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Abstract: Autophagy is a highly conserved intracellular process for the ordered degradation
and recycling of cellular components in lysosomes. In the liver, parenchymal cells (i.e., mainly
hepatocytes) utilize autophagy to provide amino acids, glucose, and free fatty acids as sources
of energy and biosynthesis functions, but also for recycling and controlling organelles such as
mitochondria. Non-parenchymal cells of the liver, including endothelial cells, macrophages (Kupffer
cells), and hepatic stellate cells (HSC), also employ autophagy, either for maintaining cellular
homeostasis (macrophages, endothelium) or for providing energy for their activation (stellate cells).
In hepatocytes, autophagy contributes to essential homeostatic functions (e.g., gluconeogenesis,
glycogenolysis, fatty acid oxidation), but is also implicated in diseases. For instance, storage disorders
(alpha 1 antitrypsin deficiency, Wilson’s disease), metabolic (non-alcoholic steatohepatitis, NASH),
and toxic (alcohol) liver diseases may benefit from augmenting autophagy in hepatocytes. In hepatic
fibrosis, autophagy has been implicated in the fibrogenic activation of HSC to collagen-producing
myofibroblasts. In hepatocellular carcinoma (HCC), autophagy may contribute to tumor surveillance
as well as invasiveness, indicating a dual and stage-dependent function in cancer. As many drugs
directly or indirectly modulate autophagy, it is intriguing to investigate autophagy-targeting, possibly
even cell type-directed strategies for the treatment of hereditary liver diseases, NASH, fibrosis,
and HCC.

Keywords: hepatocytes; hepatic stellate cells; sinusoidal endothelial cells; macrophages; fibrosis;
cirrhosis; hepatocellular carcinoma; biomarkers

1. Introduction

The term autophagy summarizes the processes involved in the orderly degradation and recycling
of worn, abnormal, or malfunctional cellular components. It is commonly accepted today that the term
“autophagy” was first introduced in 1963 by the Belgian cytologist and biochemistry Christian René de
Duve, who also coined the terms “endocytosis” and “phagocytosis” to designate pathways bringing
substrates for digestion in lysosomes [1]. However, the terms autophagy/autophagy/autophagia were
in fact already used a century earlier and published in 1859 in a French journal [2]. The importance
of autophagy was prominently acknowledged in 2016, when Yoshinori Ohsumi was awarded the
Nobel Prize for Physiology or Medicine for his discoveries of mechanisms for autophagy. Autophagy
is nowadays considered as a dynamic recycling system, which is essential for cellular renovation
and homeostasis [3]. As such, the resultant degradation products can be used for new protein
synthesis, energy production, and gluconeogenesis. There are three classes of autophagy, namely
macroautophagy, microautophagy, and chaperone-mediated autophagy, requiring different sets

Cells 2019, 8, 16; doi:10.3390/cells8010016 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0003-3888-0931
https://orcid.org/0000-0001-6206-0226
http://www.mdpi.com/2073-4409/8/1/16?type=check_update&version=1
http://dx.doi.org/10.3390/cells8010016
http://www.mdpi.com/journal/cells


Cells 2019, 8, 16 2 of 13

of autophagy-related genes and cellular compounds [3] (Figure 1). Macroautophagy is the most
prevalent form of autophagy. It is dependent on the “autophagosome”, a spherical vesicle appearing
randomly throughout the cytoplasm with the capacity to traffic along microtubules towards the
microtubule-organizing center, where lysosomes are concentrated [4]. These ring-shaped structures
are majorly formed by the “AuTophaGy” (ATGs) genes that are evolutionarily conserved from yeast to
higher eukaryotes. This cellular compartment has the capacity to sequester small portions of cytoplasm
enriched in soluble materials and organelles and to fuse with lysosomes forming the autolysosome,
in which the material is finally degraded. On the contrary, microautophagy is a more diverse type of
autophagy, in which cytoplasmic compounds or spontaneous formed vesicles are directly engulfed
by lysosomes. Recent studies demonstrate that this pathway is of particular relevance for cells
under amino acid starvation [5]. Based on the finding that vascular membranes and endosomes
can also incorporate or capture peroxisomes or lysosome-derived organelles, it was proposed
that this autophagy branch should be classified in three distinct subtypes of microautophagy [6].
Chaperone-mediated autophagy is more selective and not associated with membrane reorganization [3].
Instead, chaperone and co-chaperone proteins recognize cytosolic proteins that carry specific peptide
recognition sites and are then targeted to receptors on lysosomes, which subsequently internalize
these proteins for degradation (Figure 1). This pathway majorly contributes to the maintenance of
cellular homeostasis by facilitating degrading of proteins and recycling of amino acids. However,
transgenic mouse models have shown that this pathway participates in the regulation of glucose and
lipid metabolism, DNA repair, cellular reprogramming, and cellular response to stress [7].

With regards to the liver, there is strong evidence that the process of macroautophagy in particular
is the most important for maintaining hepatic homeostasis and suppressing spontaneous tumorigenesis.
The systemic mosaic deletion of Atg5 in mice resulted in multiple benign tumors that developed only
in the liver but not in other tissues [8]. On the other side, host-specific deletion of Atg7 impaired the
growth of multiple allografted tumors in mice, most likely by inducing release of arginosuccinate
synthase 1 from the liver and degradation of circulating arginine, which is essential for tumor
growth [9]. These inverse findings demonstrate that autophagy plays a dual role in cancer cells
with potential to both inhibit and promote tumor progression and promotion.

In the present review, we will highlight some principal and cell-type specific functions of
autophagy in the liver, its role in hepatic homeostasis, and its impact on the pathogenesis of liver
diseases. In addition, we will discuss how the present knowledge in autophagy research might
influence future directions in therapy of liver diseases.
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Figure 1. Simplified models of autophagy pathways in the liver. Macroautophagy involves the
formation of a double-membrane vesicle, in which the substrates to be degraded are included.
This vesicle called the autophagosome is then fused with the lysosome, allowing the degradation of
the products. Three distinct types of microautophagy exist. In one type, the lysosome forms arm-like
protrusions capable of engulfing substances. In a second branch, the lysosome can form invaginations,
in which substrates (e.g., lipids) can be wrapped. The most important pathway in microautophagy
involves the late endosome. In this compartment, substrates such as proteins carrying the pentapeptide
lysine-phenylalanine-glutamic acid-arginine-glutamine (KFERQ)-like motifs are internalized and
degraded. In chaperone-mediated autophagy, substrates with a KFERQ-like motif are first recognized
by the cytosolic chaperone. Subsequently, this complex is recognized by chaperone-mediated autophagy
associated receptors located at the lysosomal compartment. After internalization, the incorporated
substances are degraded. The three autophagy pathways serve as a dynamic recycling system that
produces new building blocks and provides energy necessary to guarantee cellular homeostasis. ER:
endoplasmic reticulum; HSC70: heat-shock 70-Kd protein; MTC: multimeric translocation complex.

2. Principal Functions and Molecular Mechanisms of Autophagy

Autophagy is an important conserved recycling process necessary to maintain energy balance
in the cells. In the liver, the activity of this cellular autophagy activity is enhanced or reduced in
response to environmental changes and cellular needs [10]. It is not only essential for replenishing
the free pool of amino acids through protein breakdown, but it also contributes to mobilization and
hydrolysis of lipid stores and glycogen, thereby significantly contributing to the cellular energetics and
energetic flux through different metabolic pathways [10]. The occurrence of three different types of
autophagy provides a high functional variety of possible breakdown and recycling processes, which are
particularly relevant for the liver, which represents the central organ in the control of organismal energy
balance (Figure 1). Consequently, alteration in proper autophagy function can result in severe metabolic
disorders such as obesity, fatty liver, diabetes, and other metabolic age-related disorders [11,12]. Recent
findings further suggest autophagy as a critical mechanism in regulating the “liver clock” and circadian
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glucose metabolism by timely degrading core circadian repressor clock proteins such as crytochrome 1
(CRY1), resulting in gluconeogenesis and increased blood glucose levels [13]. Interestingly, high-fat
feeding decreased CRY1 protein expression in an autophagy-dependent manner, while restoring
hepatic CRY1 reversed obesity-associated hyperglycemia, suggesting that this regulatory network is
a potential attractive target for therapy of obesity-associated hyperglycemia [13].

There is also first evidence that autophagy in liver aggravates the oxidative stress response during
acute liver injury. In particular, autophagy maintains liver endothelial cell homeostasis and protects
against cellular dysfunction, intrahepatic nitric oxide accumulation, and a liver microenvironment that
promotes fibrosis [14]. Similarly, the blockade of autophagy by the autophagy inhibitor LY294002 or
small interfering RNAs (siRNAs) targeting Atg5 attenuated drug-induced anti-inflammatory effects in
hepatic stellate cells and on liver fibrosis [15].

Mechanistically, there is experimental evidence showing the PI3K/Akt/mTOR pathway to be
critically involved in the activation of autophagy, thereby preventing cell death, promoting anticancer
effects of therapeutic drugs, and reducing tumor growth [16]. On the contrary, in hepatocellular
carcinoma (HCC) cells, the induction of the PI3K/Akt/mTOR pathway by α-fetoprotein (AFP) resulted
in reduced cell autophagy and more malignant behavior [17]. These opposite findings demonstrate that
the same autophagy-associated pathway are highly dynamic and can have pro-tumor or anti-tumor
effects. Hence, the role of autophagy in HCC development is dependent on the context of liver cells,
the hepatic microenvironment, stage of tumor development, or many other unrecognized factors.
It is most likely that autophagy plays an anti-tumor role in normal liver cells by maintaining cell
homeostasis, while it promotes the survival of HCC cells within the tumor microenvironment once the
tumor is formed [18].

3. Autophagy in Homeostasis of the Liver—Implications for Hereditary Liver Diseases

The importance of autophagy for the maintenance of liver homeostasis is best exemplified in
conditions, in which large quantities of misfolded proteins are formed that lead to an overburden
of the proteolytic pathway involved in autophagy. Prototypically, patients suffering from classical
α1-antitrypsin (α1AT) deficiency synthesize large quantities of mutant α1AT Z (ATZ) protein in
which a point mutation results in a substitution of lysine for glutamate at residue 342 [19]. While the
normal α1AT protein (M protein) is rapidly secreted into the blood, the missense mutation results
in a polymerized mutant α1AT protein (Z protein) that is retained in the endoplasmic reticulum
of hepatocytes rather than secreted in the body fluids where its physiological function is to inhibit
neutrophil proteases [19,20]. Hepatocytes deal with the burden of insoluble aggregates by activating
endoplasmic reticulum-associated proteasomal degradation pathways and by macroautophagy [21].
However, in most homozygous individuals these countermeasures are insufficient to overcome
the overload with insoluble proteins, provoking cell death and chronic liver damage. The clinical
manifestation of liver disease associated with α1AT deficiency is highly variable, and there is currently
no specific treatment of α1AT-related liver disease [22]. Enhancing cellular degradation pathways,
particularly autophagy, for mutant ATZ proteins may therefore represent a realistic option in the
near future [23]. Independent experimental studies have shown that the induction of autophagic
degradation of mutant polymerized Z protein by hepatic gene transfer of master autophagy regulators
or by autophagy-enhancing drugs such as carbamazepine, rapamycin, or 24-norursodeoxycholic acid
(norUDCA) can significantly reduce liver injury [21,24–26]. These approaches, along other targets (e.g.,
blocking mutant ATZ production by siRNA), are currently under clinical evaluation,

Another inherited disorder reflecting the importance of autophagy in liver homeostasis is Wilson’s
disease, also known as hepatolenticular degeneration or “copper storage disease”. It represents a rare
autosomal recessive disorder caused by mutation in the ATPase copper transporting protein ATP7B,
preventing the body from removing excess copper and leading to accumulation of this trace metal in
liver and brain [27]. Recently, it was shown that ATP7B-deficient cells showed significant increased
expression of autophagy-associated genes when compared to control cells. Furthermore, hepatocytes
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derived from patients suffering from Wilson’s disease, as well as hepatocytes derived from Atp7b null
mice and rats, contained elevated quantities of autophagosomes [28]. Interestingly, the pharmacological
inhibition of ATG7 and ATG13 accelerated cell death in the hepatoma cell line HepG2 when depleted
for ATP7B expression, suggesting that autophagy protects against metal toxicity and copper-induced
cell death in the setting of Wilson’s disease [28].

Alcohol abuse is a third condition in which the importance of autophagy for liver homeostasis
is well documented. Alcoholic liver disease (ALD) is a global healthcare problem associated with
fatty liver, alcoholic hepatitis, fibrosis, and cirrhosis. During chronic ethanol consumption, the rates of
autophagy are retarded in the liver, because ethanol is thought to cause faulty lysosome biogenesis
and slower breakdown of lipid droplets [29]. A recent experimental study found that liver tissue
from mice fed with ethanol displayed lower expression levels of total and nuclear transcription factor
EB (TFEB) compared with control mice, alongside decreased parenchymal lysosome biogenesis and
autophagy [30]. When the hepatic expression of the transcription factor TFEB was increased by
administration of torin-1, representing an effective inducer of autophagy, or by administration of
an adenoviral vector expressing TFEB, mice showed decreased steatosis and liver injury induced by
ethanol, while the knock down of TFEB using an adenovirus small hairpin RNA (shRNA) approach
resulted in more severe liver disease [30]. These experiments demonstrate the fundamental protective
role of autophagy in formation of ALD.

Collectively, these findings from hereditary and toxic liver diseases corroborate that autophagy as
a cellular degradation and clearance pathway is critical for maintaining liver homeostasis, especially
in conditions of hepatic insults.

4. Autophagy in Liver Metabolism and Fatty Liver Disease

The most common liver disease worldwide is non-alcoholic fatty liver disease (NAFLD),
that is characterized by extrahepatic features of the metabolic syndrome (obesity, type 2 diabetes,
dyslipidemia) and distinct hepatic histological features [31]. A fraction of these patients develop
non-alcoholic steatohepatitis (NASH), characterized by steatosis, inflammation, and hepatocyte
ballooning, and are at a particular risk for progressing towards fibrosis, cirrhosis, and HCC [32].
Autophagy is a central “recycling mechanism” in hepatocytes, evolutionarily evolved to provide energy
and to salvage key metabolites for sustaining anabolism [33]. Autophagy is therefore a key mediator
of liver metabolism and is dysregulated in NAFLD [10]. For instance, autophagy provides amino
acids to cellular processes via protein degradation and recycling of cell organelles [33,34], mobilizes
intracellular glycogen storages (“glycophagy”) in case of starvation [33], and breaks down lipid
droplets (“lipophagy”), which increases intracellular triglyceride and free fatty acid concentrations [35].
High levels of energy substrates (e.g., ATP), insulin, or free fatty acids negatively regulate autophagy,
while starvation is one of the strongest physiological activators of autophagy in hepatocytes [10].
Importantly, hepatic autophagy is decreased overall in association with conditions that predispose to
NAFLD such as obesity and aging [36]. Although an extensive body of literature suggests that the
pharmacological modulation of either autophagy directly or autophagy-related up- or downstream
pathways could hold therapeutic potential in obesity, metabolic syndrome, or NAFLD/NASH [37],
lifestyle interventions including fasting, dietary changes, and exercise may also be very potent inducers
of beneficial autophagy-related changes in metabolism [38,39].

The multidomain adaptor protein p62/SQSTM1 is an important substrate for autophagy in
hepatocytes, as it can interact with a large set of ligands, such as arginylated substrates [40].
More recent work indicates that p62/SQSTM1 is phosphorylated and accumulated upon lipotoxic
stimuli, aggravating steatohepatitis and autophagy defects [41].

Due to the central role of autophagy for hepatocyte metabolism, relatively fewer data exist on
the role of autophagy in non-parenchymal cells during NAFLD. However, autophagy is certainly one
contributing factor in the inflammatory and pro-fibrogenic (see below) environment. For instance,
fatty acids, particularly palmitic acid, are capable of activating hepatic macrophages via the
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transcription factor hypoxia-inducible factor 1 alpha (HIF-1α), leading to impaired autophagy and
a more inflammatory macrophage phenotype (e.g., interleukin-1β) [42]. Thus, impaired autophagy
may not only affect hepatocyte metabolism, but also aggravate inflammation in fatty liver disease.

5. Autophagy in Liver Fibrosis and Cirrhosis

The liver responds to chronic tissue injury by organ scarring, termed fibrosis, which may result in
end-stage cirrhosis [43]. Liver fibrosis is characterized by concerted actions of non-parenchymal cells
of the liver, particularly hepatic stellate cells, macrophages (including Kupffer cells), and endothelial
cells [44]. Autophagy appears to be critically involved in the development of liver fibrosis, but has
very different, opposing functions in specific cell types [45] (Figure 2).

The activation of hepatic stellate cells (HSCs) is central for liver fibrogenesis, because these cells
transdifferentiate into myofibroblasts and represent the major extracellular matrix producing cells in
the liver [46]. Activation of HSC depends on autophagy, because the autophagy-mediated degradation
of lipid droplets stored in these cells provides energy supply and promotes fibrogenic cell functions [47].
Some of the molecular mechanisms have now been clarified. For instance, the micro-RNA miR-16
inhibits the expression of guanine nucleotide-binding α-subunit 12 (Gα12). During fibrogenesis,
Gα12 is overexpressed and facilitates autophagy through ATG12-5 formation, thereby activating
stellate cells [48]. Similar to hepatocytes, p62 is an autophagy substrate and thus negatively controls
HSC activation [49]. Mechanistically, p62 promotes the formation of heterodimers between the vitamin
D receptor (VDR) and retinoid X receptor-alpha (RXRα) that suppresses the fibrogenic response in
HSC [49].

Autophagy-pathways in stellate cells can be induced via several signals. These include
hypoxia-inducible factor-1alpha (Hif-1α) [50] and the potent fibrogenic cytokine transforming growth
factor β1 (TGF-β1) [51], as well as the danger-associated pattern molecule high-mobility group box-1
(HMGB-1) [52]. Importantly, stellate cells also induce autophagy-related and fibrogenic genes in
response to endoplasmatic reticulum (ER) stress signals [53], suggesting that autophagy indeed
represents a central pathway of fibrogenic HSC activation. Consequently, the HSC-specific deletion
of Atg7 in mice attenuated liver fibrosis in chronic injury models [54]. Inhibiting autophagy by
bafilomycin A1 decreased the proliferation and activation of primary mouse HSC in vitro, suggesting
that autophagy inhibition in HSC could be an interesting therapeutic strategy [47].

While autophagy is profibrogenic in HSCs, autophagy seems to exert the opposite (i.e.,
antifibrotic) function in hepatic macrophages (Figure 2), the key cellular component of innate
immune responses in the liver, during hepatofibrogenesis [55]. In mouse models of fibrosis,
the macrophage-specific deletion of Atg5 attenuated fibrogenesis [56]. Mechanistically, autophagy
prevented the release of inflammatory cytokines, particularly interleukin-1, from hepatic macrophages,
which subsequently reduced HSC activation [56]. Similarly, suppression of Atg5 by a siRNA-approach
confirmed that autophagy-deficient liver macrophages promote liver inflammation and fibrosis by
enhancing mitochondrial ROS/NF-κB/IL-1α/β pathways [57]. Autophagy in hepatic macrophages
is counteracted by the enzyme monoacylglycerol lipase that metabolises 2-arachidonoylglycerol into
arachidonic acid for inflammatory macrophage activation [58].

Autophagy is also important for liver sinusoidal endothelial cells, which are a highly specialized
endothelial cells separating the hepatocytes and hepatic stellate cells from the sinusoidal blood.
These endothelial cells maintain the vascular tone, keep the stellate cells in a quiescent state,
and promote tolerance in homeostasis [59] (Figure 2). Studies on isolated primary liver endothelial cells
from either control or Atg7-deficient mice emphasized that autophagy is important for maintaining
endothelial homeostasis [14]. In mouse and rat models of fibrosis induction, the selective loss
of endothelial autophagy aggravated fibrosis by reduction in intrahepatic nitric oxide (NO) and
impairment in handling oxidative stress, suggesting that autophagy is important for endothelial cell
functions during chronic liver injury [14].
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Figure 2. Cell type-specific functions of autophagy in liver fibrosis. Hepatic stellate cells (HSCs)
transdifferentiate into collagen-producing myofibroblasts (MFB) in liver fibrosis. This process depends
on macroautophagy, which provides energy for the HSC activation. On the contrary, autophagy
maintains cellular homeostasis in hepatocytes, Kupffer cells (macrophages), and liver sinusoidal
endothelial cells, thereby counteracting fibrogenesis in the liver.

6. Autophagy in Liver Cancer

Autophagy is important for hepatocyte homeostasis, as protein aggregates, lipid droplets,
or organelles are eliminated via this pathway [60]. The lack of autophagy is associated with the
development of spontaneous liver tumors (Figure 3), as demonstrated in liver- or hepatocyte-specific
Atg5- and Atg7-knock-out mice [8]. These tumors indeed originate from autophagy-deficient
hepatocytes and are characterized by aberrant p62 protein aggregation and mitochondrial swelling
as well as increased genomic damage and oxidative stress responses [8]. On a molecular level,
the elimination of p62 is a well-recognized anti-tumor function of autophagy [61], particularly in
HCC [62]. In hepatoma cells, p62 accumulates, resulting in the persistent activation of nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) [63], which drives tumorigenesis in the liver in vivo [64].
Functionally, p62 not only activates Nrf2, but also mTORC1 and c-Myc, collectively promoting the
survival of HCC-initiating cells [40].

Similarly, the oncogenic cell cycle regulator cyclin D1 is degraded by autophagy; defects in
autophagy-dependent cyclin D1 degradation have been found in patients with HCC and confirmed
in experimental HCC models in mice [65]. Autophagy also degrades the micro-RNA 224 (miR-224),
which is linked to HCC development and poor prognosis in patients with hepatitis B virus
(HBV) infections [66]. Moreover, autophagy-deficient hepatocytes release HMGB-1, which drives
a proliferative ductular reaction as well as promotes tumorigenesis via the receptor for advanced
glycation end product (RAGE) [67]. The exact molecular pathways of autophagy for HCC biology are
the subject of many ongoing studies, which are summarized elsewhere [60,68,69].
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Figure 3. Stage-dependent functions of autophagy in hepatocellular carcinoma (HCC). Experimental
data indicate opposing, stage-dependent functions of autophagy in HCC. At early stages, autophagy
activation may reduce genotoxic stress and prevent tumor formation. At advanced stages with
established tumors, autophagy is related to malignant proliferation and metastatic invasion.

There are controversial reports on the effects of drugs used in HCC regarding autophagy. An early
study reported that sorafenib, a tyrosine-kinase inhibitor approved for the treatment of HCC, induced
autophagy in HCC cell-lines [70]. However, autophagy has also been linked to sorafenib resistance [71,
72]. Accordingly, the expression of autophagic markers in samples from HCC patients strongly
correlate with annexin A3, which confers resistance to sorafenib as well as regorafenib [73]. Importantly,
while autophagy apparently suppresses hepatocarcinogenesis, it is a pro-survival factor for cells and
can therefore be also linked to tumor progression (Figure 3). This became evident from mouse models
of metastatic liver cancer, in which autophagy favored disease progression [74,75]. Tumor cells may
gain energy through autophagy, which favors their survival and migratory properties. Moreover,
autophagy is associated with changes in the expression of cell adhesion molecules, which may facilitate
the migration and invasiveness of malignantly transformed hepatocytes [69].

In addition to specific effects on hepatocarcinogenesis, autophagy in hepatocytes is also important
for tumor surveillance in the whole body. However, while autophagy in hepatocytes mainly suppresses
tumor formation in the liver [64], hepatocytic autophagy in general supports tumor growth [76].
This became evident in mice with a liver-specific deletion of either Atg5 or Atg7 that demonstrated
an impaired growth of multiple allografted tumors. This observation was linked to the release of
arginosuccinate synthase 1 from the liver and the subsequent degradation of circulating arginine,
which is essential for tumor growth [9].

While most studies focused on the roles of autophagy in parenchymal cells for liver cancer,
relatively little is known about the contribution of autophagy in non-parenchymal cells for HCC.
During the preneoplastic state, autophagy in liver macrophages was found to suppress experimental
hepatocarcinogenesis, mainly due to the anti-inflammatory role of autophagy in macrophages [57].

7. Therapeutic Implications and Outlook

Autophagy is a highly conserved process for degradation or recycling of cellular components and
mobilization of energy substrates. Many drugs target directly or indirectly such processes, including the
autophagy inducers carbamazepine, rapamycin, resveratrol, metformin, amitryptiline, or citalopram as
well as inhibitors like choloroquine or hydroxycholoroquine. Many other more specific compounds are
currently under development for various disease areas [77]. As described in our review, autophagy has
both positive and negative roles in liver diseases, making it attractive but challenging to manipulate
autophagy as a therapeutic approach in liver diseases. In this regard, two very exciting areas of research
regarding autophagy-modulating therapies are metabolic [37] and malignant diseases [78]. Enhancing
autophagy as a physiological process of reducing hepatocytic lipid accumulation and cellular stress
signals emerges as an attractive target in NAFLD and NASH [10]. This could potentially include the
repurposing of “known drugs” with an excellent safety profile. For instance, the autophagy activators
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carbamazepine and rapamycin decreased steatosis, dyslipidemia and insulin resistance in NAFLD
mouse models [79]. However, enhancing autophagy should, ideally, target specifically parenchymal
cells in the liver, muscle, and adipose tissue, to avoid the activation of fibrogenic HSC [54].

For liver fibrosis, many pharmacological approaches are currently being evaluated [80], but none
of these approaches directly targets autophagy, likely due to the complex and cell type-specific role
of autophagy during liver fibrosis. Based on the solid body of experimental data, the augmentation
of autophagy in liver sinusoidal endothelial cells [14] as well as in macrophages [56] should be
beneficial for fibrogenesis, particularly in early stages of the disease. On the other hand, autophagy is
a key mechanism for the activation of hepatic stellate cells [46]. Thus, the HSC-specific inhibition of
autophagy may be a potent antifibrotic strategy [47].

For HCC, it is intriguing to speculate that pharmacological induction of autophagy could limit
tumor development. There are indications from mouse models that the pharmacological inducers
amiodarone and rapamycin can prevent experimental hepatocarcinogenesis [66]. However, given the
concomitant tumor-promoting functions of hepatocytic autophagy, it might be more advisable to target
downstream effects, such as inhibiting phosphorylated p62-dependent Nrf2 activation [62]. In patients
with metastatic HCC, it might be even advisable to inhibit autophagy, as this would likely increase the
susceptibility to chemotherapy [45].

8. Conclusions

The deep mechanistic understanding of autophagy in the liver has uncovered a complex network
of related molecular processes and the central role of autophagy for homeostasis and response to
threats in the liver. Given the broad range of potential pharmacological and non-pharmacological
(e.g., nutritional) interventions to target autophagy, it is intriguing to speculate on how to translate
these findings into new therapeutics. Not surprisingly, autophagy is involved in disease-promoting
as well as disease-limiting functions in a broad range of hepatological disorders. Cell-type- or
disease-stage dependent effects can explain large parts of the dual functionality of autophagy. Thus,
any autophagy-modulating intervention needs to be tailored to target the essential parenchymal or
non-parenchymal cell type in the liver at the right moment of disease pathogenesis. With this caveat in
mind, manifold options targeting autophagy for the treatment of hereditary, metabolic, toxic, fibrotic,
or malignant liver disease may be anticipated in the future.
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