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Objective. The primary purpose of this paper was to evaluate the influence of pain distribution on gait characteristics in subjects
with low back problems (LBP) during walking at preferred and fastest speeds. Design. Cross-sectional, observational study. Setting.
Gait analysis laboratory in a health professions university. Participants. A convenience age- and gender-matched sample of 20
subjects with back pain only (BPO), 20 with referred leg pain due to back problems (LGP), and 20 pain-free individuals (CON).
Methods and Measures. Subjects completed standardized self-reports on pain and disability and were videotaped as they walked
at their preferred and fastest speeds along a walkway embedded with a force plate. Temporal and spatial gait characteristics were
measured at the midsection of the walkway, and peak medial, lateral, anterior, and posterior components of horizontal ground
reaction forces (hGRFs) were measured during the stance phase. Results. Patients with leg pain had higher levels of pain intensity
and affect compared to those with back pain only (t = 4.91, P < .001 and t = 5.80, P < 0.001, resp.) and walking had an analgesic
effect in the BPO group. Gait velocity was highest in the control group followed by the BPO and LGP group and differed between
groups at both walking speeds (F2.57 = 13.62, P < .001 and F2.57 = 9.09, P < .001, for preferred and fastest speed condition,
resp.). When normalized against gait velocity, the LGP group generated significantly less lateral force at the fastest walking speed
(P = .005) and significantly less posterior force at both walking speeds (P ≤ .01) compared to the control group. Conclusions. Pain
intensity and distribution differentially influence gait velocity and hGRFs during gait. Those with referred leg pain tend to utilize
significantly altered gait strategies that are more apparent at faster walking speeds.

1. Introduction

Low back pain (LBP) remains a prevalent and persistent
problem that frequently compromises physical function,
including walking. Best evidence management for LBP now
emphasizes remaining active or resuming or increasing usual
activity as soon as possible [1–3], and walking is commonly
recommended as a therapeutic exercise [1–5]. Unfortunately,
although some people with LBP will remain active, others
have difficulty doing so for a variety of physical, psycholog-
ical and social reasons [5], and this can contribute to the

individual’s distress and disability and the economic cost of
chronic LBP [6]. Pain appears to be a unique domain as a
cause of disablement, independent of physical impairment
[7]. Given the fundamental nature of walking and the fact
that it is an oft prescribed activity for patients with LBP, it is
clearly important to have a better understanding of the effect
of pain on walking.

Walking is a complex dynamic task that is fundamental
to function and that requires an individual to generate and
withstand a variety of multidirectional forces around each
joint and with the ground, that is, ground reaction forces
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(GRFs). To date, there is limited knowledge about the gait
characteristics of people with chronic LBP. It is known
that individuals with low back pain tend to walk slower,
and generally take shorter steps that may be asymmetric
compared to their age-matched cohorts [8–15]. It was
originally believed that this gait strategy was simply due
to people with LBP attempting to attenuate the magnitude
of internal and external forces exerted or imposed on the
body during walking, particularly at heel strike. This was
a plausible if untested idea, given that there is a linear
increase in vertical GRFs with increased gait velocity, at
least in pain-free individuals [9]. However, individuals with
pain and other lower limb impairments appear to adopt
a variety of alternative strategies during walking, some of
which attenuate measured forces and others that do not.
Understanding the links between pain and movement is
compounded by kinematic variability that makes it difficult
to identify “normal” movement and thus what aspect of the
individual person’s movement pattern may have changed due
to pain or injury as opposed to what is usual for them.

We have previously demonstrated that self-report of
disability and several gait characteristics are differentially
influenced by pain distribution, by walking speed (preferred
versus fastest speed) [8], and by walking condition (over
ground or on a treadmill) [16]. Treadmills are often used to
assess gait but people with or without pain walk differently
on a treadmill compared to over ground walking [16]. In
another study [8], we showed that individuals with LBP and
leg pain (LGP) prefer to walk more slowly compared to those
with back pain only (BPO) or with an age- and gender-
matched cohort, respectively. However, when challenged to
walk as fast as possible, people with BPO are able to walk
as fast and withstand comparable vertical GRFs as a pain-
free control group. This was not the case for people with
referred leg pain. People with LBP and leg pain were not
able to walk as fast as those with BPO and were clearly
outperformed by pain-free subjects. Finally, we found that
individuals with leg pain attenuated vertical GRFs not only
by reducing the velocity of walking, but also through an
asymmetrical gait strategy that included prolonged loading
and push-off response phases that effectively reduced the rate
at which the vertical GRFs were imposed.

Given that pain distribution has a differential effect on
walking and on vertical GRFs, it is plausible that horizontal
GRF components may also be similarly affected. Horizontal
GRFs generated during walking consist of anteroposterior
(AP) and mediolateral (ML) force components. AP forces
are measures of braking-driving forces whereas ML forces are
indicators of mediolateral motion during gait.

In regards to AP forces, it is generally assumed that peo-
ple with BPO and especially those with referred leg pain from
their LBP will withstand less braking force and potentially
exert less driving force, however, this has not been well estab-
lished. It is known that following total knee arthroplasty,
people withstand similar braking forces but generate less
driving force than their pain-free counterparts [17]. How-
ever, the mechanisms, the robustness, and the implications of
this finding are not clear and it is not known whether this gait

characteristic is similar in those with back problems, with or
without leg pain.

ML forces are measures of lateral limb displacement,
which have received even less attention to date. Although it
has been suggested that ML forces may be used as a proxy
measure for postural control in the frontal plane during
walking [9, 10], there is little evidence for this. Previous
studies have found that people with LBP have greater
postural sway during sitting and standing tasks, however, the
greater postural sway occurs in all directions as compared to
pain-free individuals [12–15, 18]. It is not clear whether the
observed increase in postural sway is due to compromised
postural mechanisms or simply a way of attenuating or
alternating loads on sensitive structures in the back. In
our laboratory, we have shown that for people with LBP
performing a sit to stand or reach forward task, a much
greater lateral displacement of center of pressure occurs
during task performance compared to that of pain-free
individuals [15, 18]. However patients with LBP also perform
tasks more slowly and this in itself increases the challenge
to balance and postural control. Albeit slow movements do
attenuate the rate of change in the loading forces that must
be tolerated. To date it is not clear whether the observed
differences in movement patterns or potential postural
control problems of patients with back pain are causes,
correlates, or consequences of LBP. For example, several lines
of research have suggested that movement compromise is
not simply a direct consequence of pain but rather—and at
least in part—evidence of the motor expression of a more
systemic problem. For example, generalized psychomotor
slowing occurs with health problems that are not necessarily
painful. For example, some cancers, HIV, chronic fatigue
syndrome, and mental health disorders [19]. On the other
hand, experienced and anticipated pain and experimentally
induced pain influence movement and activity [20]. Thus,
although it is known that pain is associated with generalized
psychomotor slowing and movement variability, the specific
movement characteristics of people with pain are neither well
described nor well understood. An integrated understanding
of pain and GRF characteristics during walking under
different speed conditions in people with LBP is important.
Such an understanding could ultimately assist clinicians to
assess and manage walking exercises more appropriately.

Thus, the primary purpose of this study was to evaluate
the influence of pain distribution on hGRFs during gait in
people with low back problems (LBP) walking at preferred
and fastest speeds. These two walking speeds reflect condi-
tions that individuals are likely to face during community
ambulation. Gait velocity was controlled as a covariate since
GRF components usually increase with gait velocity [21].

Given that gait velocity is a reasonable indicator of
walking capacity and overall function, a secondary aim was
to better understand the predictors of gait velocity at pre-
ferred and fastest speed in people with LBP with and without
referred leg pain.

It was hypothesized that: (1) the BPO group and the
control group would generate similar peak medial, lateral,
anterior, and posterior forces at either walking speed; (2)
the LGP group would generate significantly less peak medial,
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lateral, anterior and peak posterior forces than the control
group or the BPO group at both walking speeds; (3) that pain
and perceived walking ability would be significant predictors
of gait velocity under both walking speed conditions.

2. Methods

The study was part of a comprehensive gait study that
involved kinetic, kinematic and electromyographic analyses.
This paper limits its scope to a description of horizontal
GRFs during gait, controlling for gait velocity, and identify-
ing predictors of gait velocity. The study was approved by the
Institutional Review Board of Texas Woman’s University.

2.1. Subjects. Subjects with low back problems were recruited
from an outpatient orthopedic spine clinic in a large urban
city. Subjects who met the criteria were provided with
information about the study purpose and procedures and
given an opportunity to ask questions. Those who agreed
to participate then signed an informed consent and an
appointment was made for them to attend the university
located gait lab where the testing took place.

Subjects were assigned to one of two patient groups
(n = 20 per group) based on their distribution of pain.
Subjects were included if they were between 18 to 65 years
old, had a current episode of recurrent LBP and/or unilateral
referred leg pain from the lower back (as determined by
the orthopedic spine specialist) and were under current
medical care. Exclusion criteria for all groups were grade 3
obesity (body mass index greater than 41 kg/m2) [22], true
leg length discrepancy greater than 2 cm [23–26], current
systemic or musculoskeletal conditions other than LBP or
unilateral referred leg pain, a history of idiopathic scolio-
sis, spondylolisthesis, ankylosing spondylosis, spine fusion
surgery, or any lower extremity orthopedic surgery within
one year of potential study participation. For participants in
the LGP group, data was recorded from the painful side. And
the tested lower limb of participants of the control and BPO
groups was matched to the same side.

The control subjects were matched by gender and age
(±5 years) and comprised 20 pain-free individuals who had
not experienced LBP within the previous 12 months that had
required medical attention.

2.2. Self-Report Measures. Subjects with low back problems
completed the following standardized self-report measures
of pain and disability.

2.2.1. Pain. Subjects were asked to complete a pain drawing
that showed the distribution of their pain. Pain that was
distributed in the lumbar area or buttock(s) was classified as
back pain and subjects were assigned to the BPO group. Pain
that was distributed inferiorly to the gluteal fold was deemed
referred pain and subjects were assigned to the LGP group.

Two visual analogue scales were used to measure pain
intensity and pain affect. Anchor words for pain intensity
were “no pain” and “most severe pain imaginable”. Anchor
words for pain affect were “pain doesn’t bother me” and
“pain couldn’t bother me more.”

2.2.2. Disability. Disability was measured using the Roland
and Morris Disability Questionnaire (RMDQ) [27]. The
RMDQ is a 24-item measure of current activity limitation
from LBP. The total RMDQ is a sum of activities that are
limited, with higher total scores representing greater activity
limitation.

2.2.3. Fear-Avoidance—Physical Activity. The Fear-Avoidance
Beliefs Questionnaire (FABQ) was originally developed by
Waddell et al. [28] to assess fear avoidance beliefs in patients
with back pain. The original version of the FABQ contained
16 items divided into two subscales: fear-avoidance beliefs
about physical activity (5 items) and fear avoidance beliefs
about work (11 items). Each item is rated on a seven point
Likert Scale (“do not agree at all” = 0 to “completely agree” =
6). Higher scores reflect greater levels of fear-avoidance. The
scale has moderate internal consistency [29]. In the current
study, the FABQ-physical activity subscale was used and
subjects were requested to respond to each item as it applied
to walking.

2.2.4. Pain Behavior Checklist—Distorted Ambulation. The
Pain Behavior Check List (PBCL) is a widely used measure
of pain behavior. The PBCL assesses four categories of
pain behaviors (distorted ambulation, affective distress,
facial/audible expressions, and help seeking behavior). Each
item is rated on a seven point Likert Scale (“never” = 0
to “Very often” = 6). Higher scores reflect greater levels
of pain behaviors. In the current study, only the distorted
ambulation subscale was used.

2.3. Equipment. All participants walked on an elevated walk-
way (0.10 m × 9.07 m × 1.22 m) with a force platform
(Advanced Medical Technology Inc.) (AMTI) Model OR6-
7-2000) embedded at its midpoint. The AMTI force plat-
form has good reliability with very low crosstalk between
vertical and horizontal forces (Fy = 0.1–0.4%; Fx = 0.2–
0.3%) and minimal mean errors (Fz = 1.3–2.8%) [30]. The
force platform was located at midpoint of the walkway to
ensure constant velocity was achieved. Pilot data showed
that participants were able to maintain constant gait velocity
across the middle section of the walkway.

Signals from the force platform were low-pass filtered
( fc = 1050 Hz) and amplified (gain = 4000) through a six-
channel strain gauge AMTI amplifier, and interfaced with the
Ariel Performance Analysis System (APAS) (Ariel Dynamics,
Inc) via an analog-to-digital interface board (sampling at
1000 Hz and 16-bit resolution). Two-seconds of GRF data
during each static standing and walking trial were exported at
1/1000th-second intervals to a Microsoft Excel spreadsheet.
Body weight was calculated by averaging two seconds
vertical GRF data during the static standing trial. And peak
hGRF parameters in anterior, posterior, medial, and lateral
directions were obtained from the Excel file and used in
the subsequent analyses. Gait velocity was normalized using
the following calculation ((stride length/body height)/stride
time).
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2.4. Procedures. All subjects signed an institutionally ap-
proved informed consent and video release prior to par-
ticipation. Demographic and self-reported anthropometric
data were collected from all subjects, and an assessment was
carried out to ensure that there was no leg length discrepancy
[31]. Individuals with LBP then addressed questions related
to their LBP history and completed the self-report pain and
disability questionnaires. Reflective 1 cm spherical markers
were next applied bilaterally to the posterior aspect of
calcanei in order to obtain kinematic data on temporal and
spatial gait characteristics. Finally, body weight was obtained
from the force platform during a static standing trial. For
all walking trials, participants walked a marked distance of
7.62 m on the walkway at two self-selected walking speed
conditions: preferred and fastest. The order of the walking
speed conditions were counterbalanced by alternating their
order within each group. One practice trial was performed
prior to the three test trials that were recorded for each
condition. A one-minute standing rest occurred between
each test trial. Finally, posttest assessments of pain intensity
and pain affect were obtained in the BPO and LGP groups
using VASs.

2.5. Data Analysis. PASW 18.0.0 statistical software was
used for all analyses. Descriptive statistics (mean, standard
deviation, minima and maxima) were calculated on all
dependent variables. Multivariate analysis of covariance
(MANCOVA) with normalized gait velocity as the covariate,
was used to compare the horizontal GRF components (peak
medial, lateral, anterior and posterior forces) among the
three groups of participants during both the preferred and
fastest walking speed condition. The alpha level was set at
0.05. In post hoc group comparison analyses, the alpha level
was set at 0.017 according to the Bonferroni adjustment for
the three groups. Paired t-tests were used to examine for
significant change in pre- to post-pain intensity and pain
affect. Finally, Pearson’s correlation coefficients were used to
evaluate associations between pain and disability measures
and gait velocity. And stepwise multiple linear regression
analysis was used to identify predictors of preferred and
fastest gait velocity in the LBP groups.

3. Results

The assumptions of MANCOVA were confirmed. Normal-
ized gait velocity had a significant linear relationship with
all horizontal GRF at both walking speeds (r = 0.33–0.69,
P ≤ 0.009). The assumption of homogeneity of regression
was met—there was no significant interaction between the
normalized gait velocity and the study groups at both the
preferred walking speed (P = 0.499) and the fastest walking
speed (P = 0.237). The overall power for the horizontal GRF
components analysis during the preferred walking speed was
82% with an effect size of 0.14 and that of the fastest walking
speed condition was 88% with an effect size of 0.21.

Descriptive statistics of the demographics of the matched
three groups of subjects are presented in Table 1, and
descriptive statistics on the low back problems and self-
reports of the two LBP groups are presented in Table 2.

3.1. LBP History. The long duration of LBP history and even
the current episode of LBP (mean 12 and 18 months in LGP
and BPO, resp.) is clearly evident. However, perhaps more
remarkable is the fact that the self-reported duration of the
“current episode of LBP” ranged up to 10 years for those with
BPO and 5 years for those with LGP.

3.2. Pain. Mean levels of back pain intensity between the
BPO and LGP groups (3.9 ± 2.1 and 5.1 ± 2.2, resp.) at
baseline were not significantly different (t1,38 = −1.87, P =
0.07) however pain affect was higher (4.4 ± 2.4 and 6.0 +
2.4, t1,38 = −2.07, P < 0.05, resp.) in the LGP group. Further-
more, a significant change in pre-posttest pain intensity and
affect occurred but only in the BPO group. It is noteworthy
that this change was a significant reduction in both posttest
pain intensity and affect compared to Pretest pain levels.

3.3. Disability. There was a trend towards higher mean values
of disability (LGP 12.50 ± 4.32, BPO 9.45 ± 5.93, P = 0.06),
fear avoidance (LGP 10.60 ± 7.42, BPO 6.50 ± 6.02, P =
0.07), and distorted ambulation (LGP 12.85 ± 7.04, BPO
9.60 ± 7.80, P = 0.18) in the LGP group on all self-report
measures but the differences were not statistically significant.

3.4. Gait Velocity. Descriptive statistics of the normalized
and absolute gait velocity of the three groups are presented
in Table 3. In general and terms of mean gait velocity, the
LGP were generally outperformed by the BPO and control
groups, respectively; however, not all mean differences were
significant between groups. Specifically, the BPO group
walked significantly slower than the control group at their
preferred walking speed (F1.40, 26.65 = 12.57, P ≤ 0.001)
but both BPO and control groups had comparable normal-
ized gait velocity during the fastest walking speed condition
(F1.79, 34.05 = 8.82, P = 0.175). The LGP group walked
significantly slower than the control group at both preferred
walking speed (F1.40 = −12.57, P < 0.005) and fastest
walking speed conditions (F1.79, 34.05 = 8.82, P < 0.005).
The LGP group had comparable normalized gait velocity to
the BPO group at preferred speed, but walked significantly
slower than the BPO group at fastest speed (P = 0.013).

3.5. Horizontal Ground Reaction Forces. Peak medial and
lateral forces exerted during walking at preferred and fastest
speeds and for the three groups are illustrated in Figures 1
and 2. At preferred walking speed and with normalized gait
velocity, the peak medial and lateral forces were similar across
groups. Specifically, mean peak medial forces were 5.2%,
5.3%, and 5.5% of body weight for control, BPO, and LGP
groups, respectively. Peak lateral forces were 4.1%, 3.5%, and
3.3% of body weight for control, BPO, and LGP groups,
respectively. At fastest walking speed and with normalized
gait velocity, there was a general increase in peak medial
and lateral forces for all groups. Specifically, mean peak
medial forces were 6.3%, 6.5%, and 7.6% of body weight
for control, BPO, and LGP groups, respectively. Peak lateral
forces increased and reached were different between groups
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Table 1: Demographics of the control, back pain only (BPO) and back pain with unilateral referred leg pain (LGP) groups.

Parameters
Control (n = 20)
12 female 8 male

BPO (n = 20)
12 female 8 male

LGP (n = 20)
12 female 8 male

Mean ± SD (range) Mean ± SD (range) Mean ± SD (range)

Age (yrs) 46.4 ± 11.0 (27–65) 46.0 + 10.6 (25–61) 46.1 ± 10.6 (25–62)

Height (cm) 167.8 ± 9.4 (152.4–182.9) 171.6 ± 11.3 (160.0–190.5) 171.2 ± 9.5 (154.9–188.0)

Weight (kg) 71.7 ± 15.6 (45.8–105.2) 78.6 ± 19.1 (48.9–117.9) 72.8 ± 14.3 (51.4–100.2)

Body mass index (kg/m2) 25.3 ± 4.2 (19.4–35.3) 26.5 ± 5.5 (19.1–40.9) 24.8 ± 4.4 (19.7–33.8)

True leg length discrepancy
(cm)

0.8 ± 0.5 (0.0–2.0) 0.6 ± 0.5 (0.0–1.5) 0.7 ± 0.5 (0.0–2.0)

Table 2: Descriptive statistics of the self-report questionnaires.

Parameters BPOa (n = 20) LGPb (n = 20)

Pain duration Mean ± SD (range) Mean ± SD (range)

1st episode (months) 112.0 ± 110.7 (12.0–396.0) 73.7 ± 58.4 (1.0–180.0)

Present episode (months) 17.9 ± 32.3 (0.2–120.0) 11.9 ± 14.0 (1.0–60.0)

Pretest pain distribution (based on pain drawing diagram)

Above gluteal fold 20 20

Between gluteal fold and knee 0 6

Below knee 0 14

VASc Mean ± SD (range) Mean ± SD (range)

Pretest Posttest Pretest Posttest

Back pain intensity (cm) 3.9 ± 2.1 (0.8–7.9) 2.9 ± 2.4∗ (0–7.8) 5.1 ± 2.2 (1.2–8.3) 5.5 ± 2.7 (0–8.3)

Back pain affect (cm) 4.4 ± 2.4 (0.4–10.0) 3.2 ± 2.3∗ (0–7.2) 6.0 ± 2.4 (0.6–9.6) 5.5 ± 2.9 (0–8.6)

Examined leg pain intensity (cm) — — 5.0 ± 2.2 (1.4–7.6) 4.9 ± 2.1 (1.9–8.0)

Examined leg pain affect (cm) — — 5.5 ± 2.6 (1.0–9.6) 5.0 ± 2.3 (1.1–8.4)

Mean ± SD (range) Mean ± SD (range)

RMDQd (0–24) 9.5 ± 5.9 (0–20) 12.5 ± 4.3 (4–21)

FABQ-Walke (0–30) 6.5 ± 6.0 (0–19) 10.6 ± 7.4 (0–23)

DASf (0–36) 9.6 ± 7.8 (0–30) 12.9 ± 7.0 (0–25)
∗

BPO group had significantly less back pain intensity and affect at post -test than at Pretest (P = 0.04).
aBPO: back pain only group.
bLGP: back pain with referred leg pain group.
cVAS: Visual Analogue Scale.
dRMDQ: Roland and Morris disability questionnaire.
eFABQ-Walk: Fear Avoidance Belief Questionnaire—physical activity section (emphasis on walking).
f DAS: Pain Behavior Check List—Distorted Ambulation Scale.

and were 6.5%, 5.7%, and 3.7% of body weight for control,
BPO, and LGP groups, respectively.

Peak anterior and posterior forces exerted during walking
at preferred and fastest speeds and for the three groups are
illustrated in Figures 3 and 4. At preferred walking speed and
with normalized gait velocity, the peak anterior forces were
similar across groups. Specifically, mean peak anterior forces
were 18.8%, 16.6%, and 16.0% of body weight for control,
BPO, and LGP groups, respectively. Peak posterior forces
differed across groups and were 20.1%, 18.8%, and 17.23% of
body weight for control, BPO, and LGP groups, respectively.
The LGP exerted significantly less posterior (push off) force.
At fastest walking speed and with normalized gait velocity,
again there was a general increase in the magnitude of peak
anterior and posterior forces for all groups. Specifically,
mean peak anterior forces were similar across groups and

were 25.7%, 25.2%, and 23.2% of body weight for control,
BPO, and LGP groups, respectively. Peak posterior forces
again increased and were different between groups and
were 24.0%, 22.2%, and 18.7% of body weight for control,
BPO, and LGP groups, respectively. Again, the LGP exerted
significantly less posterior (push off) force.

Correlations among pain, disability, and gait velocity
are presented in Table 4. As expected correlations among
pain reports of pain intensity and pain affect were strong
and significant (range r = .49 to r = .93). The strongest
association was between leg pain affect and intensity and the
weakest was between back pain intensity and leg pain affect.
Relationships between pain and disability measures were
weak to moderate (range r = .11 to r = .33) and between
pain and gait velocity were generally moderate (r = .25
to r = .46). Finally of the associations between self-report
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Table 3: Mean and standard deviation of absolute and relative gait velocity for the control, back pain only (BPO) and back pain with
unilateral referred leg pain (L GP) groups.

Walking speed
conditions

Relative gait velocity
Control BPO LGP

Mean ± SD Mean ± SD Mean ± SD

Preferred
Normalized (% body height per second) 0.9 ± 0.1 0.8 ± 0.9∗ 0.8 ± 0.1†

Absolute (m/s) 1.6 ± 0.5 1.3 ± 0.5 1.3 ± 0.5

Fastest
Normalized (% body height per second) 1.3 ± 0.1 1.2 ± 0.2 1.0 ± 0.2†

Absolute (m/s) 2.1 ± 0.8 2.1 ± 0.8 1.7 ± 0.8
∗

The BPO group walked significantly slower than the control group during the preferred walking speed condition (P < .0005).
†The LGP group walked significantly slower than the control group in both the preferred and fastest walking speed conditions (P = .002).

Table 4: Pearson’s correlation coefficients among pain, disability, and gait velocity (n = 40).

Variable
Back pain
intensity

Back pain
affect

Leg pain
intensity

Leg pain
affect

Roland
and

Morris

Fear-
avoidance

beliefs

Distorted
ambulation

Preferred
gait

velocity

Fast gait
velocity

Back Pain Intensity 1 .756∗∗ .540∗∗ .490∗∗ .111 .131 .078 −.345∗ −.308∗

Back Pain Affect 1 .516∗∗ .600∗∗ .168 .138 .116 −.324∗ −.219

Leg Pain Intensity 1 934∗∗ .272 .231 .327∗ −.249 −.437∗∗

Leg Pain Affect 1 .248 .212 .270 −.297 −.463

Roland and Morris 1 .361∗ .698∗∗ −.274 −.332∗

Fear Avoidance Beliefs 1 .441∗∗ −.117 −.294

Distorted Ambulation 1 −.461∗∗ −.438∗∗

Preferred Gait Speed 1 .695∗∗

Fast Gait Speed 1
∗∗

P < 0.01, ∗P < 0.05.

questionnaires (other than pain) and gait velocity, the
distorted ambulation scale had the strongest association (r =
−.44 and r = −.46, at fastest and preferred speed, resp.).

Stepwise linear regression analysis showed that signifi-
cant predictors of gait velocity at preferred speed were back
pain intensity (R = .46, R2 = .21, F1,38 = 10.26, P < .005),
and the distorted ambulation scale which together accounted
for 31% of the variance (R = .56, R2 = .31, F2,37 = 8.26,
P < .001). The significant predictors of gait velocity at fastest
speed were leg pain affect (R = .46, R2 = .21, F1,38 = 10.37,
P < .005), and the distorted ambulation scale which together
accounted for 32% of the variance (R = .57, R2 = .32, F2,37 =
8.72, P < .001).

4. Discussion

Walking is a fundamental component of function and is
known to be compromised by LBP. This study confirms that
specific spatial characteristics of pain differentially influence
the extent of that compromise and suggest that walking as
an intervention, may be differentially effective, at least in the
short term, based on pain distribution.

The self-reported long duration of LBP, including the
current episode of LBP is worthy of comment. All subjects
with LBP were recruited from an outpatient orthopedic
spine clinic in a large urban city and the vast majority
reported having a long history of LBP. The mean (9.5 years
and 6 years) and maximum duration (33 years and 15
years, in the BPO and LGP groups, resp.), certainly support
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Figure 1: Comparison of peak medial force (percent of body
weight). When gait velocity was controlled as a covariate, there
was no significant difference in peak medial force among the three
groups during both the preferred (P = 0.382) and fastest walking
speed conditions (P = 0.951).

the notion that LBP is a problem that is not cured but
managed. An increased focus on self-management and long-
term followups for clinical trials are in order, such that
interventions are appropriately tested for effectiveness. Over
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Figure 2: Comparison of peak lateral force (percent of body
weight). ∗When gait velocity was controlled as a covariate, the
peak lateral force was significantly less in the LGP group compared
to the control group during the fastest walking speed condition
(P = 0.005). There was no significant difference in peak lateral force
among the three groups during preferred speed condition (P =
0.619), or between BPO and control groups during fastest walking
speed condition (P = 0.359).
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Figure 3: Comparison of peak anterior force (% of body weight).
When gait velocity was controlled as a covariate, there was no
significant difference in the peak anterior force among the three
groups during the preferred (P = 0.172) and fastest walking speed
conditions (P = 0.423).

the last couple of decades, a substantial body of research
has focused on testing the efficacy of specific interventions
for acute, subacute, and chronic LBP based on identification
of the putative structural source of the pain. Whilst this
approach has contributed to the cost of treating LBP, it has

20.1%
24%

0 

5

10

15

20

25

30

Walking speed conditions

Control
BPO
LGP

Po
st

er
io

r 
fo

rc
e 

(b
od

y 
w

ei
gh

t 
(%

))

Preferred Fastest

∗
∗

18.8%
17.2%

22.2%
18.7%

Figure 4: Comparison of peak posterior force (% of body weight).
∗When gait velocity was controlled as a covariate, the peak posterior
force was significantly less in the LGP group compared to the
control group during both the preferred walking speed condition
and (P = 0.013) and the fastest walking speed condition (P =
0.002). There was no significant difference in peak posterior force
between BPO and control groups during the preferred (P = 0.219)
and fastest walking speed conditions (P = 0.210).

clearly had a minimal impact on resolving the impact of the
problem of LBP.

It was more surprising to see that the length of the current
episode was also quite long (i.e., mean duration of one to
one and a half years). Although a few people reported a
significant reinjury or event that led to their current episode,
many reported a gradual increase in the frequency of acute
episodes and/or a change in intensity or distribution of pain.
The exact and actual duration of the current episode was thus
difficult to determine with any level of accuracy and as such
should be interpreted with caution. That said, the patient’s
perception of the duration is clear and may reflect their belief
that their LBP seems like an interminable problem.

In regards to walking it was interesting to note that for
the BPO group walking had an analgesic effect—this was
not the case for the LGP group. It is not clear whether this
analgesic effect would persist with walks of longer duration
and or at a sustained fast speed. However, the differential
results across groups do suggest that pain distribution should
be considered when clinicians make recommendations for
walking. And communications to the patient regarding the
expected benefits of walking should probably be tailored
accordingly.

Pain distribution had a significant impact on walking
velocity and horizontal ground reaction forces, and this
impact became greater across groups as the physical chal-
lenge increased, that is, at fast walking speeds. It was not
surprising therefore to find that pain intensity (BPO) and
pain affect (LGP) predicted velocity at both preferred and



8 Pain Research and Treatment

fastest speeds and the additional predictive value of the DAS
is corroborative.

4.1. Comparison of Peak Mediolateral Forces. The results
support the hypothesis that the BPO and control groups
would generate similar peak medial and lateral forces under
both walking speed conditions, with gait velocity controlled
as a covariate. In contrast, the hypothesis that the LGP group
would develop significantly less peak lateral force at both
walking speeds was only partially verified. Peak lateral force
in the LGP group was significantly less than that of the other
two groups but only at the fastest walking speed. The peak
lateral force at the preferred walking speed condition and
the peak medial force at both walking speeds were similar
between the LGP and control and BPO groups.

It is reasonable that both BPO and LGP groups generated
peak medial forces that were similar to the medial forces
generated by the control group. Only a small change in
medial force is possible during gait. Medial force is limited
by the positioning of the adducting loading lower limb which
does not usually cross over the line of progression during
walking unless there is a major balance problem. This was
clearly not the case for the subjects in this study.

Peak lateral force comparisons differed depending on
pain distribution. Both BPO and control groups generated
similar peak lateral forces during preferred and fastest walk-
ing speed. In contrast, the LGP group generated significantly
less peak lateral force than the control group at their fastest
walking speed, but not at their preferred walking speed.
This suggests that people with LGP seem to walk with less
lateral displacement (i.e., closer to the line of progression)
than their pain-free counterpart, particularly when they are
challenged to walk at their fastest speed. Considering the LGP
group in this study did not experience significant change in
pre- posttest pain, the reduction in lateral displacement and
may be a protective strategy against potential movements
anticipated to aggravate pain. Although, delayed, and, or
prolonged trunk muscle response time in people with LBP
has been posited as an underlying reason for the reduction in
lateral displacement during walking, this is a less likely driver
than actual or anticipated pain.

Indeed, postural sway in people with LBP appears to
be task-specific. Increased postural sway in individuals with
LBP has been demonstrated during stationary standing and
sitting tasks and in standing from and sitting. However, this
was not evident during the dynamic walking task in this
study.

4.2. Comparison of Peak Anteroposterior Forces. The results
support the hypothesis that both BPO and control groups
would generate similar peak anterior and posterior forces
under both walking speed conditions. With the exception of
peak anterior force, the results also support the hypothesis
that LGP group would generate significantly less peak
posterior force than the control group under both walking
speed conditions. These findings suggest leg pain is an
important factor influencing the amount of peak posterior
force (i.e., driving force) during walking, but not peak
anterior force (i.e., braking force).

It is reasonable that individuals, regardless of pain,
generate similar peak anterior force (braking force) when gait
velocity is controlled as a covariate. Similar findings have
been reported in people with total knee arthroplasty who
experienced residual leg pain. Braking force occurs during
a very brief time interval (10%) during the initial stance
phase. Thus, walking speed is likely the only factor that
individuals can control to influence the amount of braking
force. Clinicians should, therefore, be mindful of walking
speed when recommending walking exercise to people with
LBP.

Peak posterior force (driving force) varied depending
on the presence of leg pain during both walking speed
conditions. Both BPO and control group generated similar
driving force, but LGP group had less driving force than the
control group despite controlling for gait velocity in both
walking speed. Those with total knee arthroplasty also had
similar findings to the LGP group in this study [20]. These
observations suggest that besides walking slower, those with
leg pain also utilized other strategies to actively control the
amount of driving force. One such strategy is the taking
of shorter contralateral steps [21], which may explain the
observed asymmetric gait pattern in those with leg pain [30,
31]. Higher Distorted Ambulation Scale score reported by
the LGP group than the BPO group in this study corroborates
this suggestion.

4.3. Integrated Group Comparisons of Vertical and Horizontal
GRFs. Taking together both vertical [8] and horizontal
GRF results, people with LGP tend to utilize different gait
strategies under different walking speed conditions. When
people with LGP have a choice to walk at their preferred
speed, they tend to walk slower and generate less posterior
resultant forces in both horizontal (driving force) and
vertical components (push-off force and push-off rate) than
their pain-free counterparts. However, when those with LGP
are challenged to walk as fast as they can, they walk slower
with less lateral and posterior resultant forces primarily in
the horizontal components (driving force and lateral force)
than their pain-free counterparts. The long term effects of
altered gait strategies on LBP are not clear. Neither is it
really clear whether the differences identified are causes,
consequences, correlates, or simply interesting observations
in this complex problem. Further longitudinal studies are
required to address these questions, and also to determine
optimal walking recommendations for those with LBP and
particularly those with LGP.

5. Conclusion

Pain distribution in people with LBP differentially influences
walking velocity as well as horizontal GRF generated. People
with BPO prefer to walk slower than their pain-free coun-
terparts but can walk faster; those with LGP do not have that
capacity. In addition people with BPO walk more “normally”
as they generated comparable horizontal GRF as pain-free
individuals in both preferred and fastest walking speeds. In
contrast, people with LGP walked with less driving force at
both preferred and fastest walking speeds, and generated less
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lateral force at their fastest walking speed than their pain-
free counterparts. These results suggest people with LGP
utilize significantly altered gait strategies that become more
apparent when challenged to walk at faster speeds.
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