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ABSTRACT We present here the draft genome sequence of Paracoccus sp. strain
228, isolated from the Gulf of Gdańsk in the southern part of the Baltic Sea. The as-
sembly contains 4,131,609 bp in 32 scaffolds.

The Paracoccus genus (Rhodobacteraceae family) contains versatile species adapted to
various aquatic and terrestrial habitats. These Gram-negative metabolically flexible

bacteria utilize different substrates, making them suitable for use in bioremediation (1, 2).
Their tolerance for diverse growth conditions includes salt concentration (0 to 8% NaCl),
temperature (7 to 42°C), and possible switch to anaerobic growth (3–7). The Baltic Sea is
known for its altering conditions, and gulfs are especially susceptible to physicochemical
parameter variations (8, 9). An understanding at the molecular level of the bacterial
adaptation to this specific environment is important for marine research.

Paracoccus sp. strain 228 was isolated from the surface water of the Gulf of Gdańsk
(in the Baltic Sea), as described previously (10). The whole-genomic DNA was isolated
using the Sigma GenElute bacterial genomic DNA kit from bacteria cultured in Instant
Ocean medium. For Illumina HiSeq 2000 platform sequencing, shotgun and 3-kb mate
pair libraries were generated (using the Nextera mate pair library gel-plus kit) and
sequenced with 2 � 101-bp reads, providing a total of 26,398,898 reads. After a quality
check (FastQC version 0.10.1; http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), error correction, and filtering (in which a minimal base quality of Q20 for 90%
of the bases in each read of paired-end reads was applied), a total of 14,223,532
high-quality reads were retained, providing 146� average genome coverage. The
genome processing and de novo assembly were performed using the SOAPdenovo2
platform (11) at optimal k-mers (counted with Jellyfish version 1.1.10 [12]).

The genome assembly resulted in 32 scaffolds with an N50 scaffold size of
693,267 bp. The minimum and maximum scaffold lengths were 1,059 and 1,115,499 bp,
respectively. The final assembly provided a draft genome containing 4,131,609 bp, with
a high GC content (66.1 mol%) consistent with the average GC ratios of the Paracoccus
genus (13). The draft genome annotation using the NCBI Prokaryotic Genome Anno-
tation Pipeline (PGAP) version 2.9 (rev. 456657) (14) revealed 3,944 genes, with 3,491
predicted protein-coding sequences, 10 rRNA operons, and 51 tRNA genes. Moreover,
two cryptic prophage sequences and one potentially functional prophage sequence
were identified by PHASTER (15, 16).

The genome neighbor analysis of draft and complete genome sequences from NCBI
databases revealed two closest sequences, those of Paracoccus sp. strain Arc7-R13
(82.08% symmetrical and 97.4% gapped identity) and Paracoccus sp. strain S4493
(78.77% symmetrical and 97.33% gapped identity).
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Łyżen M, Bałut M, Piotrowski A, Golec P,
Szalewska-Pałasz A. 2019. Draft genome
sequence of Paracoccus sp. strain 228, isolated
from surface water of the Gulf of Gdańsk in the
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The newly assembled Paracoccus sp. 228 genome would provide input in studies on
the adaptation of marine bacteria to their habitat. Analysis of its genomic potential
revealed the presence of numerous stress response genes (e.g., those involved in
compatible solute synthesis and osmotic and oxidative stress), membrane transport
mediators, a functional motility system, and a higher-than-average abundance of genes
involved in energy acquisition and macromolecule synthesis facilitating metabolic
flexibility. Detailed molecular study of the adaptive processes in Paracoccus sp. 228 will
be performed using transcriptomic and proteomic approaches.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number JYGY00000000. The version de-
scribed in this paper is the first version, JYGY01000000. The Sequence Read Archive
(SRA) accession number is SRR8793599.
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