells survival and division [50]. Thus, HSC niche is
the special local environments of HSCs that maintains and
controls HSCs function by regulating survival, self-renewal
ability, and cell fate decision. Such molecules have been
identified to be associated with HSC homing to bone mar-
row, for example, SDF1-α, β1-integrins, metalloproteinases
(MMP), and serine-threonine protein phosphatase (PP)2A
[51, 52]. By using real-time imaging, it is possible to explore
the localization of HSCs with their function [53]. HSCs
lodge in the endosteal surface, osteoblasts, and blood vessels,
particularly in trabecular regions, in the mouse calvaria.
On the contrary, more mature cells reside away from the
endosteum. Similarly, a study by developed ex vivo real-
time imaging in irradiated mice show the homing and
lodgment of transplantable HSCs in the endosteal region of
the trabecular bone area where they respond to bone marrow
damage by rapidly dividing [54].

Recently HSCs niches are suggested to be mediated in two
main microenvironments within bone marrow: endosteal
niche and vascular niche (Figure 3). First, endosteal niche:
osteoblasts derived from mesenchymal precursors are local-
ized in the endosteal regions which are well vascularized.
The activation of osteoblastic differentiation is in part
mediated by HSC-derived bone morphogenic protein-2
(BMP-2) and BMP-6 [55]. Osteoblasts are suggested as the
niche due to the finding that the number of osteoblasts is
increased from parathyroid hormone activation and results
in an increase HSCs number in vivo [56]. This signal was
found to be activated through Jagged1, a serrate family of
Notch ligand, on osteoblasts [57]. Study by Chitteti and
colleagues supports this evidence and shows that enhancing
hematopoiesis promoted by osteoblast via Notch signaling
not only through Jagged1 upregulation, but also Notch2,
Jagged2, Delta1 and 4, Hes1 and 5, and Deltex ligands
[58]. Soluble factors produced from osteoblasts function
in regulating HSC quiescence, HSC pool and fate such as
angiopoietin-1 (Ang-1) [59], SDF-1 (CXCL12) [60], and
osteopontin [61]. Recently, osteoblasts secreted cysteine pro-
tease cathepsin X have been found to catalyze the chemokine
CXCL-12, a potent chemoattractive cytokine for HSCs, and
ablate the attachment of CD34+ cells with the osteoblasts
[62]. This result suggests the role of osteoblasts in regulate
HSCs trafficking in the bone marrow.

A group of de Borros supports this hypothesis by
showing that the 3D spheroid of noninduced and one week
osteo-induce bone marrow stromal cell (active osteoblasts)
formed an informative microenvironment that control
migration, lodgment, and proliferation of HSCs [63]. Bone
marrow endosteal cells, particularly, osteoblast-enriched
ALCAM+Sca-1− cells promoted LT-reconstitution activity
of HSCs via the upregulation of genes related in homing

and cell adhesion [64]. In addition, HSCs were found to
adhere with spindle-shaped N-cadherin+ osteoblastic (SNO)
cells which are a subpopulation of osteoblasts [65]. BMP
receptor type IA mutant mice have been shown to increase
in the number of SNO cells that correlated to an increase in
HSC number [65]. Consistently, green fluorescent protein-
positive (GFP+) HSCs derived from Col2.3-GFP+ transgenic
mouse were found to attach to SNO cells but not all GFP+

HSCs were in contact with SNO cells showing that N-
cadherin− component might be the other niche for HSCs
[54]. Cumulatively, osteoblasts and SNO cells are suggested
as the niche for hematopoietic stem and progenitor cells
where this microenvironment termed “Endosteal niche.”

Some observations have suggested that another niche,
vascular niche, might involve in HSC maintenance within the
bone marrow. Studies in osteoblast depletion demonstrated
that there was a loss of B lymphopoiesis but not immedi-
ately loss of HSC number [66, 67] and few bone-marrow
HSCs (CD150+CD48−CD41−lineage−) were localized to the
endosteum [68]. Mice model defected in osteoblast function
conferred no changes in LT-reconstitution function of HSCs
[69]. Additionally, the loss of N-cadherin did not any
effect on HSC maintenance and hematopoiesis [70]. Most
HSCs in the bone marrow have been observed to reside
in the sinusoid, where fenestrated endothelium persists and
allows blood flow for an exchange of blood cells and small
molecules. Taken together, the vascular niche is suggested as
the other niche for HSC maintenance [68]. Bone-marrow
endothelial cells have been proposed to play a role in
HSC controlling within vascular niche. Primary CD31+

microvascular endothelial cells can restore hematopoiesis
in mice when they receive bone-marrow lethal doses of
irradiation [71]. Study by a group of Salter shows a consistent
observation that endothelial progenitor cells injected in total
body irradiated mice can stimulate HSC reconstitution and
hematologic recovery [72]. Furthermore, selective activation
of Akt in endothelial cells produced angiocrine factors
mediated in the reconstitution, expansion, and maintenance
of HSCs [73]. Nonetheless, constitutively activation of Akt,
a binding ligand of phosphoinositide 3 in the phospho-
inositide 3-kinase pathway, impaired engraftment ability
and preferable generated leukemia in mice [74]. Sinusoidal
endothelial cells are essential for engraftment of hematopoi-
etic stem and progenitor cells (HSPCs) and restoration of
hematopoiesis after myeloablation [75]. Angiocrine factors,
such as Notch ligands, released by endothelial cells in vivo
contributed to the replenishment of the LT-HSC pool and
resulted in reconstitution of hematopoiesis [76]. Altogether,
vascular niche containing endothelial cells is suggested as the
major HSC pool and maintenance conferring proliferation
and differentiation selection.

Additionally, Sugiyama and colleagues demonstrated that
reticular cells located around the sinusoid endothelium could
produce stromal cell-derived factor 1 (SDF-1, aka CXCL12)
mediated in HSC niche [77]. These cells have been named
CXCL12 abundant reticular cells (CAR cells). This study
showed that almost all HSCs were found in contact with CAR
cells and all HSCs allocated at endosteum were also found to
be in contact with CAR cells, suggesting that these cells play
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Figure 3: Candidate cellular niches mediated in maintenance and regulation of HSCs in bone marrow; endosteal and vascular niches.
HSCs are in contact with SNO cells, bone-lining osteoblasts, within endosteal niche. Osteblasts produce several signal molecules such as
Notch ligands, angiopoietin-1 (Ang-1), CXCL12, and cathepsin X mediated in control HSC pool and maintenance. Most HSCs are found
in sinusoids, particularly adherence to CAR cells that surround sinusoidal endothelial cells (reticular niche). Similarly, CAR cells produce
CXCL12 in association with CXCR4 signaling essentially for HSC maintenance (modified from [12]).

a crucial role in HSC niches by homing HSCs in both vas-
cular and endosteal niches [77]. CXCL12/CXCR4 signaling
is essential in maintaining the HSC pool, development of
B cells and plasmacytoid dendritic cells [78–81]. Moreover,
short-term ablation of CAR cells resulted in the impairment
of adipogenic and osteogenic differentiation. Thus, CAR cells
are suggested as the adipo-osteogenic progenitors [82]. Study
in CAR cell-depleted mice demonstrated that HSCs were
reduced in number and cell size, which were more quiescent
and highly expressed early myeloid selector genes [82].
CAR cells were suggested to coincide with CD146+ stromal
progenitors that express CXCL12 and Ang-1. CD146+ cells
could generate osteoblast that form bone and could function
as skeletal progenitor cells [83]. Taken together, CAR cells
provide or generate the hematopoietic microenvironment
that link to the hematopoietic regulation in both vascular and
endosteal niches.

4. Hierarchy of Human Hematopoiesis

Based on the study of molecular marker expression by flow
cytometry analysis has led the identification of each blood
cell subpopulations in terms of their biology and potential
when combined with other functional assays. As a result,

schematic demonstration of hematopoietic hierarchy has
been proposed (Figure 4) [13]. The origin of all blood
cell in hematopoietic system is believed to be derived from
HSCs that contain self-renewal capacity and give rise to
multipotent progenitors (MPPs) which lose self-renewal
potential but remain fully differentiate into all multilineages.
MPPs further give rise to oligopotent progenitors which
are common lymphoid and myeloid progenitors (CLPs and
CMPs, resp.). All these oligopotent progenitors differentiate
into their restricted lineage commitment: (1) CMPs advance
to megakaryocyte/erythrocyte progenitors (MEPs), granu-
locyte/macrophage progenitors (GMPs), and dendritic cell
(DC) progenitors, (2) CLPs give rise to T cell progenitors,
B cell progenitors, NK cell progenitors and DC progenitors.
Notably, DC progenitors (CD8α+ DC, CD8α− DC, and
plasmacytoid DC) could be derived from both CMPs and
CLPs [84–86].

Among the isolation and characterization of HSCs and
progenitors, CD34 molecule is the first widely chosen for
the study by several researchers. CD34 is comprised in
the CD34 family of cell-surface transmembrane proteins
together with podocalyxin and endoglycan [87–89]. CD34
expression on blood cells is about 0.1–4.9% in human
cord blood, bone marrow, and peripheral blood [90–92].
The first candidate human HSCs was a population of cells
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Figure 4: Hierarchy of hematopoiesis. The phenotypic cell surface marker of each population of mouse and human blood system is
shown (modified from [13]). In the mouse hematopoiesis system, MPPs omit CMPs which directly give rise to MEPs unlink in the human
system (dash line). CLP, common lymphoid progenitor; CMP, common myeloid progenitor; DC, dendritic cell; EP, erythrocyte progenitor;
GMP, granulocyte/macrophage progenitor; GP, granulocyte progenitor; HSC, hematopoietic stem cell; MacP, macrophage progenitor; MEP,
megakaryocyte/erythrocyte progenitor; MkP, megakaryocyte progenitor; NK, natural killer; Lin, lineage markers.

expressing CD34+CD90+(Thy-1)Lin− which could give rise
to T and B lymphocytes and myeloerythroid activities in
both in vitro and in vivo human fetal thymus transplanted
into SCID mice while some subset of CD34−, CD90−,
Lin− lacked of multipotent progenitors [93]. Further
isolation of HSCs was based on the expression of CD38
[94, 95] and CD45RA [96]. This data could be concluded
that Lin−CD34+CD38−CD90+CD45RA− population en-
riches for human HSCs and the candidate human MPP
fraction of multipotency with an incomplete self-renewal
capacity is enriched in Lin−CD34+CD38−CD90−CD45RA−

population [97]. However, recently observation using
HSC xenograft assay in NOD-SCID-IL2Rgc−/− (NSG)
mice has shown that both Lin−CD34+CD38−CD90−

CD45RA− and Lin−CD34+CD38−CD90+CD45RA− contain
LT repopulating activity in secondary recipients with
different frequency [98]. In addition, CD49f (integrin
α6) marker has been shown as a specific HSC marker
within Lin−CD34+CD38−CD45RA− population which as
single-sorted HSC is highly efficient in generating long-term
multilineage grafts while the loss of CD49f expression
results in the absence of long-term grafts [98]. Furthermore,

Rhodamine-123 marker (efflux of the mitochondrial
dye) is added to enrich for HSCs where high Rho efflux
(Rholo)Lin−CD34+CD38−CD90+CD45RA− can also repop-
ulate all blood lineages in secondary recipients [98]. Taken
together, these results demonstrate that human HSCs are
enriched in the Lin−CD34+CD38−CD90+/−CD45RA−Rholo

population of hematopoietic cells (Figure 4).

5. Signaling Pathways in Self-Renewal
and Maintenance of HSCs

The balance that controls between self-renewal and dif-
ferentiation (or cell fate decision) of HSCs in the bone
marrow is mediated by several factors. There are a number
of animal models promoting the concept that the niches
inside bone marrow provide the maintenance and regulation
of HSCs by some microenvironmental-dependent signals.
Most HSCs are in quiescent state (i.e., in G0/G1 phase of
the cell cycle) [99], however, when the hematopoietic cells
disturbance occurs, hematopoiesis system will respond by
shutting down or turning on the regulators mediated in the
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regulations. Several pathways have been studied in relation
to that circumstance which are SDF-1 (CXCL12)/CXCR4
signaling, BMP signaling, Mpl/Thrombopoietin (TPO) sig-
naling, Tie2/Ang-1 signaling, hedgehog and Notch signaling,
as well as Wingless (Wnt) signaling.

5.1. SDF-1 (CXCL12 )/CXCR4 Signaling Pathway. Stromal
cell-derived factor 1 (SDF-1) is constitutively expressed
in several organs including lung, liver, skin, and bone
marrow [100]. SDF-1 belongs to α-chemokines that func-
tions as chemoattractant for both committed and primitive
hematopoietic progenitors and regulates embryonic devel-
opment including organ homeostasis [100]. There are two
main splicing forms that have been identified, SDF-1α and
SDF-1β, which ubiquitously expressed with highest levels
detected in liver, pancreas, and spleen [101]. Additionally,
another variant form, SDF-γ, has been characterized in
the nervous system [102]. Subsequently, SDF-1δ, SDF-1ε,
and SDF-φ have been identified with highly expression
in pancreases and lower levels detection in heart, kidney,
liver, and spleen [103]. SDF-1 counteracts with its cognate
receptor, CXCR4 that expresses widely in numerous tissues
including hematopoietic and endothelial cells to stimulate
the physiological processes. SDF-1/CXCR4 signaling plays a
critical role during embryonic development by regulating
B-cell lymphopoiesis, myelopoiesis in bone marrow and
heart ventricular septum formation [104–106]. In addition,
SDF-1 has been shown to be mediated in the recruitment of
endothelial progenitor cells (EPCs) from the bone marrow
through a CXCR4 dependent mechanism suggesting the
functional role in vasculogenesis in which EPCs could form
blood vessels [107]. A number of observations demon-
strated that there was an increase in SDF-1 expression the
ischemic sites [108, 109]. More evidence demonstrated that
locally injection of SDF-1 augmented vasculogenesis and
subsequently contributed to ischemic neovascularization in
vivo by promoting EPC recruitment in ischemic tissues
[110]. Recently, Liu and colleagues have shown that signal
of SDF-1/CXCR4 together with CXCR7 can increase the
mobilization and paracrine actions of mesenchymal stem
cells (MSCs) ischemic kidneys under hypoxia condition
[111]. Moreover, SDF-1/CXCR4 not only plays a role in
HSC maintenance but also regulates HSC attachment within
the niche. The mechanism mediated in this regulation was
found to be activated through matrix metalloproteinase-9
that mediated in the releasing of soluble Kit-ligand [112].
Inactivation or deletion of CXCR4 in mice resulted in HSC
pool reduction and hyperproliferation responsive to HSC
defections [77, 78]. Tzeng and colleagues also confirmed the
role of SDF-1 in HSC maintenance by demonstrating that a
conditional SDF-1-deficient mice conferred an impairment
in HSC quiescence and endosteal niche localization [113].

5.2. BMP Signaling Pathway. Bone morphogenic proteins
(BMPs) are a group of growth factors that belongs to a
TGF-β family member [114]. BMPs are mainly produced
by osteoclasts in HSC niche [115]. During embryogenesis,

BMP-4 regulates hematopoietic lineage commitment from
mesodermal cell, while HSC number and function within
bone marrow niche is controlled by Bmp-4 during adult
life [116, 117]. Knowledge of BMP signaling and receptor
related adult HSC within bone marrow has been studied in
a small number and is elusive. BMP signaling impairment
displayed an increase in the niche size, leading to the
enhancement in the number of HSCs [65]. Differential
response of HSC to soluble BMPs observed by a group of
Bhatia showed that higher concentrations of BMP-2, BMP-
4 and BMP-7 maintained human CB HSCs in vitro while
at lower concentrations of BMP-4-induced proliferation and
differentiation of HSCs [118].

5.3. c-Mpl/TPO Signaling Pathway. c-Mpl and its ligand,
thrombopoietin (TPO), are known to regulate megakary-
opoiesis [119]. c-Mpl receptor is expressed mainly on
HSCs, with a lesser extent on megakaryocytic progeni-
tors, megakaryocytes and platelets [120]. Various tissues
expressing c-Mpl are mediated in hematopoiesis, including
bone marrow, spleen, and fetal liver [14]. Based on the
crystallographic EPO receptor study and its analogy to
the TPO receptor have led to the postulation that TPO
initiates the signal transduction by binding to the c-Mpl
at the distal part, which in turn a homodimer of c-Mpl
becomes active [15]. Consequently, Janus kinase 2 (JAK2)
can phosphorylate tyrosine residues within the receptor itself
which at least two tyrosine residues, Tyr625 and Tyr630,
are phosphorylated on c-Mpl [15, 122], thereby stimulating
the downstream cascade STATs, PI3K, the mitogen-activated
protein kinases (MAPKs), and extracellular signal regulated
kinases-1 and -2 (Figure 5) [123, 124]. c-Mpl/TPO signaling
involved in postnatal steady-state HSC maintenance and
cell-cycle progression at the endosteal surface [125, 126].
Mpl-expressed LT-HSCs were found in correlation to cell
cycle quiescence and that was closely associated with TPO-
producing osteoblastic cells in the bone marrow [125].
Additionally, the inhibitory adaptor protein Lnk was sug-
gested as a negative regulator of JAK2 in HSCs follow-
ing TPO stimulation, in which HSC quiescence and self-
renewal controls were predominantly through Mpl [127].
Therefore, TPO/Mpl/JAK2/Lnk pathway can be concluded
as a gatekeeper for HSC quiescence. Recently, TPO knock-
in RAG2−/−γc−/− mice has been shown to improve human
engraftment in the bone marrow and maintenance of HSPCs
pool by serial transplantation [128]. Taken together, TPO has
an important function in maintenance and self-renewal of
HSCs.

5.4. Tie2/Ang-1 Signaling. Angiopoietin-1 (Ang-1) is the
ligand of Tie2, a receptor tyrosine kinase, which expresses
predominantly on osteoblastic cells in endosteum [59] and
in MSCs [83]. Interaction of Tie2 with its ligand, Ang-
1, resulted in tightly adhesion of HSCs to the niche and
become more quiescence [59]. Moreover, Ang-1 conferred
the maintenance of LT-HSCs while Ang-2 did not antagonize
the effects of Ang-1 on gene expression, Akt (aka protein B)
phosphorylation [129].
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Figure 5: c-Mpl/TPO signaling pathway. TPO signals to its receptor, c-Mpl, and induces the downstream signaling cascades: STATs, PI3K,
MAPKs, and extracellular signal regulated kinases-1 and -2 (modified from [14, 15]).

5.5. Hedgehog Signaling Pathway. Hedgehog (Hh) is pro-
posed as a negative regulator of the HSC quiescence
[130]. Hh ligand binds to the transmembrane receptor
Patched (Ptc) and subsequently allows the signaling function
of a second transmembrane protein, Smoothened (Smo),
essentially for the Hh signal to be active. Trowbridge and
colleagues demonstrated that constitutive activation of the
Hh signaling pathway in Ptc heterozygous (Ptc-1+/−) mice
resulted in induction of cell cycling and expansion of
primitive bone marrow hematopoietic cells [130]. To support
this hypothesis, deletion of Smo in the in utero of transgenic
mice was performed and the result demonstrated that there
was an impaired stem cell self-renewal and the inhibition
in engraftment activity of HSCs [131]. Furthermore, the
common downstream positive effector of Hg signaling, Gli1,
has been shown to play a critical role in normal and stress
hematopoiesis [132]. Nonetheless, the discrepancies on Hg
role in hematopoiesis were shown in some studies claiming
that the conditional loss of Smo within adult HSCs is
dispensable for hematopoiesis [133, 134]. These conflicts
might be due to the difference of the mice model and
conditional system used to impair Hg signaling.

5.6. Notch Signaling Pathway. Notch signaling plays a key
role in several fundamental functions including prolifera-
tion, differentiation and cell fate decision [135, 136]. Four
notch receptors (Notch 1–4) and five ligands (Jagged1-2
and Delta-like 1, 3, and 4) have been identified in mam-
mals [137]. Cells expressing Notch ligands or engineered
immobilized Notch ligands could maintain or enhance HSC
self-renewal in the culture [138, 139]. Some investigations
demonstrated that there were an impaired HSCs differen-
tiation both in vitro [140, 141] and in vivo [139, 141]
studies following interaction of Notch receptors and Notch
ligands. Transcription factor act upstream of the Notch
signaling cascade, Hes2, was shown to be essential in HSCs
formation in zebrafish embryos when hes2 expression was
knockdown, whereas HSC formation could be rescued by
the activation of Notch signal [142]. One study showed
that an increase in in vitro maintenance of hematopoietic
functions and repopulating potential on osteoblasts and
Lineage−Sca-1+CD117+ (LSK) cells coculture was mediated
by the up-regulation of Notch signal (Notch2, Jagged1 and 2,
Delta1 and 4, Hes1 and 5, and Deltex) [58]. Taken together,
these studies support the role of Notch signaling mediated
in HSC hematopoiesis and maintenance. In the contrary,
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some investigations proposed that Notch signaling was not
important for HSC self-renewal and maintenance [143,
144]. Inactivation of Notch1 and Jagged1 in bone marrow
progenitors and bone marrow stroma, respectively, did not
impair HSC maintenance and reconstitution [144]. The
inhibition of Notch1–4 signaling via a developed dominant-
negative Mastermind-like1 construct was transfected into
LSK and demonstrated similar result of LT reconstitution
in bone marrow compared to LSK control, except for T-
cells [143]. Nevertheless, the study by Kim and colleague
explored the important of Notch in normal hematopoiesis
[145]. Mind bomb (Mib)-1, which regulates the endocytosis
of Notch ligands and activation, was inactivated in mice
leading to myeloproliferative disease (MPD). Surprisingly,
when transplanted with wild-type bone marrow cells into
the Mib1-null microenvironment, it results in a de novo
MPD. The MPD progression was suppressed by trans-
plantable Notch activating cells, suggesting that MPD devel-
ops from the nonhematopoietic microenvironmental cells
with defective Notch signaling. Therefore, Notch signaling
is indeed required for normal hematopoiesis. Santaguida
and colleague developed JunB-decient mice which resulted
in impairment of Notch and transforming growth factor-β
(TGF-β) signaling, in part via the transcriptional regulation
of Hes1 [146]. This study showed an increase in LT-HSCs
proliferation and differentiation without impairing their self-
renewal in vivo, suggesting that LT-HSC proliferation rate
is not exclusively compelling to self-renewal activity and
maintenance of HSC in the BM niches.

5.7. Wnt Signaling Pathway. Notch signaling is involved in
the cross-talk with other pathways particularly Wnt signaling
not only in hematopoiesis [147] but also in other cellular
development [136, 148–151]. In addition, Wnt signaling
pathway is mediated in the regulation of stem cell fate and
maintenance of mouse ESCs and human ESCs in undiffer-
entiated state [152, 153]. There are at least two independent
pathway comprised in Wnt signaling: canonical Wnt and
noncanonical Wnt signaling pathways. The canonical Wnt
signal interacts with Frizzled (Fz) receptors and single-pass
co-receptors LDL-receptor-related proteins 5 and 6 (LRP 5
and 6). The Fz protein contains a conserved motif, a cysteine
rich domain (CRD) located on the extracellular domain that
binds to multiple Wnts with a high affinity (Figure 6) [154].
Specifically, Dishevelled (DVL) is phosphorylated by casein
kinase Iε (CKIε), which then binds typically to FRAT and
confers the assembly between Fz to DVL (Fz-DVL complex)
and LRP5/6 to AXIN and FRAT (LRP5/6-AXIN-FRAT
complex) [155, 156]. After that, β-catenin is stabilized and
released from phosphorylation by CKIα and GSK3β. Then,
β-catenin forms the complex with T-cell factor/lymphoid
enhancer binding factor (TCF/LEF) family transcription
factors and also with Legless family docking proteins (BCL9
and BCL9L) associated with PYGO family coactivators for
stabilization and nuclear accumulation [157–159]. Typically,
the downstream effectors for transcriptional activation target
genes are FGF20, DKK1, WISP1, MYC, and CCND1 [160–
163]. In the absence of Wnt, β-catenin is destabilized by

phosphorylation of CKIα and glycogen synthase kinase
3β (GSK 3β), which then resulted in a formation of a
destruction complex facilitating by Axin (β-catenin-APC-
AXIN) that is polyubiquitinated by βTRCP1 or βTRCP2
complex for the degradation by proteasome [16, 159].

In the second pathway, “noncanonical Wnt signal” exerts
the independent β-catenin signaling. The Wnt subfamily
members, for example, Wnt5a binds to the Frizzled recep-
tor, stimulates downstream intracellular signaling, resulting
in an increase in intracellular Ca2+, and then activates
protein kinase C and calmodulin-dependent kinase [159].
The cross-talk between Notch and Wnt signaling pathways
was found in the stabilizing β-catenin on bone-marrow
stroma cells that promoted maintaining and self-renewal
of HSCs [164]. Moreover, the induction of Jagged1 and
delta-like 1 was observed in Wnt/β-catenin-activated bone-
marrow stroma or in bone-marrow stroma cultured with
Wnt3a-conditioned medium [164]. Mice lacking Wnt3a
resulted in prenatal death [165]. Moreover, Wnt3a deficiency
reduced the number of HSCs in fetal liver and impaired
the repopulating activity in vivo [165]. However, the exact
role of Wnt signaling pathway in regulation of HSCs
remains a controversy. Some studies demonstrated that
constitutive activation of Wnt/β-catenin in transgenic mice
resulting in the multilineage differentiation block and loss
of repopulating stem cell activity due to the induction of
quiescent stem cells entering into cell cycle and arresting their
differentiation [166, 167]. In contrast to previous works, the
administration of an inhibitor of GSK-3β in vivo displayed
the enhancement in the recovery of hematopoietic cells for
neutrophil and megakaryocytic lineages as well as primitive
LSK cell population together with the upregulation of Wnt,
Notch, and Hedgehog genes [168].

Furthermore, inhibition of Wnt signaling in HSCs
by overexpression of the paninhibitor of canonical Wnt
signaling, Dickkopf1 (Dkk1), resulted in the induction of cell
cycling and reduction in repopulating ability in transplanted
induction mice [169]. When the inhibitor of GSK-3β, 6-
bromoindirubin 3′-oxime was used to treat CB-CD34+

cells, cell cycle progression was delayed including promoted
engraftment of ex vivo-expanded HSCs [170]. Cumulatively,
these studies suggest the positive regulatory role of Wnt/β-
catenin signal on the proliferative or repopulating activity of
HSCs. 12/15-lipoxygenase-mediated unsaturated fatty acid
metabolism has been implicated in canonical Wnt-related
signaling in the maintenance of LT-HSC quiescence and
number [171]. Taken together, the canonical Wnt signal is
mediated in the regulation of HSC function by maintaining
quiescence and balance in proliferation.

6. Concluding Remarks

HSCs have been studied extensively for HSC source,
hematopoiesis, biological functions, and signaling pathways
related to the maintenance and regulation of HSCs. Advance
researches such as imaging system clearly provide useful
information on tracking the HSC origin, pool, and trans-
plantation outcome in the mouse models. The observation
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LRP5/LRP6 coreceptor to the β-catenin signaling cascade which then stabilize hypophosphorylated β-catenin and interact with TCF/LEF,
Legless and PYGO for target gene activations. MARK and CKIε are the positive regulators of canonical Wnt pathway, while APC, AXIN1,
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of molecular mechanisms downstream the signaling cascade
of self-renewing and proliferation of HSCs will also provide
the knowledge through the new discovery in the treatment
of diseases including the development in the performing a
large scale preparation of HSCs for clinical transplantation.
In addition, the signaling pathways will also provide under-
standing insight into the cancer stem cells which are now
challenging scientists to explore their possible strategy for the
treatments.
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Dieterlen-Lièvre, and B. Péault, “Aorta-associated CD34+

hematopoietic cells in the early human embryo,” Blood, vol.
87, no. 1, pp. 67–72, 1996.

[30] M. Tavian, C. Robin, L. Coulombel, and B. Péault, “The
human embryo, but not its yolk sac, generates lympho-
myeloid stem cells: mapping multipotent hematopoietic cell
fate in intraembryonic mesoderm,” Immunity, vol. 15, no. 3,
pp. 487–495, 2001.

[31] M. J. Chen, T. Yokomizo, B. M. Zeigler, E. Dzierzak, and
N. A. Speck, “Runx1 is required for the endothelial to
haematopoietic cell transition but not thereafter,” Nature,
vol. 457, no. 7231, pp. 887–891, 2009.

[32] M. F. T. R. de Bruijn, X. Ma, C. Robin, K. Ottersbach, M. J.
Sanchez, and E. Dzierzak, “Hematopoietic stem cells localize
to the endothelial cell layer in the midgestation mouse aorta,”
Immunity, vol. 16, no. 5, pp. 673–683, 2002.

[33] E. Taylor, S. Taoudi, and A. Medvinsky, “Hematopoietic
stem cell activity in the aorta-gonad-mesonephros region
enhances after mid-day 11 of mouse development,” Interna-
tional Journal of Developmental Biology, vol. 54, no. 6-7, pp.
1055–1060, 2010.
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