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A B S T R A C T

Background: Chronic pain and depression often co-occur. The mechanisms underlying this comorbidity are in-
completely understood. Here, we investigated the role of CD3+ T cells in an inflammatory model of comorbid
persistent mechanical allodynia, spontaneous pain, and depression-like behavior in mice.
Methods: C57Bl/6 wt and Rag2−/− mice were compared in their response to intraplantar administration of
complete Freund’s adjuvant (CFA). Mechanical allodynia, spontaneous pain and depression-like behavior were
assessed by von Frey, conditioned place preference and forced swim test respectively.
Results: Resolution of mechanical allodynia, spontaneous pain, and depression-like behavior was markedly
delayed in Rag2−/− mice that are devoid of adaptive immune cells. Reconstitution of Rag2−/− mice with CD3+

T cells from WT mice before CFA injection normalized the resolution of indicators of pain and depression-like
behavior. T cells did not contribute to onset or severity of indicators of pain and depression-like behavior. The
lack of T cells did not affect cytokine expression in the paw, spinal cord and brain, indicating that the delayed
resolution was not resulting from prolonged (neuro)inflammation.
Conclusions: Our findings show that T cells are critical for the natural resolution of mechanical allodynia,
spontaneous pain, and depression-like behavior after an inflammatory challenge. Dysregulation of this T cell-
mediated resolution pathway could contribute to the comorbidity of chronic pain and depression.
Significance: Chronic pain and depression are frequently associated with signs of inflammation. However, gen-
eral immunosuppression is not sufficient to resolve comorbid pain and depression. Here we demonstrate that T
cells are required for resolution of comorbid persistent mechanical allodynia, spontaneous pain, and depression
in a model of peripheral inflammation, indicating the immune system can contribute to both onset and re-
solution of these comorbidities. Enhancing pro-resolution effects of T cells may have a major impact to treat
patients with comorbid persistent pain and depression.

1. Introduction

Chronic pain is a leading health problem in North America with a
lifetime prevalence of up to 20% of the U.S. and 30% of the Canadian
population (Johannes et al, 2010; Schopflocher et al, 2011). Chronic
pain is frequently associated with symptoms of depression (Bair et al,
2003). The relationship between chronic pain and depression is bidir-
ectional. Depressed subjects are more likely to develop chronic pain
than non-depressed individuals (Larson et al, 2004; Trivedi, 2004).
Conversely, subjects suffering from chronic pain are at a higher risk for
developing depression (Gustorff et al, 2008; Leo, 2005). Comorbid de-
pression in chronic pain patients is associated with poor physical and
psychosocial functioning (Holzberg et al, 1996). Both pain and de-
pression can develop in response to inflammation (Laumet et al, 2017;

Walker et al, 2014). While pain and depression are normally reversible
once the initiating inflammation has resolved, pain and depression
persist in some individuals. We propose that common endogenous
regulatory pathways promote resolution of both pain and depression
and dysregulation of these resolution pathways leads to comorbid
persistent pain and depression.

Comorbidity of chronic pain and depression-like behavior develops
in animal models of peripheral inflammation (Kim et al, 2012; Maciel
et al, 2013). Production of proinflammatory cytokines such as tumor
necrosis factor (TNF)-α and interleukin (IL)-1β by peripheral immune
cells and central nervous system (CNS)-resident microglia has been
proposed as a biochemical link between pain and depression (Fasick
et al, 2015; Fiore and Austin, 2016; Laumet et al, 2017; Walker et al,
2014; Zhou et al, 2015). Notably, TNF-α is elevated in patients with
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comorbid chronic pain and depression (Bai et al, 2014; Euteneuer et al,
2011; Uceyler et al, 2007). Preclinical studies have confirmed a causal
role of TNF-α and IL-1β in the onset of comorbid persistent pain hy-
persensitivity and depression-like behavior (Dellarole et al, 2014; Fiore
and austin, 2016; Laumet et al, 2017; Maciel et al, 2013; Norman et al,
2010; Zhou et al, 2015).

An emerging body of literature indicates a critical contribution of
peripheral immune cells to not only the onset, but also the resolution of
pain and depression-like behavior (Baddack-Werncke et al, 2017; Bang
et al, 2018; Brachman et al, 2015; Cohen et al, 2006; Ji et al, 2011;
Labuz et al, 2010; Willemen et al, 2014). In particular, we recently
showed that chemotherapy-induced mechanical neuropathic pain
(Krukowski et al, 2016; Laumet et al, 2019a) and lipopolysaccharide
(LPS)-induced depression-like behavior (Laumet et al, 2018) were
markedly prolonged in mice devoid of adaptive immune cells. Recon-
stitution of immunodeficient mice with T cells was sufficient to nor-
malize the resolution indicating, that T cells are necessary not only for
resolution of chemotherapy-induced mechanical neuropathic pain
(Krukowski et al, 2016; Laumet et al, 2019a) but also for resolution of
LPS-induced depression-like behavior (Laumet et al, 2018).

To further study the role of T cells in the resolution of both co-
morbid pain and depression-like behavior, we now used the model of
intraplantar injection of complete Freund’s adjuvant (Kim et al, 2012;
Maciel et al, 2013) in WT and Rag2−/− mice that are devoid of adap-
tive immunity. The role of T cells was studied by reconstituting Rag2−/

− mice with T cells from WT mice before injection of CFA. In addition,
we assessed the mRNA expression of Tnf and Il1β in tissue relevant for
mechanical allodynia, spontaneous pain, and depression-like behavior.

2. Methods

2.1. Animals

Male WT and Rag2−/− mice (9–12 weeks old) in a C57Bl/6 back-
ground (Jackson laboratory, Bar Harbor, ME) were maintained in the
animal facility of The University of Texas MD Anderson Cancer Center.
Mice were housed in a reverse light cycle (light off 8:00 am and light on
8:00 pm) and were randomly assigned to group. Peripheral inflamma-
tion was induced by administration of 5 µg CFA (1 mg/ml, each ml of
CFA contains 1 mg of heat-killed and dried Mycobacterium tubercu-
losis, 0.85 ml paraffin oil and 0.15 ml of mannide monooleate. Sigma)
injected into the plantar surface of the left hind paw. Control mice re-
ceived an equi-volume injection of saline. All procedures were ap-
proved by the Institutional Animal Care and Use Committee (IACUC)
and in accordance with NIH guidelines for the care and use of animals.
All analyses were performed by investigators blinded to treatment and
genotype.

2.2. CD3+ T cells isolation and adoptive transfer

Adoptive transfer of CD3 + T cells to Rag2−/− mice was performed
10 days before CFA or saline injection as previously described
(Krukowski et al, 2016; Laumet et al, 2018; Laumet et al, 2019a).
Spleens were collected from WT mice and single cells suspensions were
obtained by passing spleens though a 70 µm mesh. CD3+ T cells were
isolated using a negative selection kit II (#130–095-130, Miltenyi
Biotec Inc, San Diego, CA). Eight million CD3+ T cells were in-
travenously (i.v.) injected into the tail in a 100 µl volume. Control mice
received an i.v. injection of PBS-BSA. Homing and survival of the
adoptively transferred cells were confirmed by flow cytometry as pre-
viously described (Krukowski et al, 2016; Laumet et al, 2018; Laumet
et al, 2019a). Briefly, blood cells were stained with anti-CD45-APC,
anti-CD3-PE, anti-CD4-Cy5.5 and anti-CD8-FITC (BD bioscience
#561018, #561799, #550954 and #553031, San Jose, CA) antibodies.
Lysing buffer was used to remove red blood cells. Samples were ana-
lyzed with the C6 Accuri (BD Biosciences). We gated leukocytes based

on CD45 expression followed by gating on CD3 + and then CD4 + and
CD8 + cells to identify subsets of T cells.

2.3. Behavior

Mechanical allodynia was quantified using the von Frey calibrated
filaments. The mechanical stimulus producing a 50% likelihood of
withdrawal was determined using the “up-down” calculating method as
previously described (Chaplan et al, 1994; Garriga et al, 2018; Laumet
et al, 2015).

Spontaneous pain was measured using the conditioned place pre-
ference (CPP) paradigm as previously described (King et al, 2009;
Krukowski et al, 2017; Laumet et al, 2019a; Vichaya et al, 2018; Yang
et al, 2014). The CPP apparatus consisted of 2 chambers (18 × 20 cm,
one dark, one bright) connected by a 15 cm hallway (Stoelting, Wood
Dale, IL). On the first day each mouse freely explored the apparatus for
15 min. Conditioning took place over 4 days. In the morning, mice were
injected i.p. with phosphate buffered saline (PBS) and were individually
placed 10 min later in the dark chamber for 15 min. Four hours later,
mice were injected i.p. with 10 mg/kg of the analgesic drug retigabine
i.p. (#R-100, Alomone laboratory, Jerusalem, Israel) and placed in the
bright chamber. On the sixth day drug free mice explored the apparatus
for 15 min and the change in time spent in the bright (previously an-
algesic-paired) chamber was quantified. The pre- and post-conditioning
tests were recorded and analyzed using video tracking software (Noldus
Ethovision XT).

Depression-like behavior was quantified as increased immobility in
the forced swim test (FST). Mice were placed in a bucket (19 cm in
diameter, 29 cm high) filled with water (25 ± 1C) and immobility
time was recorded for the last 5 min of a 6 min trial as previously
described (Laumet et al, 2018; Laumet et al, 2017).

Because alterations in locomotor activity can bias the tests used for
measuring depression-like behavior and conditioned place preference,
spontaneous locomotor activity was recorded. Individual mice were
placed in a 50 × 30 × 30 cm new cage. The distance traveled was
recorded for 5 min and quantified by video tracking software (Noldus
Ethovision XT).

Behavioral testing was performed and scored by experimenters
blinded to experimental group treatment.

2.4. Gene expression

Mice were terminated with C02 procedure. The ipsilateral paw,
ipsilateral lumbar spinal cord (SC), and contralateral prefrontal cortex
(PFC) were rapidly removed and snap frozen in liquid nitrogen. RNA
were isolated and gene expression analyzed as previously described
(Laumet et al, 2015; Laumet et al, 2017). Briefly, total RNA was ex-
tracted from the tissues using the Trizol/chloroform method. cDNA was
prepared by using the high capacity cDNA reverse transcription kit
(#4368813, Applied Biosystems, Foster City, CA). The quantitative PCR
was performed using the CFX-384 real-time system (Biorad, Hercules,
CA) and gene were amplified with the PrimeTime standard qPCR assay
(IDT DNA technologies, Coralville, Iowa). The relative amount of Il1b
and Tnf genes in each sample was first normalized to the level of a
housekeeping gene, Gapdh, and then normalized to its expression level
in saline-treated mice.

2.5. Statistical analysis

Data are presented as mean ± SEM. Statistical difference between
2 or multiple groups was determined by t-test, one-way, or two-way
ANOVA depending on the experimental design followed by
Bonferonni’s multiple comparison tests when needed. Statistical ana-
lysis was performed using GraphPad Prism 6.0 (La Jolla, CA).
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3. Results

3.1. T Lymphocytes promote resolution of inflammatory pain

In WT mice, injection of CFA induced mechanical allodynia that
lasted 21 days (Fig. 1A, n = 8/group). In Rag2−/− mice, CFA-induced
allodynia persisted for at least for 33 days (Fig. 1A). Reconstitution of
Rag2−/− mice with CD3+ T cells before CFA administration normal-
ized the resolution of allodynia (Fig. 1A). The initial severity of me-
chanical allodynia in response to CFA was similar in all groups. All
groups had similar paw withdrawal thresholds at baseline (Fig. 1A).

Clinically, spontaneous pain is a more important problem than
mechanical allodynia (Vierck et al, 2008). To measure spontaneous
pain, we used the conditioned place preference (CPP) paradigm. The
development of a marked preference for the analgesic-paired chamber
indicates that mice experience spontaneous pain in response to CFA.
Starting the conditioning on day 3 post-injection and testing the mice
on day 8, we observed that WT and Rag2−/− mice had developed si-
milar preference for the analgesic-paired chamber in response to CFA
(Fig. 1B, n = 8/group). To determine whether spontaneous pain is
prolonged in the absence of T cells, we performed an independent ex-
periment in which we started the conditioning on day 28 (test on day
32). At 33 days after CFA, WT mice no longer displayed a preference for
the analgesic-paired chamber, indicating that the spontaneous pain had
resolved at this time point (Fig. 1C, n = 8/group). In contrast, CFA-
treated Rag2−/− mice still developed a preference for the analgesic-

paired chamber (Fig. 1C). Rag2−/− mice reconstituted with CD3 + T
cells behaved like WT mice (Fig. 1C). These findings indicate that
CD3 + T cells are required for the resolution of spontaneous pain in
response to CFA. T cell reconstitution of the Rag2−/− mice was con-
firmed by flow cytometry of peripheral blood (Fig. 2, n = 5/group).

3.2. T Cells promote recovery from CFA-induced depression-like behavior

Next, we investigated depression-like behavior as measured in the
FST. In WT mice, CFA administration increased immobility time in the
FST as assessed at 14 days post-CFA. The increased immobility time was
no longer apparent 22 days post-CFA, indicating resolution of depres-
sion-like behavior in WT mice (Fig. 3A, n = 6/group). In contrast,
Rag2−/− mice still displayed increased immobility at 22 days post-CFA
(Fig. 3B, n = 7/group). However, when Rag2−/− mice had been re-
constituted with CD3+ T cells, depression-like behavior had resolved at
22 days after CFA. The CFA-induced increase in duration of immobility
in the FST 14 days post-CFA was similar in WT and Rag2−/− mice.

Peripheral inflammation may induce sickness behavior which may
overlap with depression-like behavior. To assess whether prolonged
depression-like behavior in Rag2−/− mice was associated with pro-
longed or more intense sickness we monitored body weight and spon-
taneous locomotor activity (Laumet et al, 2018). CFA injection had no
effect on body weight (< 1 g change) and spontaneous locomotor ac-
tivity in WT, Rag2−/− mice, and in Rag2−/− mice reconstituted with T
cells (Fig. 4).

Fig. 1. Effects of T cells on the duration of pain in response to Complete Freund’s Adjuvant (CFA). A) Mechanical pain sensitivity was monitored in WT, Rag2−/− and
reconstituted Rag2−/− mice treated with saline or CFA (n = 8 mice/group). Repeated measures two-ways ANOVA followed by Bonferonni’s correction
(time × genotype interaction, F (32, 264) = 11.4, p < 0.0001. ** = p < 0.01 and *** = p < 0.001 comparing Rag2−/− +CFA vs. Rag2−/− +CD3+ + CFA. B)
Difference in time spent in the analgesic-paired chamber before (baseline) and after (test) conditioning in WT and Rag2−/− mice 8 days after intraplantar injection of
saline or CFA (n = 8/group). Two-way ANOVA followed by Bonferonni’s correction (CFA × genotype interaction, F(1, 28) = 0.07, p = 0.79; main factor CFA, F
(1,28) = 14.3, p = 0.0008). C) Difference in time spent in the analgesic-paired chamber before (baseline) and after (test) conditioning in WT, Rag2−/− and
reconstituted Rag2−/− mice 32 days after intraplantar injection of saline or CFA (n = 8/group). One-way ANOVA followed by Bonferonni’s’s correction (F=
(4,35) = 6.75, p = 0.0004). Significant statistical difference was indicated by * = p < 0.05, ** = p < 0.01 and *** = p < 0.001. Data are presented as
mean ± standard error of the mean.
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3.3. T Cells do not affect Tnf and Il1b expression after CFA

To determine whether the prolonged allodynia, spontaneous pain,
and depression-like behavior observed in T cell-deficient mice result
from more pronounced or prolonged (neuro)inflammation, we mea-
sured mRNA expression of the prototypical pro-inflammatory cytokines
Il1b and Tnf at the site of CFA injection (paw), and in the CNS

(ipsilateral lumbar spinal cord (SC) and contralateral prefrontal cortex
(PFC)). At 7 days after CFA, Il1b and Tnf were robustly upregulated in
the paw but cytokine expression did not differ between WT and Rag2−/

− mice (Fig. 5A). At 38 day post-CFA, Il1b and Tnf mRNA levels were
still upregulated in the paw in WT, Rag2−/− and reconstituted Rag2−/

− mice, but there were no group differences (Fig. 5B). SC levels of Il1b
were increased in both genotypes at 7 days post-CFA (Fig. 5C, Il1b:

Fig. 2. Representative plots illustrating the gating strategy. A) Representative flow cytometry plots of CD3 expression on CD45 + cells. B) Percentage of circulating
CD45+ CD3+ cells measured by flow cytometry 38 days after intraplantar saline or CFA injection (n = 5 mice/group). C) Representative flow cytometry plots of CD4
and CD8 expression on CD3 + cells isolated from WT 38 days after CFA injection. D) Percentage of circulating CD3+CD4+ and CD3+CD8+ cells measured by flow
cytometry 38 days after intraplantar saline or CFA injection (n = 5 mice/group). Significant statistical difference was indicated by * = p < 0.05, ** = p < 0.01
and *** = p < 0.001. Data are presented as mean ± standard error of the mean.

Fig. 3. Effects of T cells on the duration of depression-like behavior in response to CFA. A) The forced-swim test was performed 14 d and 22 d after intraplantar
injection of CFA or saline in WT mice (n = 6 mice/group). Two-way ANOVA (time × treatment interaction, F(1,20) = 4.85, P = 0.04). (B) The forced-swim test was
performed 14 d and 22 d post-injection in Rag2−/− and reconstituted Rag2−/− mice (n = 7 mice/group). Two-way ANOVA followed by Bonferroni’s correction (T
cells × treatment interaction, F(2,18) = 7.11, P = 0.005). The FST was performed in the same mice on day 14 and 22. Significant statistical difference were
indicated by * = p < 0.05, ** = p < 0.01 and *** = p < 0.001. Data are presented as mean ± standard error of the mean.
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WT + saline (n = 7) vs, WT + CFA (n = 6) p = 0.016; Rag2−/

− + saline (n = 7) vs. Rag2−/− + CFA (n = 6) p = 0.04; Tnf:
WT + saline (n = 7) vs, WT + CFA (n = 7) p = 0045; Rag2−/

− + saline (n = 7) vs. Rag2−/− + CFA (n = 7) p = 0.10) and back to
baseline at 38 days (Fig. 5D). Tnf was not significantly upregulated in
the SC (Fig. 5D). In the PFC, CFA increased Il1b and Tnf expression in
WT and Rag2−/− mice at 7 days and cytokine levels were no longer
elevated at 38 days (Fig. 5E, Il1b: WT + saline (n = 8) vs, WT + CFA
(n = 6) p = 0.16; Rag2−/− + saline (n = 6) vs. Rag2−/− + CFA
(n = 7) p = 0.19; Tnf: WT + saline (n = 8) vs, WT + CFA (n = 6)
p = 0.81 ; Rag2−/− + saline (n = 6) vs. Rag2−/− + CFA (n = 7)
p = 0.49). An overall CFA effect was apparent (p = 0.004) at 7 days
post-CFA (Fig. 5E, F). There were no group differences in PFC cytokine
mRNA levels (Fig. 5E,F). These findings indicate that the prolonged
allodynia, spontaneous pain, and depression-like behavior in T cell-
deficient mice did not result from differences in acute or persistent
upregulation of Tnf or Il1b expression in paw, spinal cord and PFC.

4. Discussion

The present findings demonstrate for the first time that CD3+ T cells
are required for the resolution of comorbid persistent mechanical al-
lodynia, spontaneous pain, and depression-like behavior in response to
peripheral inflammation. Mechanical allodynia, spontaneous pain and
increased immobility time in the FST were significantly prolonged in
Rag2−/− mice which do not have T and B cells, compared to WT mice.
Reconstitution of Rag2−/− mice with CD3 + T cells before CFA ad-
ministration was sufficient to normalize the resolution of both pain and
depression-like behavior in Rag2−/− mice.

Accumulating preclinical evidence indicates a critical role of T cells
in promoting the resolution from neurological disorders. The absence of
T cells delays the resolution of pain (Baddack-Werncke et al, 2017;
Boue et al, 2011; Krukowski et al, 2016; Laumet et al, 2019a) For ex-
ample, chemotherapy-induced peripheral neuropathy is strikingly pro-
longed in the absence of T cells and reconstitution with T cells prevents
the development of chronic pain. Likewise T cells are critical to pro-
mote resolution of inflammation- or stress-induced depression-like

behavior (Brachman et al, 2015; Cohen et al, 2006; Laumet et al, 2018).
The neuroprotective role of T cells is not limited to nociception and
depression, it has been shown in models of nerve injury as well (Jones
et al, 2015). One limitation is that most of these studies involved only
male mice. Given the sex difference observed in neuro-immune inter-
actions, further studies using female mice are necessary to address
potential sex difference in the pro-resolution effect of T cells.

Our findings indicate that a T cell dysfunction may contribute to the
comorbidity of pain and depression. This notion is supported by clinical
evidence. For example, patients with irritable bowel syndrome (IBS)
who present with depressed symptoms and persistent pain, have a
lower number of circulating T cells than healthy controls (Swiatkowski
and Rybakowski, 1993). Reductions in circulating T cells and in mi-
togen-induced T cell proliferation have been reported in patients with
symptoms of depression (pain was not assessed in these studies) (Grosse
et al, 2016; Leday et al, 2017; Miller, 2010; Snijders et al, 2016; Toben
and Baune, 2015).

Rag2−/− mice do not have T and B cells and we show it is sufficient
to reconstitute these mice with T cells to normalize resolution of in-
flammatory pain and depression-like behavior. Thus, our findings in-
dicate B cells are not required for onset, severity, or resolution of in-
flammatory pain and depression-like behavior following CFA injection.
Nevertheless, it is possible that B cells participate in behavioral al-
teration and neuroinflammation induced by CFA. Additionally, it is
likely that T cells interact with other immune cells such as macrophages
to promote resolution (Laumet et al., 2019b). Indeed, we showed earlier
that macrophages are required for the resolution of pain (Bang et al.,
2018; Krukowski et al., 2016; Willemen et al., 2014).

In our CFA model, the prolonged mechanical allodynia, spontaneous
pain, and depression-like behavior observed in Rag2−/− mice is not
mediated by prolonged or exaggerated inflammation at the site of CFA
injection and in the CNS. At 7 days after CFA, Tnf and Il1b expression in
the paw, lumbar spinal cord and brain were similar in WT and Rag2−/−

mice. These observations are in line with previous studies from us and
others where similar expression of proinflammatory cytokines were
observed in the brain in WT and Rag2−/− mice in response to LPS
(Clark et al, 2015; Laumet et al, 2018). These data indicate that re-
solution of inflammation is unlikely to be sufficient to resolve pain and
depression-like behavior. Likewise, resolution of pain and depression-
like behavior in the WT is not associated with full resolution of paw
inflammation. This dissociation between the resolution of inflammation
on the one hand and pain and depression on the other hand is supported
by clinical data. For example, effective treatment of inflammation in
patients with rheumatoid arthritis or inflammatory bowel syndrome is
not always associated with the resolution of pain (Bielefeldt et al, 2009;
Lee et al, 2011; Lomholt et al, 2013). Our data suggest that pharma-
cological treatment of comorbid pain and depression with anti-in-
flammatory drugs like NSAIDs will not be sufficient to resolve the pain
and depression. Our data indicate that functional T cells (and/or their
products) are necessary to treat the symptoms of pain and depression.
Our current findings might also explain that inhibition of proin-
flammatory cytokine signaling (e.g., anti-TNF-α) has a limited effect on
major depressive disorders (Kappelmann et al, 2018; Raison et al,
2013).

A potential mechanism for the T cells to promote resolution of
mechanical allodynia, spontaneous pain and depression-like behavior is
the release of endogenous opioids. T cells produce endogenous opioids
in response to peripheral inflammation and this reduces allodynia
(Baddack-Werncke et al, 2017; Basso et al, 2016; Basso et al, 2018;
Boue et al, 2011; (Labuz et al., 2009); Labuz et al, 2010; Lutz and
Kieffer, 2013; Maestroni and Conti, 1991; Pecina et al, 2019). It has
been proposed that this endogenous opioid production suppresses
neuronal activity to counterbalance the pro-nociceptive effects of cy-
tokines, we predict that the resolution mechanisms in reconstituted
Rag2−/− mice are similar to those in WT mice. Therefore, reconstituted
Rag2−/− mice should be in a state of latent sensitization after

Fig. 4. Effects of T cells and CFA on measures of sickness behavior. A)
Spontaneous locomotor activity was assessed 3, 9 and 20 days after intraplantar
CFA or saline -injection in WT, Rag2−/−, and reconstituted Rag2−/− mice
(n = 4–5 mice/group). B) Body weight was monitored over time in WT, Rag2−/

−, and reconstituted Rag2−/− mice after CFA or saline injection (n = 4–5
mice/group).
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resolution of allodynia, as has been described for WT mice (Corder et al,
2013). Whether T cells indeed release endogenous opioids under the
conditions described here to induce resolution of comorbid pain and
depression would require further investigations.

5. Conclusion

Chronic pain and depression often occur together. Both can result
from inflammation and activation of the innate immune system and the
release of cytokines. However, the mechanisms that underlie the re-
solution of comorbid pain and depression are unknown. Our present
findings add to a growing body of literature (Baddack-Werncke et al,
2017; Brachman et al, 2015; Duffy et al, 2019; Filiano et al, 2017;
Krukowski et al, 2016; Laumet et al, 2018; Laumet et al, 2019a) de-
monstrating that CD3+ T cells are necessary for the resolution of co-
morbid pain and depression-like behavior after peripheral in-
flammatory. Interestingly, the presence of T cells did not affect the
expression of proinflammatory cytokines in the brain, the spinal cord,
and at the site of injection. These data indicate that T cells promote
resolution of comorbid mechanical allodynia, spontaneous pain, and
depression-like behavior independently of the resolution of neuroin-
flammation and peripheral inflammation even when inflammation is
the original trigger. The exact mechanism by which T cells promote the
resolution of comorbid mechanical allodynia, spontaneous pain, and
depression-like behavior in response to peripheral inflammation still
needs to be elucidated. From a clinical perspective, our findings are

important because they indicate that T cell dysfunction may contribute
to the persistence of comorbid pain and depression.

Our data contribute to understanding why anti-inflammatory
therapies will not be sufficient to effectively treat pain and depression
because T cell dependent active resolution pathways have to be en-
gaged for full recovery.
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