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Research Highlights 

(1) This review describes new insights into the structural biology of G-protein coupled receptors, 

with a focus on both allosteric and orthosteric binding, implying G-protein dependent and indepen-

dent signaling pathways.  

(2) The implications are explored for the design of new drugs to treat central nervous system dis-

orders, such as Parkinson’s and Alzheimer’s disease. 

 

Abstract  
In the last few years, there have been important new insights into the structural biology of G-protein 

coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec-

tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both 

G-protein dependent and independent pathways. The present review outlines the physiological and 

pharmacological implications of this perspective for the design of new drugs to treat disorders of the 

central nervous system. Specifically, new possibilities are explored in relation to allosteric and or-

thosteric binding sites on dopamine receptors for the treatment of Parkinson’s disease, and on 

muscarinic receptors for Alzheimer’s disease. Future research can seek to identify ligands that can 

bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a 

dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa-

mine receptor holds promise as a relevant therapeutic strategy for Parkinson’s disease. Regarding 

the treatment of Alzheimer’s disease, the design of dualsteric ligands for mono-oligomeric 

rinic receptors could increase therapeutic effectiveness by generating potent compounds that could 

activate more than one signaling pathway. 
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INTRODUCTION 

    

The ligands of G-protein coupled receptors 

represent the largest group of drugs marketed 

today
[1-2]

. In recent years there have been new 

insights into the structural biology of G-protein 

coupled receptors, also named seven trans-

membrane domain receptors or metabotropic 

receptors. These recent advances have im-

portant implications for the development of new 

drugs in almost all areas of medicine known 

today
[1-5]

, including disorders of the cardiovas-

cular, endocrine, metabolic and nervous sys-

tems
[3-6]

. It is known that endogenous ligands 

for G-protein coupled receptors, including 

neurotransmitters and hormones, activate 

these receptors through the well-known or-

thosteric binding site. Recent reports have 

given evidence of important binding sites other 

than the orthosteric site on G-protein coupled 

receptors, which have been denominated al-

losteric sites. The latter sites influence the sig-

naling and function of receptors when activated 

by endogenous or exogenous ligands
[2-4]

. For 

this reason, the interaction of ligands at an 

allosteric binding site must be explored in order 

to better understand the function of the central 

nervous system as well as in the treatment of 

disorders of the same, including neurodege-

nerative diseases. For instance, some G pro-

tein coupled receptors ligands have been 

tested as therapeutic agents that modulate 

central nervous system degeneration/rege-

neration processes affecting Parkinson’s and 

Alzheimer’s diseases
[7-8]

. The aim of the 

present contribution is to review recent insights 

into allosteric modulation of G-protein coupled 

receptors function, with the aim of contributing 

to the design of new drugs for the diagnosis 

and treatment of neurodegenerative disorders, 

with a special focus on Parkinson’s and Alz-

heimer’s diseases (Table 1)
[7-30]

.   

 

 

APPLICATION OF DATA FROM 

LIGAND-G PROTEIN COUPLED 

RECEPTORS CRYSTALS TO 

UNDERSTAND THE FUNCTION OF 

THE CENTRAL NERVOUS SYSTEM 

 

In 2000, the first report on the three-dimen-

sional structure of a G-protein coupled re-

ceptors in the central nervous system was 

based on pioneer studies with rhodopsin, 

which generated insights into the signaling 

produced by a non-diffusible ligand
[31]

. Since 

then, advances in 3dimensional crystal 

structural data by X-ray experiments on 

G-protein coupled receptors have elucidated 

multiple mechanisms of interaction between 

ligands and these receptors, with important 

implications for the function of the central 

nervous
[32-33]

. 

 

Despite the important insights into the 

structures of some G-protein coupled re-

ceptors, the study of others had been im-

peded by the poor expression of these re-

ceptors in biological systems and/or their 

instability in biological membranes. Conse-

quently, it has been difficult to obtain crys-

tals for X-ray studies. Through the applica-

tion of biological engineering, great progress 

has recently been made in the generation of 

cell/membrane-systems over-expressing G- 

protein coupled receptors, and in the de-

velopment of methods for stabilizing recep-

tors in membranes (e.g., by using antibodies, 

lysozymes or punctual mutations). Thus, in 

2007 the first structure of a diffusible li-

gand-G protein coupled receptors complex 

was obtained
[1-6]

 for a review of advances in 

regard to the structural biology of G-protein 

coupled receptors and engineering used to 

obtain X-ray crystal structures.  

 

In only a few years, structural data about 

other G-protein coupled receptors has in-

creased exponentially. Crystal data has 

become available for the β1 adrenergic 

receptor
[34-36]

, β2 adrenergic receptor
[37-42]

, 

A2a adenosine receptor
[43]

, D3 dopamine 

receptor
[44]

, CX chemokine receptor
[45]

, H1 

histamine receptor
[46]

, sphingosine 1phos-

phate receptor 1
[47]

, m2 acetylcholine re-

ceptor, m3 acetylcholine receptor
[48-49]

, μ, κ 

and δopioid receptor, FQ nociceptor
[50-53]

, 

and protease activated receptor 1
[54]

, here 

ordered by their date of definition
[3]

. This 

crystal data has greatly contributed to the 

understanding of the activation of these 

receptors and the functioning of the central 

nervous system
[32, 44]

.
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After studies with the β1 adrenergic receptor and β2 

adrenergic receptor provided insights into diffusible li-

gands
[34-42]

, the high homology of the three dimensional 

ligand pockets was demonstrated for receptors of the 

same family. This implies that selectivity involves specific 

regions in the extracellular loops of each member of a 

family of receptors
[34]

, which could represent a key factor 

in the efforts to treat several maladies that require spe-

cific knowledge of a particular subtype of receptors. For 

example, β2 adrenergic receptor selective agents could 

offer an opportunity to treat diseases involving certain 

central nervous system processes related to stress and 

memory
[55-58]

.  

 

Another structural insight involves the configuration and 

conformations of G-protein coupled receptors. Compo-

nents of bilayer lipidic membranes, particularly choles-

terol, modify the folding of receptors on this cellular sur-

face
[59]

. The resulting differences in the constitution 

and/or conformation of intracellular loops are closely 

related to variations in the transduction of signals
[2]

. Thus, 

the modification of the configuration and conformations 

of G-protein coupled receptors must certainly be involved 

in the activation of these receptors, both inside and out-

side the central nervous system. The cholesterol content 

of cells is distinct in these two locations
[59]

.  

 

New information about the structure of A2a adenosine 

receptors created the opportunity to study a ligand 

pocket in greater detail than was previously possible. 

This approach has led to a deeper understanding of why 

many drugs employed today for the treatment of central 

nervous system diseases
[43]

, which are bulkier than ca-

techolamines, exert greater effects than endogenous 

ligands on A2a adenosine receptors. It turns out that the 

binding site on adenosine receptors involves a greater 

number of residue contacts than that on catecholamine 

receptors. However, the binding sites of both these types 

of receptors share the same regions, which have been 

poorly studied
[43]

.  

 

Two insights have been particularly relevant for under-

standing G-protein coupled receptors and their relation to 

central nervous system function. Firstly, recent reports 

have elucidated the interaction between purine/xanthine 

derivatives (e.g., caffeine and theophylline, used as the-

rapeutical agents since ancient times) and G-protein 

coupled receptors
[60]

. Secondly, molecular modeling with 

crystallized G-protein coupled receptors as a template has 

deepened the understanding of the heterodimeric forms of 

these receptors (e.g., in relation to D2 dopamine recep-

tors)
[60-61]

. This has allowed for the study of heterodimers 

of adenosine A1adrenergic receptor/A2a adenosine re-

ceptor, D2 dopamine receptor/A2a adenosine receptor 

and D3 dopamine receptor/A2a adenosine receptor, of 

glutamate metabotropic glutamate receptor 4/A2a adeno-

Table 1  Some recent implications of crystallized ligand-G protein coupled receptors complexes for neurodegenerative  
disorders 

 
Receptor Implications in neurodegenerative disorders Reference 

A2a adenosine Treatment of Parkinson’s disease 

Neuroprotective role in temporal lobe epilepsy 

[3] 

[9] 

B1 adrenergic receptor Role in ischemic neurodegeneration [10] 

B2 adrenergic receptor Generation of Alzheimer’s disease [4] 

Chemokine CX chemokine receptor4 Neuroregeneration and development of neural stem progenitor cells [11] 

 Neuroregeneration and mielynization processes [13] 

 Etiology of Parkinson’s disease [14] 

Dopamine D3 Neurodifferentiation    

Neuroprotective effects in Parkinson’s disease    

Treatment of psychotic symptom in Alzheimer’s disease                                                                             

[15] 

[16] 

[17] 

Histamine (H1 histamine receptor) Post-synaptic receptor stimulation limits neurodegeneration induced by NMDA [18] 

k-opioid  Neuroprotective effect in acute seizures  

Neuronal survival and recovery of spatial memory impairments 

[19] 

[20] 

m-opioid  Improvement in motor-skill learning task  [21] 

D-opioid  Involved in degeneration stemming from a stroke [22] 

Nociceptine/orphanin FQ peptide Anti-parkinsonian effects 

Treatment of anxiety and despair 

[23] 

[24] 

Muscarinic M2 Treatment of Alzheimer’s disease         [25] 

Muscarinic M3 Modulation of cholinergic neurodegeneration  [26] 

S1P1 sphingolipid Reduces central nervous system inflammation in multiple sclerosis and autoimmune   

encephalomyelitis 

[27] 

Neurotensin 1 Interactions in the physiopathology of psychiatric  and  neurodegenerative disorders [28] 

Protease activated receptor 1 Neuroprotective effects for a stroke and neurological diseases [29] 

Rhodopsin Degeneration in retina [30] 
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sine receptor, of cannabinoid cannabinoid receptor 1/A2a 

adenosine receptor, and of cannabinoid receptor 1/A2a 

adenosine receptor/D2 dopamine receptor, all involved in 

several central nervous system processes and disord-

ers
[61-62]

, including Parkinson’s disease
[62]

. 

 

Crystal structural data for D3 dopamine receptor have 

allowed for greater understanding of how dopamine 

modulates movement, cognition and emotion
[44, 63-64]

, 

leading to new opportunities for the design of drugs to 

treat schizophrenia and drug abuse
[64-65]

. These struc-

tural data have provided information about different 

conformational states of intracellular loops, which could 

be related to different cellular signaling responses and 

consequently to different cognitive processes involved in 

some neural and central nervous system pathologies
[44]

. 

Moreover, the findings from this structural data have 

contributed to knowledge of the binding pocket in 

G-protein coupled receptors. For instance, it is now 

known that this pocket includes an extracellular exten-

sion which may be related to receptor selectivity. The 

targeting of this pocket could be useful in the develop-

ment of drugs that are selective for dopamine receptors, 

and this selectivity is vital in the treatment of some cen-

tral nervous system diseases
[44]

. 

 

On the other hand, crystal structural data from CX che-

mokine receptor 4 have yielded insights into G-protein 

coupled receptors that are related to inflammation as well 

as cell migration and development, including neural de-

velopment and remodeling
[45]

. Studies have reported the 

anchoring of a peptide to form a G protein coupled re-

ceptors-ligand complex, revealing that the binding of 

small peptides requires interactions in the extracellular 

loops and extracellular region of the transmembrane 

regions of G-protein coupled receptors
[45]

.  

 

The crystallization of the doxepin-H1 histamine complex 

has led to new opportunities for the design of psycho-

tropic agents, including antidepressants and anxiolytic 

drugs. H1 histamine is an important pharmacological 

mediator involved in the pathophysiological processes of 

allergies and inflammation. New data about binding 

added to the understanding of a region with a 

‘switch/lock’ seem to be important in G-protein coupled 

receptors activation
[46]

. Additionally, a region was clearly 

identified that is not in any other aminergic receptor, illu-

strating how minor differences among G-protein coupled 

receptors can lead to selectivity in the binding of small 

structurally-related molecules
[46]

.   

 

The crystal structure of sphingosine 1-phosphate recep-

tor 1 was obtained in complex with T4-lysozyme and an 

antagonist (a sphingolipid mimic). The signaling of this 

complex modulates lymphocyte trafficking, endothelial 

development and integrity, and maturation
[47]

, processes 

that can be related to pathological inflammation in the 

central nervous system
[27, 47]

. In this receptor, the amino 

terminus and extracellular loops occluded the binding 

pocket, requiring ligands to enter this pocket laterally 

between helices 1 and 7. This information provides a 

new way to reach the common orthosteric site and 

nearby region in other G-protein coupled receptors
[47]

.  

 

The three-dimensional crystal structural data of two 

muscarinic receptors—m2 acetylcholine receptors and 

m3 acetylcholine receptors—has revealed the three- 

dimensional distribution of their orthosteric binding poc-

ket, as well as insights into the amino acids that consti-

tute this site. These receptors mediate the response to 

acetylcholine released from parasympathetic nerves. 

Their role in the unconscious regulation of organ and 

central nervous system function makes them potential 

therapeutic targets for a broad spectrum of diseases
[48-49]

. 

It turns out that the amino acids in the orthosteric binding 

pocket are identical in all five muscarinic receptor sub-

types, supporting the idea that selectivity among a re-

ceptor family is related to the distribution of amino acid 

residues in the extracellular region
[49]

. Moreover, it was 

observed that a group of aromatic residues covers the 

binding site and restricts dissociation of the bound ligand. 

An allosteric site has also been mapped in a shallower 

region of the same binding pocket, allowing for greater 

understanding of the well-known propensity of these 

receptors to allosteric regulation
[48]

. Specifically, the 

crystal of m3 acetylcholine receptor provided new 

knowledge about a G (q/11)-coupled receptor, which has 

helped to elucidate the role of different types of hetero-

trimeric G-proteins in other receptors
[49]

.  

 

Different opioid receptors have also been crystalized with 

some ligands. The binding of opium and its derivatives to 

opioid receptors (another type of G-protein coupled re-

ceptors) in the central nervous system can produce 

analgesic effects as well as sedation, disruption of the 

respiratory drive, dependence and mood disturbances
[50, 

66]
. For instance, the morphinan ligand binds in a rela-

tively large and deep solvent-exposed pocket.  

 

The µ-opioid receptor was crystallized as a two-fold 

symmetrical dimer through a four-helix bundle motif 

formed by transmembrane segments 5 and 6
[53]

. Addi-

tionally, the activated κ-opioid receptor has been re-

lated to dysphoria psychotomimesis and disorders ma-
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nifesting these symptoms. The crystal structure of hu-

man κ-opioid receptor was studied in complex with the 

selective antagonist JDTic, arranged in parallel dimers 

at 0.29 nm resolution
[51]

. The structure revealed impor-

tant features of the ligand-binding pocket that help to 

explain the high affinity and subtype selectivity among 

opioid receptors. Modeling of various ligand-κ-opioid 

receptor complexes has revealed both common and 

distinctive features of ligands with selectivity for these 

receptors, which may facilitate the design of new drugs 

with greater selectivity
[51]

.  

 

The crystal structure of the mouse δ-opioid receptor, 

bound to the subtype-selective antagonist naltrindole, 

complemented what is known about the structural fea-

tures associated with ligand-subtype selectivity. It turns 

out that the binding pocket of opioid receptors is com-

prised of a lower region that is highly conserved among 

such receptors, and an upper region that contains di-

vergent residues conferring subtype selectivity
[50]

. Analy-

sis of three-dimensional crystal structural data in relation 

to the selectivity and efficacy of distinct ligands has been 

compared to the structure of other G-protein coupled 

receptors, revealing that this structural organization may 

be a common feature of other G-protein coupled recep-

tors families
[51, 53]

.  

 

The nociceptin/orphanin FQ peptide receptor (nociceptin/ 

orphanin receptor, also known as ORL-1) has high se-

quence similarity with classical opioid receptor subtypes 

(≥ 60%). Nociceptin/orphanin receptor has a markedly 

distinct pharmacology, featuring activation by an endo-

genous peptide and unique selectivity for exogenous 

ligands
[52]

. This receptor was crystallized with a ligand 

that mimics the first four amino-terminal residues of a 

nociceptin/orphanin receptor-selective peptide antagon-

ist, leading to important clues about the binding of these 

peptides. Interestingly, substantial conformational dif-

ferences were found in the pocket regions of classic 

opioid receptors in complex with nociceptin/orphanin 

receptor
[53]

. These insights could be invaluable in the 

development of new drugs that selectively target opioid 

receptors, as is commonly required in clinical practice.  

 

Finally, X-ray crystal structural data on protease acti-

vated receptor 1
[54]

 could be useful for studying the me-

chanism of ligand binding to G-protein coupled receptors, 

due to its high structural homology with other receptors 

of this family. Protease activated receptor 1 mediates 

cellular responses to thrombin and related proteases
[54]

. 

Thrombin irreversibly activates the protease activated 

receptor 1 receptor by cleaving the amino-terminal ex-

odomain. This exposes a tethered peptide ligand, which 

in turn binds to the heptahelical bundle of the receptor to 

affect G-protein activation. Although the binding pocket is 

superficial, it has little surface area that is exposed to the 

aqueous solvent
[54]

. Hence, this ligand has a distinct 

mechanism for triggering G-protein activation. 

 

 

LIGAND RECOGNITION OUTSIDE THE 

ORTHOSTERIC SITE DRUG DESIGN FOR 

REGENERATION OF THE CENTRAL 

NERVOUS SYSTEM 

 

Insights into ligand recognition of G-protein coupled re-

ceptors point to the involvement of regions other than the 

classic orthosteric site. Thus, there is apparently more 

than one signaling pathway for these receptors
[5, 67]

.  

 

Some research work employing crystal structures of 

G-protein coupled receptors in complex with diffusible 

ligands has found phenomena that are difficult to explain 

when considering only the orthosteric binding site
[5, 67]

. 

Indeed, the results seem to indicate the existence of one 

or more allosteric and/or regulator sites on each 

G-protein coupled receptors, as well as a G-protein in-

dependent pathway (the kinase pathway) that can influ-

ence and/or activate receptor signaling
[32, 68]

. Apparently, 

allosteric/regulator sites influence the conformational 

states generated and stabilized during the ligand recog-

nition process. It is now known that there are a wide 

range of conformations that go far beyond what was  

previously known as the active and inactive      

states
[5]

, implying a great diversity of effects on biological 

activity
[1, 2, 5, 69]

. This wider perspective on G protein 

coupled receptors signaling has in turn created a deeper 

understanding of functional selectivity or biased signaling 

of ligands
[70-72]

. As a result, there is a new focus of study 

in relation to the impact of the homo/hetero dimerization 

or oligomerization of G-protein coupled receptors on the 

regulation of biological activity (Figure 1)
[72-75]

.  

 

To illustrate the impact of these new concepts, it is 

useful to track the evolution of the design and use of 

beta blockers. Currently, it is known that at least two 

subgroups exist within this group of drugs (inverse 

agonists and neutral antagonists). These two sub-

groups include compounds with a wide range of effects 

on the G-protein independent signaling pathway. Iden-

tification of the particular profile of each beta blockers 

allows for a better use of the compound to reach a 

specific target. For example, carvedilol is no longer 

considered just a blocker (antagonist) of β-adrenergic 
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receptors through the Gs protein pathway. It is now 

known that this compound is a biased agonist for 

β-adrenergic receptors. That is, it behaves as an in-

verse agonist of the G-protein dependent pathway (re-

sulting in activity less than that of the basal state of the 

receptor) as well as an agonist on the G-protein inde-

pendent pathway
[35]

. This could have implications for 

neuropsychiatric diseases
[76]

.  

 

Hence, new terminology to describe the phenomena of 

recognition and activation of G-protein coupled receptors 

includes allosteric agonists (ligands that have an effect 

on receptor activity by binding to the allosteric site), du-

alsteric or bitopic ligands (ligands that reach the orthos-

teric and allosteric site at the same time) and supera-

gonists (ligands that have a greater effect than the most 

potent of endogenous ligands). The latter type of ligand 

has been related with allosteric sites as well as G-protein 

independent pathways in G-protein coupled recep-

tors
[77-78]

. The increase in nomenclature reflects the ex-

panding knowledge in drug design, a field previously 

limited to the concepts of orthosteric agonists and anta-

gonists
[32, 60, 77]

. As a consequence, new drugs aimed at 

G-protein coupled receptors now have more specific 

targets. Today new compounds are designed not only to 

activate or inactivate a G-protein coupled receptors, but 

also to selectively regulate the action on a particular 

conformational state and pathway, or a combination of 

conformational states and pathways (Figure 1).  

 

Since G-protein coupled receptors modulate multiple 

functions of the central nervous system, this expanded 

approach opens new opportunities for the rational design 

of new selective drugs to treat disorders of the central 

nervous system, including schizophrenia and Parkin-

son’s disease
[63-64]

. Moreover, it now seems possible to 

develop new histamine-related compounds that may be 

useful as antidepressant, antipsychotic and anticonvul-

sive drugs
[79-80]

. Future studies on mammalian gonado-

tropin releasing hormone-receptors could better define 

the role of multiple gonadotropin releasing hormone 

receptor conformations in the activation receptors, as 

well as identify the variety of upstream effectors (e.g., 

heterotrimeric and monomeric G-proteins). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Evolution of the perspective on G-protein coupled receptors function and neuronal response.  

On the left side, the old view of phenomena associated with ligand recognition and activation of G protein coupled receptors. 
On the right side, the new view based on X-ray structural data of ligand-G protein coupled receptors complexes, and the use of 
this data in silico with functional assays on these receptors. Today, many factors are taken into account for receptor activation, 
not just the binding of a ligand to the orthosteric site. For example, consideration is now given to the influence allosteric sites 

may have on ligand binding to the orthosteric site and thus to G-protein signaling, as well as to the kinase signaling that may 
be activated by ligand binding to the allosteric site. Moreover, ligands can bind to contiguous G protein coupled receptors, thus 
forming dimers. 
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This knowledge could then be employed to explore 

gonadotropin releasing hormone-receptors-mediated 

effects on cell migration, cell development and cell 

death, as well as on gonadotropin releasing hormone 

receptor trafficking
[81]

. For instance, new drugs could 

possibly be designed for the cannabinoid cannabinoid 

receptor 1 to treat drug addiction, pain, and appetite
[82]

. 

The advances made to date have already been applied 

to create new techniques for diagnosis and treatment of 

these maladies (Table 1). 

 

 

INSIGHTS INTO DOPAMINE RECEPTORS: 

APPLICATIONS FOR TREATING 

PARKINSON’S DISEASE 

 

Regarding Parkinson’s disease, our knowledge is still 

limited to the mechanism of damage to the dopaminergic 

system in the central nervous system. Therefore, the 

drug design strategy currently valid for treating this dis-

ease is the activation of dopamine receptors to com-

pensate for the lacked dopaminergic neurons
[83]

. It is 

expected that the market for drugs treating Parkinson’s 

disease will continue to increase in the near future
[84]

. 

 

Suitable methods have been proposed for employing data 

from structural biology in order to identify new drugs in the 

treatment of diseases of the central nervous system
[85]

. 

For example, D3 dopamine receptor is one G-protein 

coupled receptors that has been crystalized, yielding in-

formation about the differences in the intracellular loops of 

dopamine receptors that probably is related to distinct 

cellular signaling responses. D3 dopamine receptor has 

also provided the coordinates for building models of re-

lated dopamine receptors such as D2 dopamine receptor, 

often targeted for treating Parkinson’s disease
[86-87]

. It is 

still unclear whether the new models of D2 dopamine re-

ceptor will be able to provide the necessary accuracy for 

predicting the ligand binding mode
[87-88]

.  

 

In other cases the advantages of recent advances in 

molecular modeling based on the new crystal structural 

data of G-protein coupled receptors is unquestionable, 

having allowed for an understanding of structural fea-

tures that are important for the design of new compounds 

with greater potency, efficacy and selectivity on dopa-

mine receptors (Figure 2)
[88-92]

.  

 

For instance, in silico studies have suggested that selec-

tivity for aminergic receptors seems confined to areas 

near to but shallower than the orthosteric binding    

site
[87, 92]

, which has been supported by recent evidence 

involving a great variety of G-protein coupled        

receptors
[69, 93]

. On the other hand, studies on the binding 

of diaryl or piperazine compounds to dopamine receptors 

have enriched knowledge about G protein coupled re-

ceptors function in relation to allosteric modulation and 

the binding and action of dualsteric/bitopic ligands
[94-95]

.   

 

An interesting topic in relation to G-protein coupled re-

ceptors, and particularly to D2 dopamine receptor, is the 

role of the homo/hetero-dimeric forms of these receptors 

and the modulation of their biological activity, such as 

modified pharmacology, trafficking and signaling
[61]

. Only a 

few years, ago G-protein coupled receptors were consi-

dered to be expressed only as monomers on the cell 

membrane. Nowadays, there is crystallographic data and 

other evidence showing that these receptors can form ho-

modimers, heterodimers and higher-order oligomers
[36, 96]

. 

It is now accepted that cooperativity and/or modulation 

resulting from intramolecular cross-talk in the homo/  

hetero-dimer is probably involved in central nervous sys-

tem function
[61]

. Thus, the binding of one neurotransmitter 

to a neural receptor often affects the binding of a second 

neurotransmitter to the partner receptor. Coactivation of 

the two receptors in a homo/hetero-dimer can change the 

signaling pathway triggered by the neurotransmitter as 

well as the trafficking of the receptors
[61]

. 

 

For Parkinson’s disease treatment, particular interest is 

now being given to the homodimer of D2 dopamine re-

ceptor, recently demonstrated as a functional entity
[97]

, as 

well as to the heterodimers of different dopamine recep-

tors including D2 dopamine receptor/A2a adenosine 

receptor, D2 dopamine receptor/metabotropic glutamate 

receptor 4 and D2 dopamine receptor/5HT2adrenergic 

receptor
[73, 75, 98]

. Data from crystallized dimers/oligomers 

used in molecular modeling allow for the building of 

models that can be employed in the study of molecular 

interactions
[2, 74]

. Moreover, some specific structural fea-

tures involved in the interactions between the D2 dopa-

mine receptor/A2a adenosine receptor heterodimers 

have been detailed
[99-100]

. Due to advances in the struc-

tural biology of G-protein coupled receptors, we now 

know that multiple drugs can be used to target a variety 

of such receptors, including not only D2 dopamine re-

ceptor but also A2a adenosine receptor, metabotropic 

glutamate receptor 4, 5HT2adrenergic receptor or mus-

carinic acetylcholine receptors as a simple target
[101-102]

 

or as a cluster of targets
[103]

. Moreover, drugs specific to 

homo- and hetero-dimers, known as bivalent drugs, are 

able to activate these two dimeric receptors simulta-

neously, and thus could prove to be very promising for 

treatment of central nervous system disorders
[90, 104-108]

. 



Farfán-García Eunice D, et al. / Neural Regeneration Research. 2013;8(24):2290-2302. 

 2297 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, D3 dopamine receptor also has been targeted to 

treat Parkinson’s disease, and in silico/in vitro studies 

have been carried out to understand the details of agon-

ist binding and improve the design of selective li-

gands
[109-110]

. However, the limiting factor for the applica-

tion of drugs targeting this receptor is that they have a 

great impact on behavior, such as in a great variety of 

obsessive-compulsive disorders
[111]

. 

 

 

DRUGS TARGETING MUSCARINIC 

RECEPTORS: APPLICATIONS FOR 

TREATING ALZHEIMER’S DISEASE 

 

Effects on the organism mediated by muscarinic acetyl-

choline receptors are related to multiple processes in the 

central nervous system, including some related to cogni-

tive, memory and motor functions
[112-113]

. These receptors 

have been studied in relation to disorders associated 

with aging and neurodegenerative phenomena, espe-

cially Parkinson’s disease and Alzheimer’s disease. In 

the latter two neurodegenerative disorders there is a 

diminished expression of muscarinic acetylcholine re-

ceptors as well as a disruption in their capability to bind 

to endogenous ligands and/or activate coupled G-protein 

signaling
[114-119]

. 

 

Several studies on the three-dimensional crystal struc-

tures of muscarinic acetylcholine receptors have re-

ported the loss of muscarinic-1 cholinergic receptor, m2 

acetylcholine receptor or m4R receptors in Alzheimer’s 

disease
[120]

. A key role of m1 receptors has been clearly 

supported by the physiology of cognitive and memory 

processes, and the fact that the dysfunction of these 

receptors is related to neurodegenerative processes 

present in Alzheimer’s disease
[121]

. Strategies targeting 

muscarinic-1 cholinergic receptor have been employed 

with promising results, including a delay in the onset of 

manifestations, as well as in related molecular patho-

physiological processes— beta-amyloid plaque accu-

mulation and Tau hyperphosphorylation— that prompt an 

advance in cognitive deficit
[122-123]

. 

 

The first three-dimensional crystal structure of m2 ace-

tylcholine receptor was reported in a complex with the Gi 

protein, while the first such report on m3 acetylcholine 

Figure 2  The impact of advances in structural and functional biology on drug design.  

Some new terms and phenomena in the understanding and treatment of Parkinson’s disease (on left panel) or Alzheimer’s 
disease (on right panel). In the case of Parkinson’s disease, the understanding of the ability of bivalent ligands to reach dimers, 
and of the interaction between dimers, creates new opportunities for drug design. On the other hand, in the Alzheimer’s 
disease, the design of dualsteric ligands for muscarinic receptors offers an opportunity to generate very potent compounds 

(including the so-called superagonists) acting through more than one signaling pathway.  

D2DR: D2 dopamine receptor; A2a AR: A2a adenosine receptor; mGluR4: metabotropic-4 glutamate receptor; 5HT2AR: 2a 
serotonin receptor; m1R: muscarinic-1 cholinergic receptor. 
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receptor and muscarinic-1 cholinergic receptor was in 

complex with the Gq/11 protein. The closely related na-

ture of the structures of these two proteins has provided 

interesting details about the intracellular regions involved 

in coupling with heterotrimeric G proteins. Much attention 

has been focused on the distribution of residues in the 

extracellular region and their relation to the selectivity of 

ligands on muscarinic acetylcholine receptors through 

allosteric modulation. The new information on residues 

has great importance in the design of new cholinergic 

molecules
[68, 124-126]

, already having been employed to 

develop compounds that appear to be better that the 

currently prescribed non-selective muscarinic acetylcho-

line agonists
[127]

.  

 

Positive allosteric modulation of these receptors could be 

key to increasing their activity when reached by endo-

genous ligands
[128]

. This field of research opens the pos-

sibility of finding new superagonists (previously men-

tioned in relation to peptides on G-protein coupled re-

ceptors)
[78, 126]

. Moreover, the study of these extracellular 

regions could yield insights into the mechanism for re-

gulating the activity of G-protein coupled receptors in a 

biased manner, aimed at either the G-protein dependent 

or independent pathway
[70]

. Since G-protein independent 

signaling has recently been associated with cognitive 

processes, interest has increased in developing ligands 

which activate biased signaling
[129-130]

. These ligands 

may positively modulate the allosteric binding site of the 

acetylcholine m1 receptor, which would be able to retard 

the disassociation of the concerted bonding of ligands to 

the orthosteric binding site. Thus, acetylcholine ligands 

would possibly be able to bind to their receptor with 

greater affinity. This allosteric positive modulation of m1 

muscarinic receptors by new drugs, together with ace-

tylcholinesterase inhibition, could then give rise to a new 

way of treating Alzheimer’s disease. 

 

 

CONCLUDING REMARKS 

 

New three-dimensional crystal structural data on G- 

protein coupled receptors have recently been used in 

molecular modeling studies to explore new possibilities 

for drug design. As a result, a new perspective has come 

to the fore —This view includes allosteric modulation of 

G-protein coupled receptors—. The new approach of 

simultaneously targeting the orthosteric and one more 

allosteric binding sites opens new possibilities for in-

creasing the affinity and selectivity of the endogenous 

ligands for G-protein coupled receptors, and for activat-

ing receptor signaling through G-protein dependent and 

independent pathways. Moreover, during the submission 

of this manuscript, relevant works have been published 

supporting these important observations
[131-132]

. Hence, 

future research can seek to identify ligands that can bind 

to more than one site on the same receptor, or simulta-

neously bind to two receptors and form a dimer. These 

new insights have several implications for the treatment 

of central nervous system disorders. For example, the 

design of bivalent drugs that can reach ho-

mo/hetero-dimers of D2 dopamine receptor holds prom-

ise as a relevant therapeutic strategy for Parkinson’s 

disease. Regarding the treatment of Alzheimer’s disease, 

the design of dualsteric ligands for mono-oligomeric 

muscarinic receptors could increase therapeutic effec-

tiveness by generating potent compounds that could 

activate more than one signaling pathway. In general, the 

new strategy resulting from recent findings is to identify 

regions outside of the orthosteric site of G-protein 

coupled receptors that can influence the G-protein sig-

naling pathway and/or activate the kinase signaling 

pathway. These non-orthosteric sites could exist either 

on one receptor or two contiguous receptors in a dimer. 

As can be seen, with this new perspective there are a 

multitude of new possibilities of drug activity on a cellular 

system where G-protein coupled receptors are ex-

pressed. Hence, there are new opportunities to discover 

new compounds that are safer, more effective and more 

selective for the targeted receptor in the central nervous 

system of patients with neurodegenerative disorders. 
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