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The post-translational modification (PTM) serves as an important molecular switch mechanism to mod-
ulate diverse biological functions in response to specific cues. Though more commonly found in eukary-
otic cells, many PTMs have been identified and characterized in bacteria over the past decade,
highlighting the importance of PTMs in regulating bacterial physiology. Several bacterial PTM enzymes
have been characterized to function as the toxin component of type II TA systems, which consist of a toxin
that inhibits cell growth and an antitoxin that protects the cell from poisoning by the toxin. While TA sys-
tems can be classified into seven types based on nature of the antitoxin and its activity, type II TA systems
are perhaps the most studied among the different TA types and widely distributed in eubacteria and
archaea. The type II toxins possessing PTM activities typically modify various cellular targets mostly asso-
ciated with protein translation and DNA replication. This review mainly focuses on the enzymatic activ-
ities, target specificities, antitoxin neutralizing mechanisms of the different families of PTM toxins. We
also proposed that TA systems can be conceptually viewed as molecular switches where the ‘on’ and
‘off’ state of the system is tightly controlled by antitoxins and discussed the perspective on toxins having
other physiologically roles apart from growth inhibition by acting on the nonessential cellular targets.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Post-translational modifications (PTMs) are an important strat-
egy for living organisms to increase the functional diversity of pro-
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teins, enabling the fulfillment of complex tasks. More than 300
PTMs have been reported and shown to influence diverse aspects
of proteins including localization, stability, conformation and bind-
ing properties [1,2]. PTMs include the addition of chemical groups
(e.g. phosphorylation, acetylation, hydroxylation, methylation, gly-
cosylation, AMPylation and lipidation), the covalent linkage of
polypeptides (e.g. ubiquitination), the cleavage of the peptide bond
between two amino acids (e.g. proteolysis), or the modification of
residues with specifc side chain (e.g. deamidation) [1,3,4]. In gen-
eral, PTMs provide a means to control protein activities in response
to specific cues, thereby playing an important role in regulating
signaling pathways and gene expression among eukaryotes and
prokaryotes [4]. Although it is generally thought that PTMs are
more common in eukaryotic cells, many PTMs have been identified
and characterized in bacteria cells over the past decade, thus high-
lighting the importance of PTMs in regulating bacterial physiology.
Presently, phosphorylation [5], acetylation [6], carboxylation [7],
methylation [8], proteolysis [9], lipidation [10], adenylation [11]
and deamidation [12] make up the majority of characterized PTMs
in bacteria.

Toxin-antitoxin (TA) systems are bacterial gene modules that
consist of a toxin that has a deleterious effect on cells caused by
the disruption of essential biological processes and an antitoxin
(protein or non-coding RNA) that alleviates the toxic effect of the
toxin [13]. TA systems can be encoded on plasmids or bacterial
genomes and are mainly involved in post-segregational killing
[14], phage abortive infection [15] and persistence [16]. Seven dif-
ferent types of TA systems have been identified based on the activ-
ity of the antitoxins and interaction modes between toxins and
antitoxins [17–19]. The focus of this review will be type II TA sys-
tems, which have drawn much attention due to their wide distri-
Table 1
Examples of PTM enzymes functioning as type II TA systems.

Toxin
superfamily

Toxin (organism) Molecular activities References

HipA HipA (E. coli K12)
HipT (E. coli O127:
H6)

Phosphorylation of
GltX
Phosphorylation of
TrpS

[21,2224]

FicT/Doc Doc (E. coli)
FicT (P. aeruginosa,
E. coli and Yersinia
enterocolitica)
Fic-1 (P. fluorescens
2P24)
VbhT (Bartonella
schoenbuchensis)

Phosphorylation of
EF-Tu elongation
factor
DNA-gyrase and
TopoIV
adenylylation
AMPylation of DNA
gyrase GyrB
Functions as a T4SS
effector

[25272826]

ARTs ParT (Sphingobium
sp. YBL2)
MbcT (M.
tuberculosis)
DarT (M.
tuberculosis)

ADP-Ribosylation of
Prs
Catalyzes NAD+

degradation
ADP-Ribosylation of
DNA

[656629,30]

GNAT TacT (S.
Typhimurium)
AtaT (E. coli O157:
H7)
AtaT2 (E. coli O157:
H7)
GmvT (Shigella
flexneri)
KacT (K.
pneumoniae)
ItaT (E. coli HS)

Acetylation of
elongator tRNAs
Acetylation of
initiator tRNA
(tRNAfMet)
Acetylation of the
aminoacyl moiety
of gly-tRNAGly

Acetyl-CoA-
dependent
inhibition of
translation
Possible acetylation
of tRNA
Acetylation of
isoleucyl-tRNAIle

[323336383734]
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bution and diverse modes of action. For type II TA systems,
neutralization of the toxin is achieved through the formation of a
stable antitoxin-toxin protein complex. RNases make up a large
proportion of type II toxins that impede protein translation
through the cleavage of mRNAs, rRNAs or tRNAs [20]. However, a
number of enzymes carrying out PTM modifications such as phos-
phorylation [21–25], AMPylation [26–28], ADP-ribosylation [29–
31] and acetylation [32–38] were also found to function as type
II toxins (Table 1). Here, we focus on these TA systems and discuss
modes of action for the PTM toxins, the molecular mechanism of
neutralization of toxins by its cognate antitoxin, and their func-
tional diversity in different bacterial species.
2. Protein kinases as type II toxins

Protein kinases catalyze phosphorylation of substrate proteins
and play important roles in modulating cellular processes ranging
from signaling transduction to energy metabolism [39,40]. Phos-
phorylation mostly occurs on Ser, Thr, and Tyr residues in eukary-
otes [41]. The enzymes that transfer phosphor groups to these
residues, namely Ser/Thr and Tyr kinases, belong to a large protein
superfamily, the members of which typically exhibit catalytic core
structure comprised of two lobes. The N-terminal lobe is primarily
involved in ATP binding while the C-terminal lobe is larger and
responsible for substrate binding and transferring of the ATP
derived phosphate group. Although members of the Ser/Thr and
Tyr kinase superfamily can share little sequence homology, the cat-
alytic core of the protein kinases is well conserved, including
nearly 12 invariant residues that are involved in achieving the cor-
rect position of the ATP molecule and protein substrate [42].

In bacteria, phosphorylation was previously thought to only
occur on histidine and aspartic acid residues, as observed in two-
component signaling systems (TCS) [43]. The isocitrate dehydroge-
nase (IDH) from E. coli was the first bacterial protein characterized
to have Ser/Thr phosphorylation sites and numerous Ser/Thr pro-
tein kinases have been identified in many different bacterial spe-
cies ever since [44]. These protein kinases participate in diverse
bacterial physiological processes including central metabolism, cell
division and differentiation, cell wall synthesis, secondary metabo-
lism, virulence, and antibiotic resistance [45]. Among these, HipA
from E. coli was the first characterized bacterial Ser/Thr kinase that
constituted a toxin of the type II TA system [46].

The gene encoding HipA (high persister gene A) was the first
gene identified to be linked with bacterial persistence and there-
fore, was the focus of considerable research efforts [16,21,24,46–
48]. HipA in E. coli is composed of 440 residues and phosphorylates
the glutamyl-tRNA synthetase (GltX). The conserved Ser239 resi-
due is phosphorylated by HipA thus inhibiting the aminoacylation
activity of GltX, preventing it from transferring glutamate to
tRNAGlu. Therefore, more uncharged tRNAGlu occupies the riboso-
mal A site which stimulates the ribosome-associated (p)ppGpp
(guanosine tetra- and pentaphosphate) synthease RelA, triggering
the stringent response and inducing persistence [21,22]. The anti-
toxin gene hipB is located upstream of the hipA toxin gene and
together form a type II TA module (Fig. 1A). The antitoxin HipB
forms a stable protein complex, but the interface of HipA/HipB is
perplexingly far from the HipA active site [48]. The crystal struc-
tures of HipA/HipB-DNA complex revealed binding of HipB pro-
mote the HipA dimerization via its N-terminal domain, resulting
in the occlusion of HipA’s active-sites (Fig. 2A) [49]. The HipA/
HipB-DNA complex also confirmed that the HipA/HipB complex
could act as a repressor that autoregulates transcription of the
hipBA operon through binding to the promoter region. Additionally,
autophosphorylation of HipA residue Ser150 provides another
layer of regulation over HipA activation. Structural studies indicate



Fig. 1. Gene neighborhood conservation of HipA/HipB (A), FicT/FicA (B), ParT/ParS (C), and AtaT/AtaA (D) TA systems from different bacterial species. The accession numbers
of protein sequences were retrieved from the RefSeq database (https://www.ncbi.nlm.nih.gov/) through a BlastP search using toxin sequences as the query, and used as input
for the webFlaGs server [80,81] to generate the gene neighborhood. The toxins genes are shown in black and the antitoxin genes are numbered.
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that Ser150 is located in the ATP-binding ‘‘Gly-rich loop”, which
displays an ‘‘in-out” conformational equilibrium. Phosphorylated
Ser150 shifts the Gly-rich loop to the ‘‘out conformation”, which
disrupts the ATP-binding pocket and inactivates the kinase activity
[48]. Since overexpression of HipA is linked with persistence, neg-
ative regulation, or inactivation of HipA, kinase activity could be
essential for the dormant cells to become active again.

In uropathogenic E. coli isolates, a gain-of-function allele named
hipA7 (G22S and D291A) showed a 1000-fold increase in persis-
tence [46,50]. Additionally, hipA (D88N) and hipA (P86L), which
were isolated from either patients with urinary tract infections or
laboratory screens, also resulted in a high persistence phenotype
[49]. Notably, most HipA mutations that led to increased persis-
tence mapped to its N-terminal lobe, which is responsible for
dimerization of HipA and HipB. Formation of HipA dimers blocks
the active sites and inactivates HipA. Therefore, the G22S, P86L,
and D88N mutations in HipA could disturb HipA dimerization
and activate HipA, leading to higher persistence [49]. Most
recently, it was demonstrated that when HipA7 and HipA were
moderately overexpressed from plasmids, HipA7 only phosphory-
lates GltX while the wild-type HipA phosphorylates several addi-
tional substrates involved in translation and replication, such as
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ribosomal protein L11 (RplK) and the negative modulator of
replication initiation SeqA [23]. This suggests HipA targets a pool
of cellular substrates, the phosphorylation of which is likely to be
responsible for growth inhibition. When overexpressed, HipA7
was found to have reduced kinase activity compared to HipA, con-
sistent with its less toxic phenotype. However, when endogenously
expressed from the chromosome, HipA was neutralized by the
HipB, whereas the HipA7 activity was not completely inhibited
by HipB due to the impaired dimerization interface, leading to
the phosphorylation of GltX and much greater persistence [23].

Recently, a HipA homologue named HipT was characterized in
E. coli O127 [24]. HipT comprises 335 residues and exhibits
sequence similarity (25% sequence identity over 193 residues) with
the C-terminal part of HipA. Upstream from hipT is a hipB homo-
logue (107 residues), followed by a gene named hipS (103 resi-
dues). The HipS protein shares sequence homology (27%
sequence identity over 98 residues) with the N-terminal part of
HipA that is missing from HipT. Through a gene library screening
it was revealed that HipT phosphorylates tryptophanyl-tRNA syn-
thetase (TrpS) rather than GltX at S197 and S199, which is within
the Gly-rich loop motif highly similar with that of GltX. Phospho-
rylation of TrpS could potentially prevent tRNATrp from charging,

https://www.ncbi.nlm.nih.gov/


Fig. 2. Reprehensive toxin/antitoxin complex structures of the four type II TA
systems using PTM enzymes as toxins. The toxins are colored in cyan, antitoxins are
colored in magenta, and the active sites of toxins are marked with arrows. A The
structure of HipA/HipB-DNA complex (PDB ID: 4YG7) from E. coli [49]. B The
structure of the FicT/FicA complex (PDB ID: 5JFF) from E. coli [55]. C The structure of
the ParT/ParS complex (PDB ID: 6D0H) from Sphingobium sp [65]. D The structure of
the AtaT/AtaA complex (PDB ID: 6GTQ) from E. coli [72]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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which is corroborated by the notion that ectopic overexpression of
HipT stimulates (p)ppGpp accumulation in E. coli O127. Oddly, the
HipB homologue alone does not neutralize the activity of HipT
whereas the HipS protein exhibiting sequence similarity with the
N-terminal domain of HipA is sufficient to inhibit the HipT toxicity
[24]. However, HipB can augment the ability of HipS to neutralize
HipT, suggesting the toxin-antagonizing mechanism of HipBST
could be profoundly different from that of HipBA.

In addition to canonical protein kinases acting as Type II toxins,
there is currently a single case of a type II TA system in which the
Doc toxin is a non-canonical protein kinase belonging to the Fic
protein superfamily [25]. Fic proteins are ubiquitous in all king-
doms of life and usually catalyze AMPylation of target proteins
[26]. Although Doc exhibits a structural similarity to the Fic super-
family, it acts as a novel type of protein kinase and phosphorylates
the conserved threonine 382 of EF-Tu, the translation elongation
factor, due to a slight alteration in the catalytic motif. Interestingly,
the phosphorylation of EF-Tu can be reverted in the presence of
ADP or GDP by the Doc toxin [25]. In contrast, its cognate antitoxin
PhD does not dephosphorylate the target EF-Tu, but rather occu-
pies the NTP binding site on Doc to inhibit its phosphorylation
activity [25,51]. Phosphorylated EF-Tu can no longer bind aminoa-
cylated tRNAs and this causes halting of the translation process,
but it has not been tested if overexpression of the Doc toxin pro-
motes bacterial persistence.
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3. Ampylation enzymes as type II toxins

In contrast to toxins that exhibit kinase activity, there are a
number of type II toxins that possess the canonical signature motif
HxFx (D/E) GNGRxxR associated with AMPylation, i.e., the covalent
addition of an adenosine 50-monophosphate (AMP) onto a target
protein [52]. The antitoxins are located upstream these toxin-
encoding genes, containing a conserved DUF2559 protein domain
(Fig. 1B). In Pseudomonas aeruginosa, E. coli, and Yersinia enterocol-
itica, the FIC-domain-containing FicT toxins adenylylate the DNA
gyrase and topoisomerase IV at their ATP-binding sites. Modifica-
tions of these two enzymes block ATPase activity, cause rapid halt-
ing of DNA replication, and consequently, lead to bacterial growth
inhibition [27]. Lu et al. independently demonstrated that a FicT
homologue named Fic-1 in Pseudomonas fluorescens 2P24 strain
catalyzed AMPylation of the DNA gyrase GyrB at Tyr109 and inhib-
ited DNA replication and bacterial growth [28]. Interestingly, FicT
homologues were shown to induce cell filamentation, a growth
characteristic commonly linked with inactivation of GyrB [28].
Since induced bacterial filamentation typically allows cells to sub-
vert predation [53], it is possible that induction of FicT toxins by
biotic or abiotic factors may help bacteria evade phagocytosis by
host immune cells or predation by protozoa and rotifers in natural
environments.

The AMPylation ability of Fic proteins is usually controlled by a
conserved mechanism, in which an inhibitory a-helix with a con-
sensus sequence of (S/T) XXXEG blocks the ATP binding site and
inactivates the AMPylation activity [54]. For the FicT toxin, the cog-
nate antitoxin FicA harbors the a-helix motif that uses an invari-
able glutamate residue to compete with ATP c-phosphate
binding [52]. For the FicT toxin, the cognate antitoxin FicA harbors
the a-helix motif that uses an invariable glutamate residue to com-
pete with ATP c-phosphate binding (Fig. 2B) [55]. Comparative
sequence analysis has revealed that many Fic proteins contain
the a-helix motif fused to either the N- terminus or the C- termi-
nus and disruption of the interface between the inhibitory a-
helix and Fic proteins releases the AMPylation activities and leads
to substantial toxicity and bacterial filamentation [52]. Therefore,
despite the diverse domain organizations of Fic proteins, i.e., the
inhibitory a-helix motif could be either within the Fic protein
themselves or on a separate antitoxin yet the regulatory mecha-
nism of the AMPylation activities has been evolutionary conserved.

Aside from the Fic proteins as type II toxins modulating bacte-
rial physiology, several Fic proteins were found to be associated
with bacterial virulence and function as effector proteins delivered
into host cells by secretion systems. For example, the effector of
type III secretion system (T3SS), named VopS from Vibrio para-
haemolyticus [56], AMPylates the small GTPases of the Rho family,
such as RhoA, Rac and Cdc42 [57], thereby inhibiting actin assem-
bly in infected cells. It appears that Fic proteins involved in bacte-
rial virulence are constitutively active and act without antitoxins
neutralizing their toxicity. Interestingly, the recently identified
FicT/FicA-family toxin-antitoxin module VbhT/VbhA from Bar-
tonella schoenbuchensis was shown to be associated with a T4SS
functioning as a classical conjugation system [26]. Unlike the clas-
sic FicT toxins, the VbhT toxin is a fusion protein composed of an
N-terminal FicT-like FIC domain and a C-terminal BID (Bep intra-
cellular delivery) domain which serves as the type IV secretion sig-
nal. It was demonstrated that VbhT is an interbacterial effector
protein delivered into recipient cells by the T4SS [26]. Although
the biological function of VbhT as a T4SS effector is currently
unknown, the VbhT/VbhA module provides an important missing
evolutionary link between TA systems and effector of secretion
systems, suggesting that toxins of TA systems may be recurrently
acquired as secreted effectors or virulence factors, expanding the
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effector arsenal and facilitating bacterial infection of a broader
range of hosts or interspecies competition.
4. ADP-ribosylation enzymes as type II toxins

ADP-ribosylation is a ubiquitous PTM that transfers the ADP-
ribose (ADPr) moiety of nicotinamide adenine dinucleotide
(NAD+) to a substrate protein and releases nicotinamide [58,59].
The ADPr moiety can be transferred onto protein side-chains with
a nucleophilic oxygen, nitrogen, or sulfur, resulting in ADP-
ribosylation modifications on the serine, threonine, cysteine, his-
tidine, arginine, and lysine residues [60]. In bacterial pathogens,
ADP-ribosyltransferases (ARTs) typically mediate host-pathogen
interactions, promoting pathogenesis, intracellular replication of
pathogens, and modulating the host immune response [31]. These
are exemplified by the diphtheria toxin of Corynebacterium diph-
theriae and cholera toxin of Vibrio cholerae. These two toxins have
three key residues at the active sites, featuring the conserved H-Y-
E and R-S-E residues for diphtheria toxin and cholera toxin, respec-
tively [61]. The diphtheria toxin catalyzes ADP-ribosylation of the
eukaryotic translation elongation factor 2 (eEF2) at histidine 715,
which is a modified histidine referred to as a diphthamide residue
that is critical for protein synthesis [62]. Conversely, the cholera
toxin modifies an arginine residue on the A subunit of G-
proteins, thereby inducing cytotoxicity by continuously activating
G-proteins [63]. It appears that ART enzymes show great sequence
diversity, which explains the distinct substrate preferences of dif-
ferent sub-class ART enzymes.

Recently, the RES domain-DUF2384 TA family was found to be
widely distributed in diverse bacterial genomes (Fig. 1C). Crystal
structure of the RES-domain containing toxin from Pseudomonas
putida revealed that it shares high structural similarity to the cat-
alytic domain of diphtheria toxin. Subsequent investigation indi-
cated this toxin inhibited the bacterial cell growth by rapidly
degrading NAD+ [64]. In Sphingobium sp. YBL2, a RES-domain con-
taining toxin named ParT, was identified a mono-ADP-
ribosyltransferase (mART) that specifically modifies phosphoribo-
syl pyrophosphate synthetase (Prs), a vital enzyme involved in
nucleotide biosynthesis [65]. The antitoxin ParS inserts its C-
terminal carboxyl group into the active site of ParT, possibly lead-
ing to the blockage of the ParT active site (Fig. 2C) [65]. Consis-
tently, while overexpression of the ParT toxin exerts a
bacteriostatic effect in E. coli, co-expression of the ParS antitoxin
restores the normal growth phenotype, confirming that ParT/ParS
constitutes a bona fide toxin-antitoxin [65].

In the human pathogen Mycobacterium tuberculosis, a TA mod-
ule belonging to the RES domain-DUF2384 TA family was also
identified [66]. The toxin named MbcT was characterized to be
an NAD+ phosphorylase that catalyzes NAD+ degradation in the
presence of inorganic phosphate, triggering rapid cell death of M.
tuberculosis. The antitoxin MbcA binds to MbcT and neutralizes
its toxicity by sterically blocking the active site of the toxin using
the C-terminus of MbcA, an inhibition mechanism conceptionally
similar with that of ParS neutralizing ParT [66]. However, it is cur-
rently unknown whether MbcT modifies protein substrates. Inter-
estingly, in M. tuberculosis there is an additional characterized ART
as the type II toxins named DarT, which shares the similar struc-
tural folds with the 20-phosphotransferase and specifically cat-
alyzes ADP-ribosylation of thymidines on single-stranded DNA in
a sequence-specific manner, inducing the bacterial SOS response
and inhibiting DNA replication [29]. DarT does not target protein
substrates and its cognate antitoxin DarG not only binds and
inhibits the DarT toxin, but also acts on the targets of DarT by
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de-ADP-ribosylation as well [30]. The precise mechanism on how
DarG neutralizes the toxicity of DarT is currently unclear and war-
rants further investigation.
5. N-acetyltransferases As type II toxins

Acetylation is an important PTM that is widespread among
prokaryotes and eukaryotes [67]. The GCN5-related N-acetyltrans-
ferases (GNAT) catalyze the transfer of an acetyl group from acetyl-
CoA to diverse substrates, from small molecules such as aminogly-
coside antibiotics to macromolecules [67]. Recently, novel type II
TA systems were discovered in certain bacterial species with the
toxins adopting the GNAT-fold and their cognate antitoxins
exhibiting a ribbon-helix-helix (RHH) fold belonging to the
DUF1778 protein family (Fig. 1D) [68,69]. To date, the molecular
mechanism of action was studied extensively for four of these
GNAT-toxins, including AtaT and AtaT2 from E. coli O157:H7
[33,36] and TacT from Salmonella enterica serovar Typhimurium
[32] and ItaT from E. coli HS [34], all of which target aminoacyl-
tRNAs rather than protein substrates.

TacT was the first reported GNAT toxin that targeted aminoacyl-
tRNAs [32]. It catalyzes acetylation of the free amine group of
charged elongator tRNAs, which was postulated to impede the
interaction between tRNAs and EF-Tu, therefore resulting in trans-
lation inhibition [32]. Compared with TacT, the AtaT toxin showed
more stringent substrate specificity by targeting only the
methionine-charged initiator tRNA (Met-tRNAfMet) [33]. It seems
that AtaT is also capable of discriminating between initiator and
elongator tRNAs, but the structural basis for this specificity is cur-
rently not clear. Acetylation of Met-tRNAfMet blocks its interaction
with initiation factor 2 (IF2), thus impairing the assembly of the
30S initiation complex and preventing translation initiation [33].
AtaT2, which is a paralogue of AtaT, specifically targets glycine-
charged glycyl-tRNA instead, inducing ribosome stalling at all four
glycyl codons [36]. Moreover, the ItaT toxin from the E. coli HS
strain, also showed rather different substrate specificity. It exclu-
sively acetylates Ile-tRNAIle, leading to translation halting and cell
growth inhibition [34]. Since all these four characterized GNAT
toxins target different aminoacyl tRNAs and GNAT toxins generally
show high sequence diversity among different bacterial species, it
is tempting to speculate that various GNAT toxins may target other
types of aminoacyl-tRNAs or even protein components of protein
translation machinery.

The AtaT/AtaR TA system was used as a model to illustrate the
molecular mechanism of the neutralization of the GNAT toxins and
their cognate antitoxins [70,71]. Crystal structure of AtaT/AtaR
revealed that AtaR binds and neutralizes AtaT via its intrinsically
disordered C-terminal region (Fig. 2D) [72]. This region impedes
binding of Met-tRNAfMet and prevents the alignment of acetyl-
CoA to a catalytically active orientation [70]. Moreover, increased
stoichiometry of AtaR could further disrupt the AtaT dimerization
interface, which is required for binding of Met-tRNAfMet, thus pro-
viding an additional layer of regulation [71]. Since the C-terminal
region is conserved in most antitoxins of GNAT toxins, it is possible
that this neutralization mechanism of GNAT toxins is well-
preserved in evolution.
6. TA systems as molecular switches having diverse
physiological roles?

Being more common in eukaryotes, PTMs are generally thought
to serve as a molecular switch mechanism, which modulates broad
cellular biological functions in response to specific cues [73]. The



Si-Ping Zhang, Han-Zhong Feng, Q. Wang et al. Computational and Structural Biotechnology Journal 19 (2021) 86–93
enzymes that carry out PTM modifications are usually tightly reg-
ulated since untimely or continuous activation of PTM enzymes
can be toxic or detrimental to cells [73]. In this review, we dis-
cussed four types of PTM enzymes that act as type II toxins, and
whose toxicity is tightly regulated by their cognate antitoxins.
Intriguingly, the neutralizing mechanism of the FicA antitoxin
against FicT toxin is essentially analogous to the eukaryotic Fic pro-
teins, in which an inhibitory a-helix fused to either the N-terminal
or C-terminal of the Fic protein blocks the ATP binding site and
inactivates AMPylation activity [54]. For the HipA toxins, the HipB
antitoxin binds HipA at sites far away from the active site, but locks
HipA in an inactive conformation [48]. This is similar with the
allosteric regulation of eukaryotic protein kinases such as Src and
Abl [74,75]. Therefore, it seems that that TA systems can be con-
ceptually viewed as molecular switches controlling bacterial
growth states, which comprise the ‘on’ and ‘off’ states and are
tightly controlled by antitoxins [76]. The signals triggering these
switches are generally thought to be environmental stresses,
which activate cellular proteases such as Lon and ClpP, and lead
to degradation of antitoxins [77]. However, it is currently unknown
if acting on the molecular targets by toxins could have other phys-
iologically roles apart from growth inhibition. This perhaps
requires the toxins to evolve to be less harmful to their host bac-
terium and target other molecular pathways not essential for the
bacterial survival. Interestingly, in Pseudomonas putida, the GraT
toxin showed unusually mild toxicity compared to other conven-
tional toxins [78] whereas in E. coli the expression of the mutant
hipA7 allele which promoted high-persistence was less toxic com-
pared to the wild-type hipA and caused only a mild growth delay
[79]. Nonetheless, currently no evidence shows that toxins could
control bacterial phenotypes unrelated to growth or survival by
acting on nonessential cellular targets. It is therefore tempting to
characterize more TA systems to reveal their physiological roles
and better understand their functional diversity.
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