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Heat-Stable Antifungal Factor (HSAF) and its analogs are antifungal natural products
produced by the biocontrol agent Lysobacter enzymogenes. The production of HSAF is
greatly influenced by environmental stimuli and nutrients, but the underlying molecular
mechanism is mostly unclear. Here, we found that HSAF production in L. enzymogenes
OH11 is strictly controlled by spermidine, which is the most prevalent triamine in
bacteria. When added into OH11 cultures, spermidine regulated the production of HSAF
and analogs in a concentration-dependent manner. To verify the role of spermidine,
we deleted LeSDC and LeADC genes, encoding S-adenosylmethionine decarboxylase
and arginine decarboxylase, respectively, that are the key enzymes for spermidine
biosynthesis. Both deletion mutants produced barely detectable spermidine and HSAF
including its analogs, whereas the antifungals production was restored by exogenous
spermidine. The results showed that the OH11 cells must maintain a proper spermidine
homeostasis for the antifungals production. Indeed, the expression level of the key
HSAF biosynthetic genes was significantly impaired in LeSDC and LeADC mutants, and
exogenous spermidine restored the gene expression level in the mutants. Ornithine is a
key substrate for HSAF biosynthesis, and OH11 genome contains arg1 and arg2 genes,
encoding arginases that convert arginine to ornithine. While the expression of arg1 and
arg2 was affected slightly upon mutation of LeSDC and LeADC, exogenous spermidine
significantly increased the arginase gene expression in LeSDC and LeADC mutants.
Together, the data revealed a previously unrecognized mechanism, in which spermidine
controls antibiotic production through controlling both the biosynthetic genes and the
substrate-production genes.

Keywords: Lysobacter enzymogenes, HSAF, spermidine, S-adenosylmethionine decarboxylase, arginine
decarboxylase, arginase

INTRODUCTION

For decades, the Gram-positive actinomycetes have been the main source for bioactive natural
products (Genilloud, 2017). Many Gram-negative bacteria, such as the ubiquitous environmental
microorganisms Lysobacter, remain largely underexplored (Xie et al., 2012). We previously
isolated Heat-Stable Antifungal Factor (HSAF) and its analogs, a group of polycyclic tetramate
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macrolactams (PoTeMs), from L. enzymogenes strains (Yu
et al., 2007). HSAF shares the same chemical structure with
dihydromaltophilin, and its absolute configuration was first
established in 2015 (Graupner et al., 1997; Nakayama et al.,
1999; Xu et al., 2015; Puopolo et al., 2018). So far, about a
dozen of analogs/precursors of HSAF have been reported (Li
et al., 2018). HSAF exhibits inhibitory activity against a wide
range of fungal species, and its chemical structure and mode of
action are distinct from existing antifungal drugs or fungicides
(Li et al., 2006; Ding et al., 2016a,b). Attempts to apply these
antifungal compounds, however, for pharmaceutical purposes
and biological control of plant diseases have been challenging
because production of HSAF and its analogs is greatly influenced
by environmental stimuli and nutrients. For example, HSAF and
analogs are produced only in the nutrient-limited media, such
as 1/10 tryptic soy broth (TSB) medium (Doyle et al., 1968;
Yu et al., 2007). As the underlying molecular mechanism is
not well understood, the knowledge of how biosynthesis of the
antifungals is regulated in L. enzymogenes could facilitate their
applications.

Previous studies have identified multiple factors effecting
HSAF biosynthesis in L. enzymogenes. For example, the global
transcriptional regulator Clp is essential for HSAF production
in L. enzymogenes (Qian et al., 2013; Wang et al., 2014).
The two-component systems (TCSs), Le-RpfC/Le-RpfG and
Le-QseC/Le-QseB, are involved in signal transduction of the
small molecule fatty acid LeDSF3 and indole, respectively,
both of which affect HSAF biosynthesis (Han et al., 2015,
2017). In addition, evidences showed that another two response
regulators, PilG and PilR are involved in the regulation
of HSAF biosynthesis (Zhou et al., 2015; Chen et al.,
2017b). LesR (a solo LuxR regulator) and LetR (a TetR-
family protein) are negative regulators of HSAF biosynthesis
in L. enzymogenes (Qian et al., 2014; Wang et al., 2017;
Xu et al., 2017). In addition to LeDSF3 and indole, a third
metabolite, 4-hydroxybenzoic acid (4-HBA) was found to
serve as a diffusible factor regulating HSAF biosynthesis via
LysRLe, a LysR-type transcription factor (Su et al., 2017).
A recent study identified another transcription factor LarR,
a member of the MarR-family proteins and suggested a
cross-talk between LysRLe and LarR during 4-HBA-regulated
HSAF production (Su et al., 2018). The previous studies have
drawn a hierarchical network of HSAF regulation, in which
multiple protein regulators are involved in controlling HSAF
production in L. enzymogenes. Considering the diverse habitat
of Lysobacter species, the presence of a complex regulatory
network is essential for the survival of the bacteria in dynamic
environments. To date, LeDSF3, indole and 4-HBA are the
only characterized small molecule signals in L. enzymogenes.
The involvement of multiple regulatory proteins in HSAF
biosynthesis suggests that there still exist yet-to-be-recognized
important small molecule signals in L. enzymogenes. These
small molecules could be environmental stimuli/nutrients or
intracellular metabolites.

In this work, we found that spermidine plays an essential
role in HSAF production in L. enzymogenes (Figure 1).
Spermidine is a naturally occurring polyamine with a variety

of biological functions (Xie et al., 2014; Chen et al., 2017a;
Madeo et al., 2018; Park et al., 2018). Together with the
diamine putrescine and the tetraamine spermine, these
polycationic small molecules bind and stabilize polyanionic
macromolecules such as DNA and RNA, modulate activity
of enzymes, help maintain general homeostasis of cells,
and are essential for cell growth and proliferation (Miller-
Fleming et al., 2015; Michael, 2016b; Madeo et al., 2018).
Our results showed that the mechanism for spermidine to
control HSAF production is distinct from the previously
reported, protein regulator-mediated mechanisms. The data
supported that the spermidine homeostasis in L. enzymogenes
cells may control the biosynthesis of HSAF and analogs
through affecting a key substrate of the antifungals, in
addition to controlling the key biosynthetic gene expression
level.

MATERIALS AND METHODS

Bacterial Strains and Plasmids
The list of bacterial strains and plasmids used in this study is
presented in Table 1. Lysobacter enzymogenes strain OH11 was
used as the wild type for production of spermidine, HSAF and
its analogs (Qian et al., 2009). OH11 and the derived strains
were cultured at 30◦C in media depending on the purpose
of the cultures. When required, antibiotics were added at the
final concentration of 50 µg/ml kanamycin (Km) or 150 µg/ml
gentamicin (Gm). Escherichia coli strain DH5α was used as the
host for plasmid maintenance and routinely grew at 37◦C in
Luria Broth (LB; Bertani, 2004) medium supplemented with
appropriate antibiotics according to the antibiotic resistance of
plasmids.

Construction of In-Frame Gene Deletion
Mutants of L. enzymogenes
The whole genome of L. enzymogenes strain OH11 was
sequenced, assembled and annotated by BGI company
(Shenzhen, China). The sequences of enzymes related to
spermidine biosynthesis reported previously, such as ornithine
decarboxylase (ODC, EC 4.1.1.17), arginine decarboxylase
(ADC, EC 4.1.1.19), agmatine deiminase (EC 3.5.3.12),
N-carbamoyl putrescine amidohydrolase (NCPAH, EC
3.5.1.53), S-adenosylmethionine decarboxylase (SDC, EC
4.1.50), spermidine synthase (SpdSyn, EC 2.5.1.16), spermine
synthase (SpmSyn, EC 2.5.1.22) and arginase (EC 3.5.3.1), were
downloaded from NCBI protein database using the EC number
(Michael, 2016a). Then BLASTP analysis was performed against
the genome of L. enzymogenes. The downloaded sequences were
used as subject proteins to identify spermidine biosynthesis
related proteins in L. enzymogenes. The deletion mutants in
L. enzymogenes were constructed as previously described (Qian
et al., 2012). The plasmids pEX18Gm or pJQ200SK were used
to obtain the deletion mutants. First, the flanking regions of
the target gene were amplified by PCR using the primers listed
in Table 2 and assembled into the corresponding restriction
sites of vector to construct the recombinant plasmid. Phusion
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FIGURE 1 | The predicted spermidine biosynthesis pathway in Lysobacter enzymogenes OH11. The two key steps catalyzed by arginine decarboxylase and
S-adenosylmethionine decarboxylase are highlighted. The genes that were predicted to encode the enzymes for spermidine biosynthesis (such as Le0364 for ADC
and Le1662 for SDC) are included for each of the steps, except the genes for ornithine decarboxylase and spermine synthase due to the lack of the genes in OH11
genome. Thus, putrescine and spermidine are only derived from arginine in OH11, and spermine is not present in OH11. The GenBank accession numbers of the
genes encoding proteins involved in spermidine biosynthesis are MH718925 for Le0364, MH718926 for Le1261, MH718927 for Le3659, MH718930 for Le3661,
MH718924 for Le1662, and MH718931 for Le0365. There are two arginases, encoded by Le2654 (arg1, GenBank accession number MH718928) and Le4836
(arg2, GenBank accession number MH718929), respectively, in the genome of L. enzymogenes to covert arginine to ornithine which is the key substrate for HSAF
biosynthesis.

High-Fidelity DNA polymerase (Thermo Scientific) was used for
PCR experiments in this study according to the following 3-step
program: 98◦C for 30 s at the initial denaturation step; 30 cycles
(98◦C for 10 s, 60◦C for 15 s, 72◦C for 1 min) of denaturation
annealing step; and 72◦C for 5 min in the final extension step.
The construct was sequenced by Eurofins MWG Operon LLC
to confirm the fidelity of the inserted fragments. Then the
correct recombinant plasmid constructs were transformed
into the wild-type strain OH11 by electroporation (Eppendorf
Eporator, Eppendorf North America, Inc.). The single-crossover
recombinants were selected on LB plates supplemented with
Km and Gm. The Gm-resistant colonies were cultured for 6 h
in liquid LB medium without antibiotics for double-crossover
recombinants enrichment. Subsequently, the recombinants were
counter-selected on LB plates containing 10% (w/v) sucrose
to screen for colonies lost the original vector. Finally, the
sucrose-resistant, Km-resistant, but Gm-sensitive colonies were

picked and verified by PCR using appropriate primers listed in
Table 2.

Extraction and Detection of HSAF and
Analogs
The strains were cultured in 25 ml of 1/10 TSB medium for
48 h. Before extraction, 75 µl of trifluoroacetic acid (TFA)
were added into the cultures to adjust the pH. HSAF and
analogs were extracted with 30 ml ethyl acetate. The upper
organic phase was collected and evaporated, and the residues
were dissolved in 300 µl methanol containing 0.05% TFA
(v/v). A 20 µl aliquot was analyzed by HPLC (Agilent, 1220
Infinity LC). HSAF and analogs were eluted by mobile phase
A (water, 0.05% TFA) and mobile phase B (acetonitrile, 0.05%
TFA). The elution started from 5% B and increased to 25%
in the first 5 min, linearly increased to 80% in the following
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TABLE 1 | Bacterial strains and plasmids used in this study.

Relevant genotype a Source

Strains

Lysobacter enzymogenes

OH11 Wild type, KmR Qian et al., 2009; CGMCC No. 1978

In-frame deletion mutants

1ADC In-frame deletion of Le0364, KmR This study

1SDC In-frame deletion of Le1662, KmR This study

1Arg1 In-frame deletion of Le2654, KmR This study

1Arg2 In-frame deletion of Le4836, KmR This study

1Arg1–1Arg2 In-frame deletion of Le2654 and Le4836, KmR This study

Escherichia coli

DH5α Host strain for molecular cloning Chen et al., 2018

Plasmids

pEX18GM Suicide vector with sacB and GmR Hoang et al., 1998

ADC-pEX18 pEX18GM with two flanking fragments of Le0364, GmR This study

SDC-pEX18 pEX18GM with two flanking fragments of Le1662, GmR This study

pJQ200SK Suicide vector with sacB and GmR Quandt and Hynes, 1993

Arg1-pJQ200SK pJQ200SK with two flanking fragments of Le2654, GmR This study

Arg2-pJQ200SK pJQ200SK with two flanking fragments of Le4836, GmR This study

a KmR and GmR, kanamycin- and gentamicin-resistant, respectively.

TABLE 2 | Primers used in this study.

Primer Sequence Purpose

Primers used for gene in-frame deletion

ADC-uF GGGGTACCCTGGCAGACGCTTTACTCGC (KpnI) To amplify 1,131-bp upstream homolog arm of Le0364

ADC-uR CCCAAGCTTGGAAGGCGCATTCTACAGG (HindIII)

ADC-dF CCCAAGCTTCCGCCTACCACGCCAAGGTC (HindIII) To amplify 888-bp downstream homolog arm of Le0364

ADC-dR GCTCTAGAGCGACACGCACAGCACCA (XbaI)

SDC-uF GGGGTACCACGACATAATAGAGGGTGCTGG (KpnI) To amplify 450-bp upstream homolog arm of Le1662

SDC-uR CCCAAGCTTAGGGCCTTGGTGAGGTTGT (HindIII)

SDC-dF CCCAAGCTTTCTACCACGGGCGCAATCTG (HindIII) To amplify 431-bp downstream homolog arm of Le1662

SDC-dR GCTCTAGAGTGCTCGAACACTGCGGCTA (XbaI)

SDC-vF TCCTCTTCCTCGGTAATGATGC To confirm mutant construction of 1SDC

SDC-vR ATCGGGTCGGTCTTGGCGGTAC

Arg1-uF CGGGGCCCCATTGGAACGACAGCCTCTT (ApaI) To amplify 981-bp upstream homolog arm of Le2654

Arg1-uR CCGCTCGAGCGGCAAGACAGGGGAAGA (XhoI)

Arg1-dF CCGCTCGAGGACTTGGTCGAGAGCCTG (XhoI) To amplify 998-bp downstream homolog arm of Le2654

Arg1-dR GGACTAGTGGCATTCCCCTCTTGTGA (SpeI)

Arg2-uF GGACTAGTCCCTCATCGTCCTGTTGG (SpeI) To amplify 1,504-bp upstream homolog arm of Le4836

Arg2-uR CCGCTCGAGAACGAGGGGATAAGTGCG (XhoI)

Arg2-dF CCGCTCGAGAGCCTGTTCGGCAAGTCG (XhoI) To amplify 1,416-bp downstream homolog arm of Le4836

Arg2-dR CGGGGCCCGTTCGTATCGGCGTTGGC (ApaI)

Primers used for qRT-PCR

pks-RT-F ACTATTTGTTGGGCGACGAC

pks-RT-R GTAACCGAACAGGGTGCAA

arg1-RT-F GTCATCGCCTGGAACCG

arg1-RT-R TCGTTGGTGTTGAAGTCGG

arg2-RT-F GAAGGCGTGGACGAGAACA

arg2-RT-R GAAGGCGTGGACGAGAACA

16S-RT-F ACGGTCGCAAGACTGAAACT

16S-RT-R AAGGCACCAATCCATCTCTG
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20 min, increased to 100% in 3 min, and then returned to
5% in the rest 2 min. The production of HSAF and analogs
was normalized using the ratio of corresponding peak area and
optical density at 600 nm (OD600). Three biological replicates
were conducted for each sample, and each was assayed in three
technical replicates.

Spermidine Extraction, Derivatization,
and Detection by HPLC
The extraction, derivatization and detection methods of
intracellular spermidine were carried out according to previously
described protocols with modifications (Li et al., 2016; Sakanaka
et al., 2016). Briefly, the strains were cultured in 25 ml 1/10
TSB medium for 48 h. A 2 ml fraction of the cultures was
centrifuged at 15,000 rpm for 3 min at 4◦C to collect the cells.
The pelleted cells were washed three times with phosphate-
buffered saline (PBS) buffer and centrifuged at 15,000 rpm for
5 min at 4◦C. The washed cells were resuspended in 250 µl
5% (v/v) trichloroacetic acid (TCA) and incubated in boiling
water for 15 min. After centrifuging at 15,000 rpm for 5 min
at 4◦C, a 200 µl fraction of supernatants was transferred into
a new 2 ml Eppendorf tube and kept for further derivatization.
For polyamine derivatization, 200 µl of NaOH (10 M) solution
and 10 µl of benzoyl chloride (open under a stream of N2)
were added into the above extracts. The solutions were mixed
by vigorously shaking for 2 min and stood for 20 min at
room temperature. A 200 µl of saturated NaCl was added
into the mixture and vortexed for 2 min. Subsequently, the
resulting derivatives were extracted twice with 1.5 ml diethyl
ether each time. The upper organic phase was combined and
kept in a fume hood until fully evaporated under air. The
residues in the tube were kept at −20◦C for further analysis.
The benzoylated polyamine extracts were analyzed with a C18
column (Agilent Eclipse XDB-C18 column, 250 × 4.6 mm,
3.5 µm) using Agilent HPLC (1220 Infinity LC), equipped
with a UV detector set at 254 nm. Benzoylated polyamines
were eluted by mobile phase A (water containing 0.05% TFA)
and mobile phase B (acetonitrile containing 0.05% TFA) using
the following gradient elution program: mobile phase B was
increased from 5 to 20% in the first 5 min, continued to increase
till 50% in the following 5 min and maintained for 12 min,
then increased to 100% during 22–26 min, and returned to 5%
in the final 5 min. Before injection, the benzoylated samples
were dissolved in 250 µl of methanol and centrifuged at
13,000 rpm for 10 min. An aliquot of 20 µl was injected for
HPLC analysis.

To quantify the intracellular spermidine concentration, a
calibration curve with spermidine concentrations ranging from
10 to 500 µM was established by HPLC analysis. Meantime, the
total intracellular protein concentration in the respective cultures
was measured according to the manual of PierceTM BCA protein
assay kit (Thermo Fisher), with bovine serum albumin as the
standard. Finally, the normalized concentration of intracellular
spermidine was determined as nmol/µg cellular protein. The data
were derived from three independent experiments with triplicate
samples.

RNA Extraction and qRT-PCR
The bacterial strains were cultured in 1/10 TSB or 1/10 TSB
supplemented with various concentrations of spermidine. The
cultures were allowed to grow for 12 h and the cells were
collected. The primers used for qRT-PCR are listed in Table 2.
The method for RNA extraction and qRT-PCR was essentially
identical to that described previously (Yu et al., 2018). The data
were derived from three independent experiments with triplicate
samples.

Statistical Analysis
Statistical analysis was performed by IBM SPSS 14.0 software
(SPSS Inc., Chicago, IL, United States) using the unpaired
Dunnett’s t-test (P < 0.05) to calculate significant differences.

RESULTS AND DISCUSSION

Exogenous Supplement of Spermidine
Inhibited Production of HSAF and
Analogs in L. enzymogenes
Polyamines are essential polycations found throughout all
kingdoms of life, and spermidine is the main triamine in bacteria
(Michael, 2016b). Since these small molecules function in many
cellular processes, including gene expression and regulation,
protein translation, autophagy, and stress response (Gevrekci,
2017), we figured that spermidine could be important for the
production of HSAF and analogs in L. enzymogenes. The wild-
type strain OH11 produces a series of metabolites belonging to
the PoTeM family, including HSAF, alteramide A/B, 3-dehydroxy
HSAF, and 3-dehydroxy alteramide A/B (Li et al., 2018).
When the OH11 culture was exogenously supplemented with
spermidine (25–100 µM), the yield of the PoTeM compounds
decreased gradually, with only approximately 5% of the wild type
level when exogenously added spermidine concentration reached
100 µM (Figure 2).

As shown in Figure 1, the cellular spermidine level depends
on the overall balance of uptake, export, biosynthesis, and
catabolism of polyamines (Kusano et al., 2008). To estimate
the spermidine level in OH11 cells, we extracted polyamines
from OH11 cells and analyzed by HPLC. In the wild-type
strain OH11 grown in 1/10 TSB which is the typical HSAF
production medium (Yu et al., 2007), spermidine was clearly the
dominant polyamine, with a level of about 0.08 nmol/µg cellular
proteins (Supplementary Figure S1). The other polyamines, such
as spermine and putrescine, were not detectable. When a low
concentration (25 µM) of exogenous spermidine was added into
the OH11 culture, the detectable level of cellular spermidine
actually dropped slightly; when a higher concentration (50–
100 µM) of exogenous spermidine was added, the cellular
spermidine level increased slightly (over 0.1 nmol/µg cellular
proteins). However, the degree of increase was not proportional
to the concentration of exogenous spermidine added, indicting
the buffering ability of OH11 cells to balance the cellular
concentration of polyamines. Interestingly, when the wild-type
strain OH11 was allowed to grow in full TSB, in which very little
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FIGURE 2 | HPLC analysis of production of HSAF and analogs in wild-type OH11, without or with exogenously supplemented spermidine (spd, 25–100 µM). The
quantitative analysis of HSAF and analogs is shown in the right panel (∗∗P < 0.01). The data were derived from three independent experiments with triplicate
samples.

HSAF was produced (Yu et al., 2007), the cellular concentration
of spermidine, about 0.01 nmol/µg cellular proteins, was clearly
lower than that in 1/10 TSB. The results suggested that even a
slight change of the cellular polyamine homeostasis can result in
a significant change in the production of HSAF and analogs in
L. enzymogenes OH11.

Deletion of Spermidine Biosynthetic
Genes Eliminated the Production of
HSAF and Analogs in L. enzymogenes
As shown in Figure 1, spermidine is biosynthesized from
putrescine and S-adenosylmethionine (SAM) (Murray-Stewart
et al., 2016). In many organisms, ornithine is converted
directly into putrescine upon a decarboxylation, which is
catalyzed by ornithine decarboxylase. Alternatively, putrescine
can be biosynthesized from arginine indirectly (Michael,
2016a). Arginine is first converted to agmatine by ADC,
agmatine to N-carbamoylputrescine by agmatine deiminase,
and putrescine is formed from N-carbamoylputrescine by an
amidohydrolase (Kusano et al., 2008; Shah and Swiatlo, 2008).
To form spermidine, SAM undergoes a decarboxylation, which
is catalyzed by SAM decarboxylase. The decarboxylated SAM
serves as a carbon electrophile to donate the aminopropyl
group to the nucleophilic amine of putrescine, resulting in
the triamine spermidine. This step is catalyzed by spermidine

synthase (Miller-Fleming et al., 2015). In some organisms,
spermidine can be further converted to spermine by adding
another aminopropyl group from decarboxylated SAM, which
is catalyzed by spermine synthase (Miller-Fleming et al., 2015).
To understand how the biosynthesis of spermidine is related to
the biosynthesis of HSAF and analogs, we searched the genes
relevant to polyamine biosynthesis in the genome of OH11
(GenBank accession number: RCTY00000000). Interestingly,
OH11 genome does not appear to contain genes encoding the
ODC or spermine synthase. This is consistent with the above
result that spermine is not detectable in OH11. The genomic
information also implies that putrescine and spermidine in OH11
are derived from arginine, not from ornithine (Figure 1).

Next, we in-frame deleted genes encoding ADC and
SDC, respectively, for spermidine biosynthesis in OH11. The
resulting mutants, 1ADC and 1SDC, produced a barely
detectable amount of spermidine (Supplementary Figure S2).
Coincidently, mutants 1ADC and 1SDC produced a barely
detectable amount of HSAF and analogs (Figure 3). When
1ADC and 1SDC mutants were exogenously supplemented
with spermidine (50 µM), the cellular level of spermidine
became detectable and comparable to that of the wild type
(Supplementary Figure S2). Correspondingly, the yield of HSAF
and analogs in 1ADC was comparable to that of OH11, and
the yield in 1SDC surpassed that of OH11, when the mutants
were exogenously supplemented with 50 µM of spermidine
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FIGURE 3 | HPLC analysis of HASF and analogs in wild-type OH11, deletion mutant of gene encoding arginine decarboxylase (1ADC), and deletion mutant of gene
encoding SAM decarboxylase (1SDC). The quantitative analysis of HSAF and analogs is shown in the right panel (∗P < 0.05, ∗∗P < 0.01). The data were derived
from three independent experiments with triplicate samples.

(Figure 4). The data demonstrated that maintaining a proper
level of spermidine is essential for OH11 to produce HSAF and
analogs.

Mutation of Spermidine Biosynthetic
Genes Lowered the Expression Level of
HSAF Biosynthetic Gene
After having established the connection between spermidine
homeostasis and production of HSAF and analogs in OH11,
we examined if spermidine executes its effect through affecting
the expression level of HSAF biosynthetic genes. The results
showed that the expression level of the key biosynthetic gene
(hsaf pks/nrps) for HSAF and analogs in 1ADC and 1SDC
mutants was lower than that in OH11 (Figure 5). Upon addition
of exogenous spermidine (50 µM), the expression of hsaf pks/nrps
in 1ADC returned to the wild type level, whereas the expression
in 1SDC was significantly higher than that in the wild type.
The data supported that spermidine can control the biosynthesis
of HSAF and analogs at the gene transcription level. However,
the mutation of the spermidine genes in 1ADC and 1SDC did
not lead to a shutdown of the HSAF biosynthetic gene, although
the production of HSAF and analogs was nearly completely shut
down in 1ADC and 1SDC. The results implied that there may be
other mechanisms, in addition to the expression control of HSAF

biosynthetic gene, accounted for the observed block of HSAF
production in the mutants.

Mutation of Spermidine Biosynthetic
Genes Affected Arginase Gene
Expression
In many organisms, ornithine decarboxylase is the limiting factor
for the biosynthesis of putrescine, spermidine and spermine
(Miller-Fleming et al., 2015). Interestingly, no ODC gene was
identified in the genome of OH11 (Figure 1) and therefore
spermidine in OH11 was possibly derived only from arginine,
but not ornithine. However, arginine can also be converted to
ornithine through the urea cycle and the enzyme arginase is
responsible for this conversion (Morris, 2002). Because ornithine
is a key substrate of all HSAF derivatives (Yu et al., 2007; Lou
et al., 2011), it would be interesting to examine if there is a
connection between the arginine-derived spermidine pathway
and the arginine-derived ornithine pathway.

In OH11 genome, we identified two homologous genes
predicted to encode arginases, arg1 (Le2654) and arg2 (Le4836).
We measured the expression level of these two genes in the wild
type and spermidine biosynthetic mutants. First, we checked the
expression level of arg1 and arg2 in the wild type and found
that the addition of spermidine (50 µM) to OH11 decreased
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FIGURE 4 | HPLC analysis of HSAF and analogs extracted from wild-type OH11, as well as 1ADC and 1SDC mutants treated with exogenous spermidine (spd, 50
µM). Quantitative analysis is shown in the right panel. The data were derived from three independent experiments with triplicate samples. ∗∗P < 0.01.

FIGURE 5 | Relative expression level of the key biosynthetic gene hsaf
pks/nrps for HSAF and analogs in wild-type OH11, 1ADC and 1SDC
mutants with or without exogenous spermidine. The transcription level of
pks/nrps in the wild-type strain OH11 was set as 1. ∗P < 0.05, ∗∗P < 0.01.

the transcription of both arg1 and arg2. The results were in
parallel with the observed decrease of production of HSAF
and analogs in OH11 upon addition of spermidine (Figure 2).
In the spermidine mutants, the expression level of arg2 was

slightly decreased by mutation of ADC gene or SDC gene,
while the expression of arg1 was slightly increased by the
mutations (Figure 6). The results showed that the arginase
genes were affected differently upon the block of the spermidine
biosynthesis. However, the addition of exogenous spermidine (50
µM) nearly doubled the arg2 expression in both mutants, when
compared to the wild type. For arg1 gene, although it was not
significantly affected by either ADC mutation or SDC mutation,
the addition of exogenous spermidine (50 µM) significantly
stimulated arg1 expression in both mutants (Figure 6). In the
wild type, exogenous spermidine exhibits an inhibitory effect
on HSAF production, which is consistent with the decrease of
expression of the HSAF biosynthetic gene (hsaf pks/nrps) and
the arginase genes (arg1 and arg2); in the spermidine mutants
(1ADC and 1SDC), exogenous spermidine restores/stimulates
expression of the HSAF biosynthetic gene (hsaf pks/nrps) and
the arginase genes (arg1 and arg2). Thus, spermidine affects the
production of HSAF and analogs through controlling both the
biosynthetic genes and the substrate-production genes.

To gain a better understanding on these two arginine-
related biosynthetic pathways, we carried out in-frame deletion
of arg1 and arg2 genes in OH11. The production of HSAF
and analogs only slightly decreased in 1arg1 mutant or 1arg2
mutant (Supplementary Figure S3). However, in the double-
deletion mutant (1arg11arg2), the production of HSAF and
analogs significantly decreased (Supplementary Figure S3). The
results suggested that the two arginases are important for HSAF
production and likely able to compensate each other in the single
mutants. Notably, even the double mutant (1arg11arg2) did
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FIGURE 6 | Relative expression level of genes arg1 and arg2, whose encoding products are arginases, in wild-type OH11, 1ADC and 1SDC mutants treated with
or without exogenous spermidine. The transcription level of arg1 and arg2 in the untreated wild-type OH11 was set as 1. ∗P < 0.05, ∗∗P < 0.01.

not completely eliminate the production of HSAF and analogs,
implied that the OH11 cells could obtain ornithine from other
sources to serve as substrate for HSAF and analogs, such as
from the culture media or other unknown metabolic pathways.
In addition, the mutations increased slightly the cellular level of
spermidine (Supplementary Figure S4). The results suggested
that OH11 cells were able to maintain a proper spermidine level
when the conversion from arginine to ornithine is blocked.

Many studies have shown that maintaining a proper cellular
concentration of polyamines is critical to cell growth, aging,
memory performance, neurodegenerative diseases, metabolic
disorders and cancer (Miller-Fleming et al., 2015; Michael,
2016b; Madeo et al., 2018). Here, our data showed that cellular
spermidine homeostasis is also critical to the production of
a group of antifungal natural products in L. enzymogenes.
The production of HSAF and analogs in L. enzymogenes is
subjected to the control of a complex regulatory network
with multiple signals and regulators involved. In this study,
we found that the production of HSAF and analogs are
markedly affected, when spermidine homeostasis is disturbed in
OH11. L. enzymogenes OH11 uses the spermidine homeostasis
to control a key substrate of HSAF and analogs. The
mechanism is distinct from the previously reported protein
regulator-mediated mechanisms (Qian et al., 2013; Wang
et al., 2014). When the wild-type cells have too much
spermidine, arg1 and arg2 expression would decrease; when
the spermidine biosynthetic genes are mutated, exogenous
spermidine would restore or even stimulate the expression of
both the HSAF biosynthetic gene and the substrate ornithine-
production genes.

CONCLUSION

In this study, we investigated the effects of spermidine on
HSAF and analogs production in L. enzymogenes. Our data
showed that spermidine is the predominant polyamine in the
cells of L. enzymogenes and the intracellular homeostasis
of spermidine is essential for production of HSAF and
analogs. We also revealed that spermidine regulated HSAF
biosynthesis pathway via affecting the transcription level
of HSAF key biosynthetic gene and the genes responsible
for HSAF substrate conversion. In summary, our results
revealed a previously unrecognized function of spermidine
in regulating antifungals biosynthesis. The findings will
expand our knowledge on the biological functions of
spermidine.
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FIGURE S1 | HPLC analysis of spermidine in wild type OH11 treated with or
without exogenously supplemented spermidine (spd, 25–100 µM). Quantitative
analysis of intracellular spermidine concentration is shown in the right panel. The
data were derived from 3 independent experiments with triplicate samples.

FIGURE S2 | HPLC analysis of spermidine concentration in wild type OH11,
1ADC, and 1SDC treated with or without 50 µM spermidine (spd). Quantitative
analysis of intracellular spermidine concentration is shown in the right panel. The
data were derived from 3 independent experiments with triplicate samples. Stars
indicated P < 0.01 compared with wild type OH11.

FIGURE S3 | HPLC analysis of HASF and analogs from wild type OH11, deletion
mutant of arg1 (1arg1), deletion mutant of arg2 (1arg2), and the double deletion
mutant of arg1 and arg2 (1arg11arg2). The quantitative analysis of HSAF and
analogs production is shown in the right panel (∗∗P < 0.01). The data were derived
from 3 independent experiments with triplicate samples.

FIGURE S4 | HPLC analysis of spermidine concentration from wild type OH11,
deletion mutant of arg1 (1arg1), deletion mutant of arg2 (1arg2), and the double
deletion mutant of arg1 and arg2 (1arg11arg2). The quantitative analysis of
spermidine concentration was shown in the right panel (∗P < 0.05). The data were
derived from 3 independent experiments with triplicate samples.
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