# Temporal Changes in Mortality After Transcatheter and Surgical Aortic Valve Replacement: Retrospective Analysis of US Medicare Patients (2012-2019) 

Sandra B. Lauck (D), PhD; Suzanne J. Baron (D), MD, MSc; William Irish (D), PhD; Britt Borregaard (D), PhD; Kimberly A. Moore, PharmD, MS; Candace L. Gunnarsson (D), EdD; Seth Clancy, MPH; David A. Wood, MD; Vinod H. Thourani, MD; John G. Webb, MD; Harindra C. Wijeysundera (D), MD, PhD


#### Abstract

BACKGROUND: The treatment of aortic stenosis is evolving rapidly. Pace of change in the care of patients undergoing transcatheter aortic valve replacement (TAVR) and surgical aortic valve replacement (SAVR) differs. We sought to determine differences in temporal changes in 30-day mortality, 30-day readmission, and length of stay after TAVR and SAVR.

METHODS AND RESULTS: We conducted a retrospective cohort study of patients treated in the United States between 2012 and 2019 using data from the Medicare Data Set Analytic File 100\% Fee for Service database. We included consecutive patients enrolled in Medicare Parts A and B and aged $\geq 65$ years who had SAVR or transfemoral TAVR. We defined 3 study cohorts, including all SAVR, isolated SAVR (without concomitant procedures), and elective isolated SAVR and TAVR. The primary end point was 30-day mortality; secondary end points were 30-day readmission and length of stay. Statistical models controlled for patient demographics, frailty measured by the Hospital Frailty Risk Score, and comorbidities measured by the Elixhauser Comorbidity Index (ECI). Cox proportional hazard models were developed with TAVR versus SAVR as the main covariates with a 2-way interaction term with index year. We repeated these analyses restricted to full aortic valve replacement hospitals offering both SAVR and TAVR. The main study cohort included 245269 patients with SAVR and 188580 patients with TAVR, with mean $\pm$ SD ages $74.3 \pm 6.0$ years and $80.7 \pm 6.9$ years, respectively, and $36.5 \%$ and $46.2 \%$ female patients, respectively. Patients with TAVR had higher ECI scores ( $6.4 \pm 3.6$ versus $4.4 \pm 3$ ) and were more frail ( $55.4 \%$ versus $33.5 \%$ ). Total aortic valve replacement volumes increased 61\% during the 7-year span; TAVR volumes surpassed SAVR in 2017. The magnitude of mortality benefit associated with TAVR increased until 2016 in the main cohort (2012: hazard ratio [HR], 0.76 [ $95 \% \mathrm{CI}, 0.67-0.86]$; 2016: HR, 0.39 [ $95 \% \mathrm{CI}, 0.36-0.43]$ ); although TAVR continued to have lower mortality rates from 2017 to 2019, the magnitude of benefit over SAVR was attenuated. A similar pattern was seen with readmission, with a lower risk of readmission from 2012 to 2016 for patients with TAVR (2012: HR, 0.68 [ $95 \% \mathrm{Cl}, 0.63-0.73$ ]; 2016: HR, 0.43 [ $95 \% \mathrm{Cl}, 0.41-0.45]$ ) followed by a lesser difference from 2017 to 2019. Year over year, TAVR was associated with increasingly shorter lengths of stay compared with SAVR (2012: HR, 1.91 [ $95 \% \mathrm{CI}, 1.84-1.98$ ]; 2019: HR, 5.34 [ $95 \% \mathrm{CI}, 5.22-5.45]$ ). These results were consistent in full aortic valve replacement hospitals.


CONCLUSIONS: The rate of improvement in TAVR outpaced SAVR until 2016, with the recent presence of U-shaped phenomena suggesting a narrowing gap between outcomes. Future longitudinal research is needed to determine the long-term implications of lowering risk profiles across treatment options to guide case selection and clinical care.

Key Words: aortic stenosis $■$ length of stay $■$ mortality $■$ readmission $■$ surgical aortic valve replacement $■$ temporal trends $■$ transcatheter aortic valve replacement

[^0]
## CLINICAL PERSPECTIVE

## What Is New?

- The rate of improvement in mortality, readmission, and length of stay and the magnitude of benefit after transcatheter aortic valve replacement has outpaced surgical aortic valve replacement across patient groups.
- Recent advances in procedural approaches, multimodality imaging, and the development of streamlined clinical pathways to support early safe discharge home after transcatheter aortic valve replacement have contributed to this temporal trend; the more established practices associated with surgical aortic valve replacement have not been similarly scrutinized.
- Both treatments offer excellent options for patients with aortic stenosis, depending on individual risk profiles and patients' goals of care.


## What Are the Clinical Implications?

- There is a pressing need to ensure equitable access to high-quality transcatheter aortic valve replacement and surgical aortic valve replacement.
- Treatment decisions require individual risk stratification, the consensus decisions of expert multidisciplinary teams, and shared decisionmaking to consider patients' preferences and priorities.
- Future longitudinal research is needed to evaluate quality of care, patient-reported outcomes and experiences, and cost-effectiveness.

| Nonstandard Abbreviations and Acronyms |  |
| :--- | :--- |
| AVR | aortic valve replacement |
| ECI | Elixhauser Comorbidity Index |
| HFRS | Hospital Frailty Risk Score |
| SAVR | surgical aortic valve replacement |
| TAVR | transcatheter aortic valve replacement |

The treatment of aortic valve disease has evolved rapidly in the past decade. The increasing availability of transcatheter aortic valve replacement (TAVR) has augmented surgical aortic valve replacement (SAVR) as treatment options for patients of varying risk profiles. During this time, there have been significant improvements made to TAVR technology, imaging, procedural approaches, and processes of care that have contributed to improved outcomes., ${ }^{1,2}$ In contrast, the procedural and technological environments of SAVR have remained more constant given that
it is a more mature procedure with a well-established track record and historically excellent outcomes. ${ }^{3}$ In this context, treatment decisions and patient access to SAVR and TAVR have been primarily driven by indications, health policy and funding, geographical location, and social determinants. ${ }^{4,5}$ Although local access remains heterogenous, TAVR is surpassing SAVR as the most common form of isolated aortic valve replacement (AVR) in the United States and internationally. ${ }^{6,7}$

Differences in mortality have been scrutinized in multiple clinical trials comparing the 2 treatment modalities using various devices across evolving indications, including the more recent low surgical risk trials. ${ }^{8,9}$ Yet, there is little on temporal trends in mortality for each modality in contemporary real-world practice to capture the evolution of treatment of aortic stenosis. There is a pressing need to explore changes in mortality in contemporary practice to inform clinical care, health policy, and shared decision-making. To this end, we examined temporal differences in clinical outcomes for patients undergoing TAVR and SAVR in the United States between 2012 and 2019.

## METHODS

This retrospective cohort used data from the US Medicare Dataset Standard Analytic Files 100\% fee-for-service database. The Medicare fee-for-service payer database includes information on the health care services that are covered for beneficiaries enrolled in Medicare parts A and B. Coding and validation details are outlined in Data S1. All data used to perform this analysis were deidentified and accessed in compliance with the Health Insurance Portability and Accountability Act. As a retrospective analysis of a deidentified database, the research was exempt from institutional review board review under 45 Code of Federal Regulations 46.101(b). The need for individual patient consent was waived. We adhered to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines for reporting on cohort studies. The data can be provided upon reasonable request to the corresponding author.

## Patient Cohort

We included patients enrolled in Medicare part A and part B between January 1, 2012, to December 31, 2019, who were aged $>65$ years and had an endovascular transfemoral TAVR or SAVR during that period. The index hospitalization for AVR indicated the first time point. We required a minimum of 1 year of continuous enrollment in Medicare before this time point to establish a baseline period to capture covariates. In our main analysis, all patients with SAVR were part of the cohort, including those who had multiple procedures, such as
coronary artery bypass graft, surgical maze procedure, and mitral and tricuspid valve procedures. We repeated the analyses restricted to patients with SAVR with no concomitant procedures ("isolated SAVR"). We also stratified our analyses by elective versus urgent status. For the purpose of this study, an urgent procedure was defined as having the SAVR/TAVR as part of an in-hospital admission as documented by the hospital record.

## Study End Points

The primary end point was 30-day mortality with the index date being the procedural date for TAVR or SAVR. Secondary end points included 30 -day all-cause readmission from the date of discharge and length of stay from admission to discharge measured in days.

## Covariates

Covariates were obtained from the Medicare records and included patient demographics (age, sex, race, and region) and comorbid conditions profile. We captured comorbid profiles using the Elixhauser Comorbidity Index (ECI; Data S1). ${ }^{10}$ To further strengthen the prediction models, we measured frailty as determined the Hospital Frailty Risk Score (HFRS), an International Classification of Diseases, Tenth Revision (ICD-10) claims-based frailty score previously validated in patients with TAVR (Data S1). ${ }^{11,12}$

## Statistical Analysis

Patient demographics and ECI were summarized for SAVR and TAVR cohorts. All statistical models controlled for patient demographics and ECI. Each set of models was done for (1) the full cohort and then (2) repeated restricted to isolated SAVR cases and (3) further stratified by elective versus urgent status.

## 30-Day Mortality

We developed Cox proportional hazard models, which incorporated a 2-way interaction term with index year and TAVR versus SAVR. The dependent variable was time to death. This model allowed us to determine if the relative difference in mortality between TAVR and SAVR changed over time.

## 30-Day All-Cause Hospital Readmission

We developed cause-specific Cox proportional hazard models to account for the competing risk of death with the exclusion of patients who died during their index admission. Similar to the mortality models, the main covariate was TAVR versus SAVR, with an interaction term for year of procedure to evaluate a temporal effect.

## Length of Stay

Length of stay was modeled using a time to event (ie, discharge) model with in-hospital death treated as a competing risk event. The cumulative probability of discharge to home was estimated using the cumulative incidence function and compared by Gray's test. Fine and Gray subdistribution hazard modeling was used to evaluate the effect of TAVR versus SAVR on the adjusted probability of discharge while adjusting for age, sex, and ECl scores. A 2-way interaction term of cohort with index year was included to test whether the probability of discharge for TAVR versus SAVR has changed over time. In interpreting these outputs, a hazard ratio $(H R)>1$ indicates a shorter time to discharge home.

## Effect of AVR Program on Mortality

We developed Cox proportional hazard models with the center included as a random effect to explore the relative mortality impact depending on whether a program performed SAVR only in comparison with a center that offered both TAVR and SAVR. Given that the number of centers performing both SAVR and TAVR procedures increased over time, we conducted this analysis stratified on the index year of the procedure. This was designed to discern if any mortality difference between SAVR and TAVR was restricted to differences in hospital availability of both procedures versus differential temporal improvements in SAVR and TAVR.

Tabulation of summary statistics was performed using the Instant Health Data platform from Boston Health Economics. Models were run using Statistical Analysis Software 9.4, and plots were illustrated in STATA 16. A 2 -sided $P$ value of $<0.05$ was considered statistically significant.

## RESULTS

A total of 433849 patients who underwent AVR were recorded in the Medicare fee-for-service payer database from 2012 to 2019, including 245269 (56.5\%) patients with SAVR and 188580 (43.4\%) patients with TAVR. After applying exclusions for patients who were $<65$ years at the time of index procedure, did not demonstrate continuous 1-year enrollment in Medicare, or lacked documentation of AVR (SAVR, 34 023; TAVR, 8683), the main study cohort included 211246 patients with SAVR and 179897 patients with TAVR. The subanalysis cohorts included isolated SAVR ( $\mathrm{n}=95$ 016) and TAVR and elective isolated SAVR ( $\mathrm{n}=76$ 079) and elective TAVR ( $\mathrm{n}=147$ 099; Figure 1).

## Baseline Characteristics

In the main cohort, the mean $\pm$ SD age of the main cohort was $74.3 \pm 6.0$ years for SAVR and 80.7 $\pm 6.9$ years for TAVR, with women comprising $36.5 \%$ and $46.2 \%$,


Figure 1. Study cohort (2012-2019; data source: US Medicare Dataset Standard Analytic Files fee-for-service database). AVR indicates aortic valve replacement; SAVR, surgical aortic valve replacement; and TAVR, transcatheter aortic valve replacement.
respectively, and White race for $92.5 \%$ and $93.3 \%$, respectively (Table). Patients with SAVR had a mean $\pm$ SD ECl of $4.4 \pm 3.0$ and a mean $\pm$ SD HFRS of $4.8 \pm 6.1$ ( $33.5 \%$ categorized as frail with HFRS $\geq 5$ ), whereas patients with TAVR reported a mean $\pm$ SD ECI score of $6.4 \pm 3.6$ ( $55.4 \%$ categorized as frail) and a mean $\pm$ SD HFRS of $8.4 \pm 8$.6. Similar baseline characteristics were reported for the cohorts of isolated SAVR and TAVR and elective isolated SAVR and elective TAVR (Table S1). Among the patients in the full cohort, an elective admission was recorded for $74.8 \%$ of SAVR and $81.8 \%$ of TAVR.

## Temporal Changes in Procedure Volumes

Total AVR volumes increased 61\% from 36861 in 2012 to 59357 in 2019. TAVR volumes grew annually, equaled, and then surpassed SAVR in 2016 and 2017, respectively (Figure 2A). The distribution ratio of TAVR versus SAVR changed from $12 \%$ in 2012 to $72 \%$ in 2019 (Figure 2B).

## 30-Day Mortality

In the unadjusted model for the main cohort, we found that the 30-day mortality rates decreased from $4.8 \%$ to 4.6\% for SAVR and from $6.3 \%$ to $2.0 \%$ for TAVR during
the study period (Figure S1). When adjusting for age, sex, ECI, and HFRS, we found a statistically significant temporal effect on the relative efficacy of TAVR versus SAVR (Figure 3). In all of the years, TAVR was associated with a lower mortality rate than SAVR. This relationship was complex and showed a U-shaped curve. Year over year, the magnitude of benefit associated with TAVR increased until 2016, with a HR of 0.76 (95\% $\mathrm{Cl}, 0.67-0.86$ ) in 2012 to 0.39 ( $95 \% \mathrm{Cl}, 0.36-0.43$ ) in 2016. Although TAVR continued to have lower mortality rates from 2017 to 2019, the magnitude of benefit over SAVR was attenuated. Analyses of the TAVR versus isolated SAVR and the elective TAVR versus elective isolated SAVR cohorts showed similar results.

## 30-Day All-Cause Readmission

In the main cohort, year over year, the incidence of unadjusted 30 -day all-cause readmission declined for both SAVR (from 18.2\% to 13.6\%) and TAVR (20.6\% to $10.9 \%$; Figure S2). When adjusted for baseline differences,TAVR was associated with a lower risk of all-cause readmission with the magnitude of benefit of TAVR over SAVR varying over time from a HR of 0.68 (95\% Cl, 0.63-0.73) in 2012 to a low of 0.43 ( $95 \% \mathrm{Cl}$,

Table 1. Baseline Characteristics by Study Cohort

|  | Full cohort |  | Isolated SAVR | Elective TAVR and elective isolated SAVR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SAVR | TAVR |  | SAVR | TAVR |
| Total patients | 211246 | 179897 | 95016 | 76079 | 147099 |
| Age, mean $\pm$ SD, y | $74.3 \pm 6.0$ | $80.7 \pm 6.9$ | $73.9 \pm 6.0$ | $73.8 \pm 5.9$ | $80.6 \pm 6.9$ |
| Sex, female patient | 77078 (36.5) | 83194 (46.2) | 39874 (42.0) | 32069 (42.2) | 67931 (46.2) |
| White race | 195409 (92.5) | 167801 (93.3) | 87272 (91.8) | 70485 (92.6) | 137923 (93.8) |
| Elective procedure | 158053 (74.8) | 147099 (81.8) | 76079 (80.1) | N/A | N/A |
| Congestive heart failure | 58120 (27.5) | 99102 (55.1) | 24185 (25.5) | 18909 (24.9) | 80585 (54.8) |
| Cardiac arrhythmia | 71265 (33.7) | 90917 (50.5) | 27103 (28.5) | 21682 (28.5) | 74455 (50.6) |
| Hypertension* | 39660 (18.8) | 79805 (44.4) | 16179 (17.0) | 12597 (16.6) | 64834 (44.1) |
| Chronic pulmonary disease | 55017 (26.0) | 63088 (35.1) | 24695 (26.0) | 20000 (26.3) | 51313 (34.9) |
| Diabetes* | 19198 (9.1) | 35258 (19.6) | 7259 (7.6) | 5487 (7.2) | 28352 (19.3) |
| Peripheral vascular disorders | 57083 (27.0) | 70679 (39.3) | 26591 (28.0) | 22636 (29.8) | 59784 (40.6) |
| Renal failure | 31296 (14.8) | 56842 (31.6) | 12655 (13.3) | 9564 (12.6) | 45197 (30.7) |
| Obesity | 30343 (14.4) | 32607 (18.1) | 13870 (14.6) | 11438 (15.0) | 27104 (18.4) |
| Liver disease | 8144 (3.9) | 11718 (6.5) | 3889 (4.1) | 3133 (4.1) | 9865 (6.7) |
| Deficiency anemia | 14942 (7.1) | 24261 (13.5) | 6366 (6.7) | 4629 (6.1) | 19018 (12.9) |
| Depression | 16814 (8.0) | 22099 (12.3) | 7871 (8.3) | 6074 (8.0) | 17740 (12.1) |
| Elixhauser Comorbidity Index | $4.4 \pm 3.0$ | $6.4 \pm 3.6$ | $4.3 \pm 2.9$ | $4.4 \pm 2.7$ | $6.4 \pm 3.5$ |
| Hospital Frailty Risk Score | $4.8 \pm 6.1$ | $8.4 \pm 8.6$ | $4.7 \pm 6.0$ | $4.4 \pm 5.5$ | $8.2 \pm 8.3$ |
| Frail, Hospital Frailty Risk Score $\geq 5$ | 70720 (33.5) | 99740 (55.4) | 30859 (32.5) | 23854 (31.4) | 80657 (54.8) |

N/A, not applicable.
Data are provided as number (percentage) or mean $\pm$ SD. The table highlights the most pertinent comorbidities. Study analyses were conducted with the full complement of the 31 variables included in the Elixhauser Comorbidity Index (Data S1). SAVR indicates surgical aortic valve replacement; and TAVR, transcatheter aortic valve replacement.
*Classified as "complicated."


B: Ratio of SAVR vs. TAVR


C: Growth of TAVR centers and median annual volume of procedures


Figure 2. Temporal changes in procedure volumes and availability of TAVR in the United States (2012-2019).
A, Total aortic valve replacement volumes. B, Ratio of SAVR vs TAVR. C, Growth of TAVR centers and median annual volume of procedures. AVR indicates aortic valve replacement; SAVR, surgical aortic valve replacement; and TAVR, transcatheter aortic valve replacement.


Figure 3. End point analysis-Cox proportional hazard models of time to 30-day mortality and 30-day readmission and Fine and Gray subdistribution models on length of stay (2-way interaction term with index year).
The diamond markers represent the HRs, and the bars indicate the 95\% Cls. HR indicates hazard ratio; SAVR, surgical aortic valve replacement; and TAVR, transcatheter aortic valve replacement.
$0.41-0.45)$ in 2016 and increasing to 0.75 ( $95 \% \mathrm{Cl}$, $0.72-0.80$; Figure 3). A similar trend was seen across the additional isolated SAVR and elective TAVR versus elective isolated SAVR study cohorts.

## In-Hospital Length of Stay

In all cohorts, the pattern of temporal change in length of stay was consistent: there were small decreases in SAVR ( $13.9 \%$ decrease in mean length of stay in the
main cohort: 12.2 days in 2012 versus 10.5 in 2019) and larger decreases for TAVR (61.2\% decrease in the main cohort: 9.1 days in 2012 versus 3.5 in 2019; Figure S3). When adjusted for covariates and assessed for a temporal effect, a consistent benefit in length of stay was seen favoring TAVR over SAVR, with an increase in the magnitude of this benefit year over year. Specifically, the adjusted HR increased from 1.91 ( $95 \% \mathrm{Cl}, 1.84$, 1.98) in 2012 to 5.34 ( $95 \% \mathrm{Cl}, 5.22,5.45$ ) in 2019 in the main cohort (Figure 3).

## Effect of AVR Program on 30-Day Mortality

Over time, the proportion of hospitals that offered both SAVR and TAVR grew from 22.9\% (2012, n=258) to $66.7 \%$ (2019, $n=665$ ), with the median number of TAVR procedures performed increasing from 11 (interquartile range, $4-22$ ) to 46 (interquartile range, 24-77; Figure 2C). When we restricted our 30-day mortality modeling to include only hospitals that performed both TAVR and SAVR, we found a consistent benefit associated with TAVR over SAVR that followed the same U-shaped curve as our primary results (Figure 3).

## DISCUSSION

In this retrospective analysis of temporal trends in outcomes after TAVR and SAVR in the United States, we found that over time, there was a complex relationship in terms of degree of improvement in 30-day mortality and readmission and in-hospital length of stay favoring TAVR. To our knowledge, this is the first study to examine changes over time in a large series of real-world patients treated with AVR across multiple centers and during the course of ongoing changes in indications, technology, and clinical care. This study provides novel evidence about the degree and pace of improvement between the 2 treatment options over time as indications, case selection, technology, and clinical pathways continue to evolve. The findings strengthen the evidence that TAVR offers a therapy that continues to rapidly gain an advantage in comparison to the rate of change of SAVR and translates in growing magnitude of benefit across patient groups.

TAVR has experienced significant evolution since 2012. In the early days, TAVR was reserved for the sickest patients, many of whom were ineligible for surgery. ${ }^{13}$ Over time, indications expanded to patients who were healthier and case selection was refined to exclude excessively patients unlikely to derive the survival and quality-of-life benefits. Thus, it is not surprising that TAVR outcomes have improved over time. The presence of a U-shape phenomena may indicate that in the most recent years, as mostly at very low surgical
risk are undergoing SAVR, there is a narrowing of the gap between the outcomes after SAVR and TAVR.

Technology continues to improve to minimize known complications, including vascular injury, bleeding, paravalvular leak, stroke, and arrhythmias, although ongoing quality improvement efforts remain under way. ${ }^{14,15}$ In parallel, there has been a shift to the adoption of a streamlined clinical pathway focused on reducing risks associated with the use of invasive interventions and in-hospital deconditioning and to reduce length of stay. ${ }^{3,16,17}$ The adoption of a minimalist approach with a strategy of local anesthesia and/or procedural sedation, the avoidance of invasive monitoring lines, and peri-procedure strategies aimed at increasing the predictability of uncomplicated hemostasis and hemodynamic stability have facilitated the rapid reconditioning of patients with TAVR. The 3M TAVR (Multimodality, Multidisciplinary but Minimalist TAVR) study demonstrated the safety, feasibility, and reproducibility of the Vancouver Clinical Pathway ${ }^{16}$ to facilitate a safe next-day discharge home. ${ }^{18}$ Other studies have added to this evidence. ${ }^{19,20}$ Consequently, many centers have replaced historical clinical practices informed by cardiac surgery protocols in favor of practices better matched to TAVR, patient risks, and contemporary evidence. In contrast, the long-standing excellent outcomes achieved by SAVR centers may not have created similar pressures to scrutinize all aspects of the patients' journey of care to identify opportunities for quality improvement across programs. SAVR programs may continue to report the ceiling effect of the invasiness of surgery that limits the magnitude of possible reductions in length of stay. Advances to surgical protocols, including the use of mini-thoracotomies and robotic and off-pump surgeries, and the implementation of enhanced recovery after surgery pathways continue to yield improved outcomes. ${ }^{21,22}$ In our study, we found that 30-day all-cause readmission rates for patients with SAVR followed a similarly robust trend compared with TAVR and decreased from 18.2\% in 2012 to 13.6\%, indicating improved transitions of care after surgery. Nevertheless, the relative slower rate of improved outcomes seen in SAVR in this study and the resultant growing gap between therapies may reflect missed opportunities to address complications such as the incidence of delirium, surgical site or other infections, and delayed mobilization and discharge that are known to adversely impact the primarily older aortic stenosis population. ${ }^{23,24}$

We found that this temporal observation was consistent, albeit attenuated, when we restricted our analyses to centers that offer both TAVR and SAVR. This is a critical observation as it reinforces 2 key points. First, that even in centers that have both TAVR and SAVR, there was a greater degree of improvement in TAVR outcomes compared with SAVR over time. Second, if a
hospital only offered SAVR, there was an even greater difference in outcomes, as patients who would have received TAVR in other centers were receiving SAVR in that center. This raises further questions about the potential impact of smaller AVR centers that may not offer the full complement of services or may be adversely impacted by low procedural volumes. ${ }^{25,26}$

As such, our study has important implications for promoting patient access to both treatment options and advocating for AVR centers to offer high-quality TAVR and SAVR supported by a coordinated process, a multidisciplinary evaluation pathway and treatment decision, and an embedded adoption of shared decisionmaking to tailor recommendations to patients' unique risks, values, and priorities. ${ }^{27,28}$ Access to both treatment options with surveillance of equity of access ${ }^{29}$ and quality of care remains essential. There has been a vigorous health policy debate related to promoting quality of care for TAVR and concerns about volume/ outcome relationships. ${ }^{30,31}$ Recent analyses of the US TVT (Transcatheter Valve Therapy) Registry reported a significant inverse association between annual transfemoral TAVR volumes and mortality, with hospitals in the lowest volume quartile (mean, 27 procedures) reporting higher and more variable 30-day mortality (3.2\%; 95\% CI, 2.8-3.7) compared with hospitals in the highest volume quartile (mean, 143 procedures; $30-d a y$ mortality, $2.7 \%$; $95 \% \mathrm{Cl}, 2.5-2.9) .{ }^{32}$ This trend was previously reported in an earlier report ${ }^{33}$ and is further supported by evidence that higher volume single operators have superior outcomes. ${ }^{34}$ These findings informed the recent US Centers for Medicare \& Medicaid Services National Coverage Determination that requires centers to perform $\geq 20$ TAVR/year in addition to meeting other volume, programmatic, and reporting requirements. Similar scrutiny of SAVR has not been similarly intense or debated. The shift to a comprehensive management of patients with aortic stenosis requires the removal of silos that currently separate TAVR and SAVR clinical processes, health policy and funding models, surveillance of access and outcomes, and quality improvement to achieve a more patientcentred and procedure-agnostic approach to disease management.

Additional considerations include the measurement of health status and economic analyses. In low-risk clinical trials, TAVR was associated with better health status than SAVR at 1 month ${ }^{9,35}$; in a recent analysis of very early changes in quality of life in the 3M TAVR study, most patients reported large improvements by 2 weeks after the procedure, with modest additional benefit from 2 weeks to 1 month and sustained improvement through 1 year follow-up as seen in clinical trials. ${ }^{36}$ In contrast, among patients undergoing SAVR, deriving quality-of-life benefit requires a longer postsurgical recovery. ${ }^{37,38}$ In the context of our study, the
inclusion of patient-reported outcomes in treatment recommendation and shared decision-making enables the clinician to convey the best evidence about risks and benefits, whereas the patients can inform their providers about their goals, personal preferences, and values. ${ }^{28}$ Similarly, our study findings may further inform the consideration of the economic impact of treatment, as TAVR is projected to be economically dominant by providing greater quality-adjusted life expectancy and lower long-term costs than SAVR, driven in part by the lower health resource requirements and shorter length of stay associated with TAVR. ${ }^{28}$ Momentum for the adoption of minimalist procedural approaches have cost-lowering implications for TAVR programs. Ongoing research is needed to integrate a comprehensive evaluation of contemporary practice inclusive of clinician-reported and patient-reported outcomes and health service use.

## Limitations

This was a retrospective observational study of sitereported administrative data. Medicare fee for service does not include the full cohort of the Medicare patients with the rate of Medicare Advantage enrollment increasing annually since 2012. Adjustment for patient and procedural factors accounted for reported multiple factors, including frailty; nevertheless, we may not have captured the full complement of determinants of outcomes. The study does not fully account for the diversity of other potentially complex issues such as valve technology, repeat procedures, in-hospital complications, evolving case selection for both SAVR and TAVR, operator and program experience, and variations in reporting. Analyses were limited to early outcomes.

## CONCLUSIONS

In this large-scale, real-world report of temporal changes in outcomes in patients treated with AVR, we demonstrated an accelerated improvement of TAVR over SAVR. As indications for TAVR continue to expand, our data highlight opportunities to pursue technological improvements and the implementation of clinical best practices to continue to drive quality improvement. A similar focus on SAVR may offer patients who require a more invasive approach to achieve an optimal outcome.

## ARTICLE INFORMATION

Received March 22, 2021; accepted August 10, 2021.

## Affiliations

Centre for Heart Valve Innovation, University of British Columbia, Vancouver, Canada (S.B.L., D.A.W., J.G.W.); Department of Cardiology, Lahey Hospital
\& Medical Center, Burlington, MA (S.J.B.); Department of Public Health, Brody School of Medicine East Carolina University, Greenville, NC (W.I.); Department of Cardiology, Odense University Hospital, Odense, Denmark (B.B.); Edwards LifeSciences, Irvine, CA (K.A.M., S.C.); Gunnarsson Consulting, Jupiter, FL (C.L.G.); Piedmont Heart Institute, Atlanta, GA (V.H.T.); and Sunnybrook Health Sciences, University of TorontoCanada, (H.C.W.)

## Sources of Funding

Data analyses were funded by Edwards LifeSciences.

## Disclosures

Dr Lauck has worked as a consultant for Edwards Lifesciences and Medtronic. Dr Baron has worked as a consultant for Boston Scientific Corporation, Abiomed, Abbott, Edwards Lifesciences, and Mitra Labs and has received research support from Abiomed. Dr Wood has worked as a consultant for Edwards Lifesciences and has received research support from Edwards Lifesciences and Abbott. Dr Webb has worked as a consultant for Edwards Lifesciences, Abbott, and Boston Scientific. Dr Moore and S. Clancy are employees of Edwards Lifesciences. The remaining authors have no disclosures to report.

## Supplementary Material

Data S1
Table S1
Figures S1-S3

## REFERENCES

1. Boskovski MT, Nguyen TC, McCabe JM, Kaneko T. Outcomes of transcatheter aortic valve replacement in patients with severe aortic stenosis: a review of a disruptive technology in aortic valve surgery. JAMA Surg. 2019;155:69. doi: 10.1001/jamasurg.2019.4449
2. Makkar RR, Thourani VH, Mack MJ, Kodali SK, Kapadia S, Webb JG, Yoon S-H, Trento A, Svensson LG, Herrmann HC, et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement. N Engl $J$ Med. 2020;382:799-809. doi: 10.1056/NEJMoa1910555
3. Anselmi A, Dachille A, Auffret V, Harmouche M, Roisne A, Bedossa M, Le Breton H, Verhoye J-H. Evolution of length of stay after surgical and transcatheter aortic valve implantation over 8 years in 1,849 patients $>75$ years of age and comparison between transfemoral and transsubclavian transcatheter aortic valve implantation. Am J Cardiol. 2018;122:1387-1393. doi: 10.1016/j.amjcard.2018.06.051
4. Wijeysundera HC, Henning KA, Qiu F, Adams C, Al Qoofi F, Asgar A, Austin P, Bainey KR, Cohen EA, Daneault B, et al. Inequity in access to transcatheter aortic valve replacement: a pan-canadian evaluation of wait-times. Can J Cardiol. 2020;36:844-851. doi: 10.1016/j. cjca.2019.10.018
5. Henning KA, Ravindran M, Qiu F, Fam NP, Seth TN, Austin PC Wijeysundera HC. Impact of procedural capacity on transcatheter aortic valve replacement wait times and outcomes: a study of regional variation in Ontario, Canada. Open Heart. 2020;7:e001241. doi: 10.1136/ openhrt-2020-001241
6. Gupta T, Kolte D, Khera S, Goel K, Villablanca PA, Kalra A, Abbott JD, Elmariah S, Fonarow GC, Rihal CS, et al. The changing landscape of aortic valve replacement in the USA. EuroIntervention. 2019;15:e968-e974 doi: 10.4244/EIJ-D-19-00381
7. Nguyen V, Michel M, Eltchaninoff H, Gilard M, Dindorf C, lung B, Mossialos E, Cribier A, Vahanian A, Chevreul K, et al. Implementation of transcatheter aortic valve replacement in France. J Am Coll Cardiol. 2018;71:1614-1627. doi: 10.1016/j.jacc.2018.01.079
8. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, Kapadia SR, Malaisrie SC, Cohen DJ, Pibarot P, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695-1705. doi: 10.1056/NEJMo a1814052
9. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, Bajwa T, Heiser JC, Merhi W, Kleiman NS, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380:1706-1715. doi: 10.1056/NEJMoa1816885
10. van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modification of the Elixhauser comorbidity measures into a point system for
hospital death using administrative data. Med Care. 2009;47:626-633. doi: 10.1097/MLR.0b013e31819432e5
11. Kundi H, Wadhera RK, Strom JB, Valsdottir LR, Shen C, Kazi DS, Yeh RW. Association of frailty with 30-day outcomes for acute myocardial infarction, heart failure, and pneumonia among elderly adults. JAMA Cardiol. 2019;4:1084-1091. doi: 10.1001/jamacardio.2019.3511
12. Kundi H, Popma JJ, Reynolds MR, Strom JB, Pinto DS, Valsdottir LR, Shen C, Choi E, Yeh RW. Frailty and related outcomes in patients undergoing transcatheter valve therapies in a nationwide cohort. Eur Heart J. 2019;40:2231-2239. doi: 10.1093/eurheartj/ehz187
13. Liu Z, Kidney E, Bem D, Bramlet G, Bayliss S, de Belder MA, Cummins C, Duarte R. Transcatheter aortic valve implantation for aortic stenosis in high surgical risk patients: a systematic review and meta-analysis. PLoS One. 2018;13:e0196877. doi: 10.1371/journal.pone.0196877
14. Arnold SV, Manandhar P, Vemulapalli S, Kosinski A, Desai ND, Bavaria JE, Carroll JD, Mack MJ, Thourani VH, Cohen DJ. Impact of short-term complications of TAVR on longer-term outcomes: results from the STS/ ACC Transcatheter Valve Therapy Registry. Eur Heart J Qual Care Clin Outcomes. 2021;7:208-213. doi: 10.1093/ehjqcco/qcaa001
15. Elmaraezy A, Ismail A, Abushouk AI, Eltoomy M, Saad S, Negida A, Abdelaty OM, Abdallah AR, Aboelfotoh AM, Hassan HM, et al. Efficacy and safety of transcatheter aortic valve replacement in aortic stenosis patients at low to moderate surgical risk: a comprehensive metaanalysis. BMC Cardiovasc Disord. 2017;17:234. doi: 10.1186/s1287 2-017-0668-1
16. Lauck SB, Wood DA, Baumbusch J, Kwon J-Y, Stub D, Achtem L, Blanke P, Boone RH, Cheung A, Dvir D, et al. Vancouver transcatheter aortic valve replacement clinical pathway: minimalist approach, standardized care, and discharge criteria to reduce length of stay. Circ Cardiovasc Qual Outcomes. 2016;9:312-321. doi: 10.1161/CIRCO UTCOMES.115.002541
17. Moriyama N, Vento A, Laine M. Safety of next-day discharge after transfemoral transcatheter aortic valve replacement with a self-expandable versus balloon-expandable valve prosthesis. Circ Cardiovasc Interv. 2019;12:e007756. doi: 10.1161/CIRCINTERVENTIONS.118.007756
18. Wood DA, Lauck SB, Cairns JA, Humphries KH, Cook R, Welsh R, Leipsic J, Genereux P, Moss R, Jue J, et al. The Vancouver 3M (multidisciplinary, multimodality, but minimalist) clinical pathway facilitates safe next-day discharge home at low-, medium-, and high-volume transfemoral transcatheter aortic valve replacement centers: the 3M TAVR study. JACC Cardiovasc Interv. 2019;12:459-469. doi: 10.1016/j. jcin.2018.12.020
19. Kamioka N, Wells J, Keegan P, Lerakis S, Binongo J, Corrigan F, Condado J, Patel A, Forcillo J, Ogburn L, et al. Predictors and clinical outcomes of next-day discharge after minimalist transfemoral transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2018;11:107-115. doi: 10.1016/j.jcin.2017.10.021
20. Barbanti M, van Mourik MS, Spence MS, Icovelli F, Martinelli GL, Muir DF, Saia F, Bortone AS, Densem CG, van der Kley F, et al. Optimising patient discharge management after transfemoral transcatheter aortic valve implantation: the multicentre European FAST-TAVI trial. Eurolntervention. 2019;15:147-154. doi: 10.4244/EIJ-D-18-01197
21. Dieberg G, Smart NA, King N. Minimally invasive cardiac surgery: a systematic review and meta-analysis. Int J Cardiol. 2016;223:554-560. doi: 10.1016/j.ijcard.2016.08.227
22. Williams JB, McConnell G, Allender JE, Woltz P, Kane K, Smith PK, Engelman DT, Bradford WT. One-year results from the first USbased enhanced recovery after cardiac surgery (ERAS Cardiac) program. J Thorac Cardiovasc Surg. 2019;157:1881-1888. doi: 10.1016/j. jtcvs.2018.10.164
23. Danielsen SO, Moons P, Sandven I, Leegaard M, Solheim S, Tønnessen T, Lie I. Thirty-day readmissions in surgical and transcatheter aortic valve replacement: a systematic review and meta-analysis. Int J Cardiol. 2018;268:85-91. doi: 10.1016/j.ijcard.2018.05.026
24. Borregaard B, Dahl JS, Riber LPS, Ekholm O, Sibilitz KL, Weiss M, Sørensen J, Berg SK, Møller JE. Effect of early, individualised and intensified follow-up after open heart valve surgery on unplanned cardiac hospital readmissions and all-cause mortality. Int $J$ Cardiol. 2019;289:30-36. doi: 10.1016/j.ijcard.2019.02.056
25. Jack G, Arora S, Strassle PD, Sitammagari K, Gangani K, Yeung M, Cavender MA, O'Gara MA, Vavalle JP. Differences in inpatient outcomes after surgical aortic valve replacement at transcatheter aortic valve replacement (TAVR) and non-TAVR centers. J Am Heart Assoc. 2019;8:e013794. doi: 10.1161/JAHA.119.013794
26. Hirji SA, McCarthy E, Kim D, McGurk S, Ejiofor J, Ramirez-Del Val F, Kolkailah AA, Rosner B, Shook D, Nyman C, et al. Relationship between hospital surgical aortic valve replacement volume and transcatheter aortic valve replacement outcomes. JACC Cardiovasc Interv. 2020;13:335-343. doi: 10.1016/j.jcin.2019.09.048
27. Lauck S, Achtem L, Boone RH, Cheung A, Lawlor C, Ye J, Wood DA, Webb JG. Implementation of processes of care to support transcatheter aortic valve replacement programs. Eur J Cardiovasc Nurs. 2013;12:33-38. doi: 10.1016/j.ejcnurse.2011.06.005
28. Coylewright M, O'Neill E, Sherman A, Gerling M, Adam K, Xu K, Grande SW, Dauerman HL, Dodge SE, Sobti NK, et al. The learning curve for shared decision-making in symptomatic aortic stenosis. JAMA Cardiol. 2020;5:442-448. doi: 10.1001/jamacardio.2019.5719
29. Sleder A, Tackett S, Cerasale M, Mittal C, Isseh I, Radjef R, Taylor A, Farha R, Lupak O, Larkin D, et al. Socioeconomic and racial disparities: a case-control study of patients receiving transcatheter aortic valve replacement for severe aortic stenosis. J Racial Ethn Health Disparities. 2017;4:1189-1194. doi: 10.1007/s40615-016-0325-x
30. Brennan JM, Holmes DR, Sherwood MW, Edwards FH, Carroll JD, Grover FL, Tuzcu EM, Thourani V, Brindis RG, Shahian DM, et al. The association of transcatheter aortic valve replacement availability and hospital aortic valve replacement volume and mortality in the United States. Ann Thorac Surg. 2014;98:2016-2022; discussion 2022. doi: 10.1016/j.athoracsur.2014.07.051
31. Russo MJ, McCabe JM, Thourani VH, Guerrero M, Genereux P, Nguyen T, Hong KN, Kodali S, Leon MB. Case volume and outcomes after TAVR with balloon-expandable prostheses: insights from TVT registry. J Am Coll Cardiol. 2019;73:427-440. doi: 10.1016/j.jacc.2018.11.031
32. Vemulapalli S, Carroll JD, Mack MJ, Li Z, Dai D, Kosinski AS, Kumbhani DJ, Ruiz CE, Thourani VH, Hanzel G, et al. Procedural volume and
outcomes for transcatheter aortic-valve replacement. N Engl J Med. 2019;380:2541-2550. doi: 10.1056/NEJMsa1901109
33. Carroll JD, Vemulapalli S, Dai D, Matsouaka R, Blackstone E, Edwards F, Masoudi FA, Mack M, Peterson ED, Holmes D, et al. Procedural experience for transcatheter aortic valve replacement and relation to outcomes: the STS/ACC TVT registry. J Am Coll Cardiol. 2017;70:29-41. doi: 10.1016/j.jacc.2017.04.056
34. Salemi A, Gaudino M, Bakaeen F, Mao J, Hammed I, Khan FM, Rong LQ, Wingo M, Girardi LN, Sedrakyan A. Operator volume to outcome relationship in mitral and aortic valve replacement. J Am Coll Cardiol. 2019;74:2821-2822. doi: 10.1016/j.jacc.2019.09.044
35. Baron SJ, Magnuson EA, Lu M, Wang K, Chinnakondepalli K, Mack M, Thourani VH, Kodali S, Makkar R, Herrmann HC, et al. Health status after transcatheter versus surgical aortic valve replacement in low-risk patients with aortic stenosis. J Am Coll Cardiol. 2019;74:2833-2842. doi: 10.1016/j.jacc.2019.09.007
36. Lauck SB, Arnold SV, Borregaard B, Sathananthan J, Humphries KH, Baron SJ, Wijeysundera HC, Asgar A, Welsh R, Velianou JL, et al. Very early changes in quality of life after transcatheter aortic valve replacement: results from the 3M TAVR trial. Cardiovasc Revasc Med. 2020;21:1573-1578. doi: 10.1016/j.carrev.2020.05.044
37. Borregaard B, Pedersen SS, Berg SK, Dahl J, Ekholm O, Sibilitz K, Zwisler ADO, Lauck SB, Kyte D, Calvert M, et al. What to expect after open heart valve surgery? Changes in health-related quality of life. Qual Life Res. 2020;29:1247-1258. doi: 10.1007/s11136-019-02400-9
38. Baron SJ, Wang K, House JA, Magnuson EA, Reynolds MR, Makkar R, Herrmann HC, Kodali S, Thourani VH, Kapadia S, et al. Costeffectiveness of transcatheter versus surgical aortic valve replacement in patients with severe aortic stenosis at intermediate risk. Circulation. 2019;139:877-888. doi: 10.1161/CIRCULATIONAHA.118.035236

## SUPPLEMENTAL MATERIAL

## DATA S1.

## CODING DETAILS

## PART 1: Original information provided for Data Source

This analysis used data from the Medicare Dataset Standard Analytic Files (SAFs) 100\% fee for service (FFS) database. The Medicare FFS payer database includes information on the healthcare services that are covered for beneficiaries enrolled in Medicare Parts A and B. Data for beneficiaries are available for a given year. Utilization for individual beneficiaries can be linked over time and across providers. Detailed information submitted by providers from claims-data includes, but is not limited to, the following: an encrypted beneficiary identifier and beneficiary responsibility; provider identity; Medicare program payments; from and through dates; admission and discharge dates; information on source of admission and discharge destination (including death) for institutional providers; International Classification of Diseases Ninth Revision (ICD-9) or Tenth Revision (ICD-10) diagnosis and procedure codes; revenue centers, HCPCS/CPT (Healthcare Common Procedure Coding System/Current Procedural Terminology) codes, and charges associated with those services; and annual demographic and enrollment information for all Medicare beneficiaries.

PART 2: Procedure codes for SAVR and TAVR

| SAVR Tissue | 02RF07Z | 02RF08Z | $02 R F 0 K Z$ | $02 R F 47 Z$ | 02RF48Z | 02RF4KZ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SAVR Mechanical | 02RF0JZ | 02RF4JZ |  |  |  |  |
| TAVR | 02RF37Z | 02RF38Z | $02 R F 3 J Z ~$ |  |  |  |
|  | 02RF3KZ |  |  |  |  |  |

## PART 3: Diagnosis Codes for Elixhauser Comorbidity Index (ECI)

| ECI CODES |  |
| :--- | :--- |
| Congestive Heart <br> Failure | I09.9\#, I11.0\#, I13.0\#, I13.2\#, I25.5\#, I42.0\#, I42.5\#, I42.6\#, I42.7\#, I42.8\#, I42.9\#, I43.\#, <br> I50.\#, P29.0\# |
| Cardiac Arrhythmia | I44.1\#, I44.2\#, I44.3\#, I45.6\#, I45.9\#, I47.\#, I48.\#, I49.\#, R00.0\#, R00.1\#, R00.8\#, <br> T82.1\#, Z45.0\#, Z95.0\# |
| Valvular Disease | A52.0\#, I05.\#, I06.\#, I07.\#, I08.\#, I09.1\#, I09.8\#, I34.\#, I35.\#, I36.\#, I37.\#, I38.\#, I39.\#, <br> Q23.0\#, Q23.1\#, Q23.2\#, Q23.3\#, Z95.2\#, Z95.4\# |
| Pulmonary Cirulation <br> Disorders | I26.\#, I27.\#, I28.0\#, I28.8\#, I28.9\# |
| Peripheral Vascular <br> Disorders | I70.\#, I71.\#, I73.1\#, I73.8\#, I73.9\#, I77.1\#, I79.0\#, I79.2\#, K55.1\#\#, K55.8\#, K55.9\#, <br> Z95.8\#, Z95.9\# |
| Hypertension <br> (Uncomplicated) | I10.\# |


| ECI CODES |  |
| :---: | :---: |
| Hypertension (Complicated) | I11.\#, I12.\#, I13.\#, I15.\# |
| Paralysis | G04.1\#, G11.4\#, G80.1\#, G80.2\#, G81.\#, G82.\#, G83.0\#, G83.1\#, G83.2\#, G83.3\#, G83.4\#, G83.9\# |
| Other Neurological Disorders | G10.\#, G11.\#, G12.\#, G13.\#, G20.\#, G21.\#, G22.\#, G25.4\#, G25.5\#, G31.2\#, G31.8\#, G31.9\#, G32.\#, G35.\#, G36.\#, G37.\#, G40.\#, G41.\#, G93.1\#, G93.4\#, R47.0\#, R56.\# |
| Chronic Pulmonary Disease | I27.8\#, I27.9\#, J40.\#, J41.\#, J42.\#, J43.\#, J44.\#, J45.\#, J46.\#, J47.\#, J60.\#, J61.\#, J62.\#, J63.\#, J64.\#, J65.\#, J66.\#, J67.\#, J68.4\#, J70.1\#, J70.3\# |
| Elixhauser Comorbidities | ICD-10 Coding |
| Diabetes <br> (Uncomplicated) | E10.0\#, E10.1\#, E10.9\#, E11.0\#, E11.1\#, E11.9\#, E12.0\#, E12.1\#, E12.9\#, E13.0\#, E13.1\#, E13.9\#, E14.0\#, E14.1\#, E14.9\# |
| Diabetes (Comlplicated) | E10.2\#, E10.3\#, E10.4\#, E10.5\#, E10.6\#, E10.7\#, E10.8\#, E11.2\#, E11.3\#, E11.4\#, E11.5\#, E11.6\#, E11.7\#, E11.8\#, E12.2\#, E12.3\#, E12.4\#, E12.5\#, E12.6\#, E12.7\#, E12.8\#, E13.2\#, E13.3\#, E13.4\#, E13.5\#, E13.6\#, E13.7\#, E13.8\#, E14.2\#, E14.3\#, E14.4\#, E14.5\#, E14.6\#, E14.7\#, E14.8\# |
| Hypothyroidism | E00.\#, E01.\#, E02.\#, E03.\#, E89.0\# |
| Renal Failure | I12.0\#, I13.1\#, N18.\#, NI9.\#, N25.0\#, Z49.0\#, Z49.1\#, Z49.2\#, Z94.0\#, Z99.2\# |
| Liver Disease | B18.\#, I85.\#, I86.4\#, I98.2\#, K70.\#, K71.1\#, K71.3\#, K71.4\#, K71.5\#, K71.7\#, K72.\#, K73.\#, K74.\#, K76.0\#, K76.2\#, K76.3\#, K76.4\#, K76.5\#, K76.6\#, K76.7\#, K76.8\#, K76.9\#, Z94.4\# |
| Peptic Ulcer Disease (excluding bleeding) | K25.7\#, K25.9\#, K26.7\#, K26.9\#, K27.7\#, K27.9\#, K28.7\#, K28.9\# |
| AIDS/HIV | B20.\#, B21.\#, B22.\#, B24.\# |
| Lymphoma | C81.\#, C82.\#, C83.\#, C84.\#, C85.\#, C88.\#, C96.\#, C90.0\#, C90.2\# |
| Metastatic Cancer | C77.\#, C78.\#, C79.\#, C80.\# |


| ECI CODES |  |
| :--- | :--- |

Note: The Elixhauser Comorbidity Index was generated using standardized and verified ICD9 and ICD10 codes [Quan, Hude, et al. "Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data." Medical care (2005): 1130-1139]

PART 4: Diagnosis Codes for Hospital Frailty Risk Score

| HFRS CODES |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abnormal results of function studies | R94.01 R94.02 R94.09 R94.110 R94.111 <br> R94.128 R94.130 R94.131 R94.138 R94.2 <br> R94.6 R94.7 R94.8   |  |  |  |  | R94.112 R94.113 R94.118 R94.120 R94.121 <br> R94.30 R94.31 R94.39 R94.4 R94.5  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Abnormalities of gait and mobility | R26.0 | R26.1 | R26.2 | R26.81 | R26.89 | R26.9 |  |  |  |  |
| Abnormalities of heartbeat | R00.0 | R00.1 | R00.2 | R00.8 | R00.9 |  |  |  |  |  |
| Acute renal failure | N17.0 | N17.1 | N17.2 | N17.8 | N17.9 |  |  |  |  |  |
| Alzheimer's | G30.1 | G30.8 | G30.9 | G30.0 |  |  |  |  |  |  |
| Artificial opening status | $\begin{aligned} & \hline \text { Z93.0 } \\ & \text { Z93.8 } \end{aligned}$ | $\begin{aligned} & \hline \text { Z93.1 } \\ & \text { Z93.9 } \end{aligned}$ | Z93.2 | Z93.3 | Z93.4 | Z93.50 | Z93.51 | Z93.52 | Z93.59 | Z93.6 |


| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Blindness and low vision codes | H54.0X33 <br> H54.0X45 <br> H54.1131 <br> H54.1152 <br> H54.1224 <br> H54.2X22 <br> H54.415A <br> H54.511A <br> H54.61 | H54.0X34 H54.0X53 H54.1132 H54.1213 H54.1225 H54.3 H54.42A3 H54.512A H54.62 | $\begin{aligned} & \text { H54.0X35 } \\ & \text { H54.0X54 } \\ & \text { H54.1141 } \\ & \text { H54.1214 } \\ & \text { H54.2X11 } \\ & \text { H54.40 } \\ & \text { H54.42A4 } \\ & \text { H54.52A1 } \\ & \text { H54.7 } \end{aligned}$ | $\begin{aligned} & \text { H54.0X43 } \\ & \text { H54.0X55 } \\ & \text { H54.1142 } \\ & \text { H54.1215 } \\ & \text { H54.2X12 } \\ & \text { H54.413A } \\ & \text { H54.42A5 } \\ & \text { H54.52A2 } \\ & \text { H54.8 } \end{aligned}$ | H54.0X44 H54.10 H54.1151 H54.1223 H54.2X21 H54.414A H54.50 H54.60 |
| Calculus of kidney and ureter | N20.0 N20.1 | N20.2 N20.9 |  |  |  |
| Carrier of infectious disease | $\begin{array}{ll} \hline \text { Z22.0 } & \text { Z22.1 } \\ \text { Z22.6 } & \text { Z22.7 } \end{array}$ | Z22.2 Z22.31 <br> Z22.8 Z22.9 | Z22.321 Z22.322 | Z22.330 Z22.338 | $\begin{array}{ll} \hline \text { Z22.39 Z22.4 } \end{array}$ |
| Cellulitis | L03.011 L03.012 L03.042 L03.049 L03.122 L03.123 L03.222 L03.311 L03.322 L03.323 L03.898 L03.90 | L03.019 L03.021 L03.111 L03.112 L03.124 L03.125 L03.312 L03.313 L03.324 L03.325 L03.91 | L03.022 L03.029 L03.113 L03.114 L03.126 L03.129 L03.314 L03.315 L03.326 L03.327 | L03.031 L03.032 L03.115 L03.116 L03.211 L03.212 L03.316 L03.317 L03.329 L03.811 | $\begin{aligned} & \text { L03.039 L03.041 } \\ & \text { L03.119 L03.121 } \\ & \text { L03.213 L03.221 } \\ & \text { L03.319 L03.321 } \end{aligned}$ |
| Cerebral Infarction | 163.00 163.011 <br> 163.09 163.10 <br> 163.139 163.19 <br> 163.233 163.239 <br> 163.323 163.329 <br> 163.39 163.40 <br> 163.431 163.432 <br> 163.511 163.512 <br> 163.533 163.539 <br> 163.9  | 163.012 163.013 <br> 163.111 163.112 <br> 163.20 163.211 <br> 163.29 163.30 <br> 163.331 163.332 <br> 163.411 163.412 <br> 163.433 163.439 <br> 163.513 163.519 <br> 163.541 163.542 | 163.019 163.02 <br> 163.113 163.119 <br> 163.212 163.213 <br> 163.311 163.312 <br> 163.333 163.339 <br> 163.413 163.419 <br> 163.441 163.442 <br> 163.521 163.522 <br> 163.543 163.549 | 163.031 163.032 <br> 163.12 163.131 <br> 163.219 163.22 <br> 163.313 163.319 <br> 163.341 163.342 <br> 163.421 163.422 <br> 163.443 163.449 <br> 163.523 163.529 <br> 163.59 163.6 |  163.033 <br> 163.039  <br> 163.132 163.133 <br> 163.231 163.232 <br> 163.321 163.322 <br> 163.343 163.349 <br> 163.423 163.429 <br> 163.49 163.50 <br> 163.531 163.532 <br> 163.81 163.89 |
| Chronic renal failure | N18.1 N18.2 | N18.3 N18.4 | N18.5 N18.6 | N18.9 |  |
| Complications of | T83.010A | T83.010D | T83.010S | T83.011A | T83.011D |
| genitourinary | T83.011S | T83.012A | T83.012D | T83.012S | T83.018A |
| prosthetic devices | T83.018D | T83.018S | T83.020A | T83.020D | T83.020S |
| implants and grafts | T83.021A | T83.021D | T83.021S | T83.022A | T83.022D |
|  | T83.022S | T83.028A | T83.028D | T83.028S | T83.030A |
|  | T83.030D | T83.030S | T83.031A | T83.031D | T83.031S |
|  | T83.032A | T83.032D | T83.032S | T83.038A | T83.038D |
|  | T83.038S | T83.090A | T83.090D | T83.090S | T83.091A |
|  | T83.091D | T83.091S | T83.092A | T83.092D | T83.092S |
|  | T83.098A | T83.098D | T83.098S | T83.110A | T83.110D |
|  | T83.110S | T83.111A | T83.111D | T83.111S | T83.112A |
|  | T83.112D | T83.112S | T83.113A | T83.113D | T83.113S |
|  | T83.118A | T83.118D | T83.118S | T83.120A | T83.120D |
|  | T83.120S | T83.121A | T83.121D | T83.121S | T83.122A |
|  | T83.122D | T83.122S | T83.123A | T83.123D | T83.123S |
|  | T83.128A | T83.128D | T83.128S | T83.190A | T83.190D |
|  | T83.190S | T83.191A | T83.191D | T83.191S | T83.192A |
|  | T83.192D | T83.192S | T83.193A | T83.193D | T83.193S |
|  | T83.198A | T83.198D | T83.198S | T83.21XA | T83.21XD |
|  | T83.21XS | T83.22XA | T83.22XD | T83.22XS | T83.23XA |
|  | T83.23XD | T83.23XS | T83.24XA | T83.24XD | T83.24XS |
|  | T83.25XA | T83.25XD | T83.25XS | T83.29XA | T83.29XD |
|  | T83.29XS | T83.31XA | T83.31XD | T83.31XS | T83.32XA |
|  | T83.32XD | T83.32XS | T83.39XA | T83.39XD | T83.39XS |
|  | T83.410A | T83.410D | T83.410S | T83.411A | T83.411D |
|  | T83.411S | T83.418A | T83.418D | T83.418S | T83.420A |
|  | T83.420D | T83.420S | T83.421A | T83.421D | T83.421S |
|  | T83.428A | T83.428D | T83.428S | T83.490A | T83.490D |
|  | T83.490S | T83.491A | T83.491D | T83.491S | T83.498A |






| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | S72.126F | S72.126G | S72.126H | S72.126J | S72.126K |
|  | S72.126M | S72.126N | S72.126P | S72.126Q | S72.126R |
|  | S72.126S | S72.131A | S72.131B | S72.131C | S72.131D |
|  | S72.131E | S72.131F | S72.131G | S72.131H | S72.131J |
|  | S72.131K | S72.131M | 572.131 N | S72.131P | S72.131Q |
|  | S72.131R | S72.131S | S72.132A | S72.132B | S72.132C |
|  | S72.132D | S72.132E | S72.132F | S72.132G | S72.132 |
|  | S72.132J | S72.132K | S72.132M | S72.132N | S72.132P |
|  | S72.132Q | S72.132R | S72.132S | S72.133A | S72.133B |
|  | S72.133C | S72.133D | S72.133E | S72.133F | S72.133G |
|  | S72.133H | S72.133J | S72.133K | S72.133M | S72.133N |
|  | S72.133P | S72.133Q | S72.133R | S72.133S | S72.134A |
|  | S72.134B | S72.134C | S72.134D | S72.134E | S72.134F |
|  | S72.134G | S72.134H | S72.134J | S72.134K | S72.134M |
|  | S72.134N | S72.134P | S72.134Q | S72.134R | S72.134S |
|  | S72.135A | S72.135B | S72.135C | S72.135D | S72.135E |
|  | S72.135F | S72.135G | S72.135H | S72.135J | S72.135K |
|  | S72.135M | S72.135N | S72.135P | S72.135Q | S72.135R |
|  | S72.135S | S72.136A | S72.136B | S72.136C | S72.136D |
|  | S72.136E | S72.136F | S72.136G | S72.136 | S72.136J |
|  | S72.136K | S72.136M | S72.136N | S72.136P | S72.136Q |
|  | S72.136R | S72.136S | S72.141A | S72.141B | S72.141C |
|  | S72.141D | S72.141E | S72.141F | S72.141G | S72.141H |
|  | S72.141J | S72.141K | S72.141M | S72.141N | S72.141P |
|  | S72.141Q | S72.141R | S72.141S | S72.142A | S72.142B |
|  | S72.142C | S72.142D | S72.142E | S72.142F | S72.142G |
|  | S72.142H | S72.142J | S72.142K | S72.142M | S72.142N |
|  | S72.142P | S72.142Q | S72.142R | S72.142S | S72.143A |
|  | S72.143B | S72.143C | S72.143D | S72.143E | S72.143F |
|  | S72.143G | S72.143H | S72.143J | S72.143K | S72.143M |
|  | S72.143N | S72.143P | S72.143Q | S72.143R | S72.143S |
|  | S72.144A | S72.144B | S72.144C | S72.144D | S72.144E |
|  | S72.144F | S72.144G | S72.144H | S72.144J | S72.144K |
|  | S72.144M | S72.144N | S72.144P | S72.144Q | S72.144R |
|  | S72.144S | S72.145A | S72.145B | S72.145C | S72.145D |
|  | S72.145E | S72.145F | S72.145G | S72.145H | S72.145J |
|  | S72.145K | S72.145M | S72.145N | S72.145P | S72.145Q |
|  | S72.145R | S72.145S | S72.146A | S72.146B | S72.146C |
|  | S72.146D | S72.146E | S72.146F | S72.146G | S72.146 H |
| Fracture of lumbar | S32.000A | S32.000B | S32.000D | S32.000G | S32.000K |
| spine and pelvis | S32.000S | S32.001A | S32.001B | S32.001D | S32.001G |
|  | S32.001K | S32.001S | S32.002A | S32.002B | S32.002D |
|  | S32.002G | S32.002K | S32.002S | S32.008A | S32.008B |
|  | S32.008D | S32.008G | S32.008K | S32.008S | S32.009A |
|  | S32.009B | S32.009D | S32.009G | S32.009K | S32.009S |
|  | S32.010A | S32.010B | S32.010D | S32.010G | S32.010K |
|  | S32.010S | S32.011A | S32.011B | S32.011D | S32.011G |
|  | S32.011K | S32.011S | S32.012A | S32.012B | S32.012D |
|  | S32.012G | S32.012K | S32.012S | S32.018A | S32.018B |
|  | S32.018D | S32.018G | S32.018K | S32.018S | S32.019A |
|  | S32.019B | S32.019D | S32.019G | S32.019K | S32.019S |
|  | S32.020A | S32.020B | S32.020D | S32.020G | S32.020K |
|  | S32.020S | S32.021A | S32.021B | S32.021D | S32.021G |
|  | S32.021K | S32.021S | S32.022A | S32.022B | S32.022D |
|  | S32.022G | S32.022K | S32.022S | S32.028A | S32.028B |
|  | S32.028D | S32.028G | S32.028K | S32.028S | S32.029A |
|  | S32.029B | S32.029D | S32.029G | S32.029K | S32.029S |
|  | S32.030A | S32.030B | S32.030D | S32.030G | S32.030K |
|  | S32.030S | S32.031A | S32.031B | S32.031D | S32.031G |
|  | S32.031K | S32.031S | S32.032A | S32.032B | S32.032D |




| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | S32.509G | S32.509K | S32.509S | S32.511A | S32.511B |
|  | S32.511D | S32.511G | S32.511K | S32.511S | S32.512A |
|  | S32.512B | S32.512D | S32.512G | S32.512K | S32.512S |
|  | S32.519A | S32.519B | S32.519D | S32.519G | S32.519K |
|  | S32.519S | S32.591A | S32.591B | S32.591D | S32.591G |
|  | S32.591K | S32.591S | S32.592A | S32.592B | S32.592D |
|  | S32.592G | S32.592K | S32.592S | S32.599A | S32.599B |
|  | S32.599D | S32.599G | S32.599K | S32.599S | S32.601A |
|  | S32.601B | S32.601D | S32.601G | S32.601K | S32.601S |
|  | S32.602A | S32.602B | S32.602D | S32.602G | S32.602K |
|  | S32.602S | S32.609A | S32.609B | S32.609D | S32.609G |
|  | S32.609K | S32.609S | S32.611A | S32.611B | S32.611D |
|  | S32.611G | S32.611K | S32.611S | S32.612A | S32.612B |
|  | S32.612D | S32.612G | S32.612K | S32.612S | S32.613A |
|  | S32.613B | S32.613D | S32.613G | S32.613K | S32.613S |
|  | S32.614A | S32.614B | S32.614D | S32.614G | S32.614K |
|  | S32.614S | S32.615A | S32.615B | S32.615D | S32.615G |
|  | S32.615K | S32.615S | S32.616A | S32.616B | S32.616D |
|  | S32.616G | S32.616K | S32.616S | S32.691A | S32.691B |
|  | S32.691D | S32.691G | S32.691K | S32.691S | S32.692A |
|  | S32.692B | S32.692D | S32.692G | S32.692K | S32.692S |
|  | S32.699A | S32.699B | S32.699D | S32.699G | S32.699K |
|  | S32.699S | S32.810A | S32.810B | S32.810D | S32.810G |
|  | S32.810K | S32.810S | S32.811A | S32.811B | S32.811D |
|  | S32.811G | S32.811K | S32.811S | S32.82XA | S32.82XB |
|  | S32.82XD | S32.82XG | S32.82XK | S32.82XS | S32.89XA |
|  | S32.89XB | S32.89XD | S32.89XG | S32.89XK | S32.89XS |
|  | S32.9XXA | S32.9XXB | S32.9XXD | S32.9XXG | S32.9XXK |
| acture of rib(s) | S22.000A | S22.000B | S22.000D | S22.000G | S22.000K |
| sternum and | S22.000 | S22.001A | S22.001B | S22.001D | S22.001G |
| thoracic spine | S22.001K | S22.001S | S22.002A | S22.002B | S22.002D |
|  | S22.002G | S22.002K | S22.002S | S22.008A | S22.008B |
|  | S22.008D | S22.008G | S22.008K | S22.008S | S22.009A |
|  | S22.009B | S22.009D | S22.009G | S22.009K | S22.009S |
|  | S22.010A | S22.010B | S22.010D | S22.010G | S22.010K |
|  | S22.010S | S22.011A | S22.011B | S22.011D | S22.011G |
|  | S22.011K | S22.011S | S22.012A | S22.012B | S22.012D |
|  | S22.012G | S22.012K | S22.012S | S22.018A | S22.018B |
|  | S22.018D | S22.018G | S22.018K | S22.018S | S22.019A |
|  | S22.019B | S22.019D | S22.019G | S22.019K | S22.019S |
|  | S22.020A | S22.020B | S22.020D | S22.020G | S22.020K |
|  | S22.020S | S22.021A | S22.021B | S22.021D | S22.021G |
|  | S22.021K | S22.021S | S22.022A | S22.022B | S22.022D |
|  | S22.022G | S22.022K | S22.022S | S22.028A | S22.028B |
|  | S22.028D | S22.028G | S22.028K | S22.028S | S22.029A |
|  | S22.029B | S22.029D | S22.029G | S22.029K | S22.029S |
|  | S22.030A | S22.030B | S22.030D | S22.030G | S22.030K |
|  | S22.030S | S22.031A | S22.031B | S22.031D | S22.031G |
|  | 522.031K | S22.031S | S22.032A | S22.032B | S22.032D |
|  | S22.032G | S22.032K | S22.032S | S22.038A | S22.038B |
|  | S22.038D | S22.038G | S22.038K | S22.038S | S22.039A |
|  | S22.039B | S22.039D | S22.039G | S22.039K | S22.039S |
|  | S22.040A | S22.040B | S22.040D | S22.040G | S22.040K |
|  | S22.040S | S22.041A | S22.041B | S22.041D | S22.041G |
|  | S22.041K | S22.041S | S22.042A | S22.042B | S22.042D |
|  | S22.042G | S22.042K | S22.042S | S22.048A | S22.048B |
|  | S22.048D | S22.048G | S22.048K | S22.048S | S22.049A |
|  | S22.049B | S22.049D | S22.049G | S22.049K | S22.049S |
|  | S22.050A | S22.050B | S22.050D | S22.050G | S22.050K |


| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | S22.050S | S22.051A | S22.051B | S22.051D | S22.051G |
|  | S22.051K | S22.051S | S22.052A | S22.052B | S22.052D |
|  | S22.052G | S22.052K | S22.052S | S22.058A | S22.058B |
|  | S22.058D | S22.058G | S22.058K | S22.058S | S22.059A |
|  | S22.059B | S22.059D | S22.059G | S22.059K | S22.059S |
|  | S22.060A | S22.060B | S22.060D | S22.060G | S22.060K |
|  | S22.060S | S22.061A | S22.061B | S22.061D | S22.061G |
|  | S22.061K | S22.061S | S22.062A | S22.062B | S22.062D |
|  | S22.062G | S22.062K | S22.062S | S22.068A | S22.068B |
|  | S22.068D | S22.068G | S22.068K | S22.068S | S22.069A |
|  | S22.069B | S22.069D | S22.069G | S22.069K | S22.069S |
|  | S22.070A | S22.070B | S22.070D | S22.070G | S22.070K |
|  | S22.070S | S22.071A | S22.071B | S22.071D | S22.071G |
|  | S22.071K | S22.071S | S22.072A | S22.072B | S22.072D |
|  | S22.072G | S22.072K | S22.072S | S22.078A | S22.078B |
|  | S22.078D | S22.078G | S22.078K | S22.078S | S22.079A |
|  | S22.079B | S22.079D | S22.079G | S22.079K | S22.079S |
|  | S22.080A | S22.080B | S22.080D | S22.080G | S22.080K |
|  | S22.080S | S22.081A | S22.081B | S22.081D | S22.081G |
|  | S22.081K | S22.081S | S22.082A | S22.082B | S22.082D |
|  | S22.082G | S22.082K | S22.082S | S22.088A | S22.088B |
|  | S22.088D | S22.088G | S22.088K | S22.088S | S22.089A |
|  | S22.089B | S22.089D | S22.089G | S22.089K | S22.089S |
|  | S22.20XA | S22.20XB | S22.20XD | S22.20XG | S22.20XK |
|  | S22.20XS | S22.21XA | S22.21XB | S22.21XD | S22.21XG |
|  | S22.21XK | S22.21XS | S22.22XA | S22.22XB | S22.22XD |
|  | S22.22XG | S22.22XK | S22.22XS | S22.23XA | S22.23XB |
|  | S22.23XD | S22.23XG | S22.23XK | S22.23XS | S22.24XA |
|  | S22.24XB | S22.24XD | S22.24XG | S22.24XK | S22.24XS |
|  | S22.31XA | S22.31XB | S22.31XD | S22.31XG | S22.31XK |
|  | S22.31XS | S22.32XA | S22.32XB | S22.32XD | S22.32XG |
|  | S22.32XK | S22.32XS | S22.39XA | S22.39XB | S22.39XD |
|  | S22.39XG | S22.39XK | S22.39XS | S22.41XA | S22.41XB |
|  | S22.41XD | S22.41XG | S22.41XK | S22.41XS | S22.42XA |
|  | S22.42XB | S22.42XD | S22.42XG | S22.42XK | S22.42XS |
|  | S22.43XA | S22.43XB | S22.43XD | S22.43XG | S22.43XK |
|  | S22.43XS | S22.49XA | S22.49XB | S22.49XD | S22.49XG |
|  | S22.49XK | S22.49XS | S22.5XXA | S22.5XXB | S22.5XXD |
|  | S22.5XXG | S22.5XXK | S22.5XXS | S22.9XXA | S22.9XXB |
|  | S22.9XXD | S22.9XXG | S22.9XXK | S22.9XXS |  |
| Fracture of shoulder | S42.001A | S42.001B | S42.001D | S42.001G | S42.001K |
| and upper arm | S42.001P | S42.001S | S42.002A | S42.002B | S42.002D |
|  | S42.002G | S42.002K | S42.002P | S42.002S | S42.009A |
|  | S42.009B | S42.009D | S42.009G | S42.009K | S42.009P |
|  | S42.009S | S42.011A | S42.011B | S42.011D | S42.011G |
|  | S42.011K | S42.011P | S42.011S | S42.012A | S42.012B |
|  | S42.012D | S42.012G | S42.012K | S42.012P | S42.012S |
|  | S42.013A | S42.013B | S42.013D | S42.013G | S42.013K |
|  | S42.013P | S42.013S | S42.014A | S42.014B | S42.014D |
|  | S42.014G | S42.014K | S42.014P | S42.014S | S42.015A |
|  | S42.015B | S42.015D | S42.015G | S42.015K | S42.015P |
|  | S42.015S | S42.016A | S42.016B | S42.016D | S42.016G |
|  | S42.016K | S42.016P | S42.016S | S42.017A | S42.017B |
|  | S42.017D | S42.017G | S42.017K | S42.017P | S42.017S |
|  | S42.018A | S42.018B | S42.018D | S42.018G | S42.018K |
|  | S42.018P | S42.018S | S42.019A | S42.019B | S42.019D |
|  | S42.019G | S42.019K | S42.019P | S42.019S | S42.021A |
|  | S42.021B | S42.021D | S42.021G | S42.021K | S42.021P |
|  | S42.021S | S42.022A | S42.022B | S42.022D | S42.022G |
|  | S42.022K | S42.022P | S42.022S | S42.023A | S42.023B |





| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gangrene | E08.52 E11.52 | E09.52 E10.52 | 170.262170 .463 | 170.561170 .569 | 170.663170 .668 |
|  | 170.763173 .01 | 196 K44.1 | K46.1 N49.3 | E13.52 170.268 | 170.269170 .362 |
|  | 170.369170 .568 | $170.661 \quad 170.669$ | $170.761 \quad 170.762$ | 170.769 K40.41 | K45.1 I70.363 |
|  | 170.469170 .768 | K40.10 K41.10 | K43.1 K43.4 | 170.263170 .368 | $170.461 \quad 170.468$ |
|  | K35.31 K40.11 | K41.41 K42.1 | K43.7 A48.0 | $170.261 \quad 170.361$ | $170.462 \quad 170.562$ |
|  | 170.563170 .662 | K40.40 K41.11 | A69.0 J85.0 | K41.40 K35.891 |  |
| Hemiplegia | G81.00 G81.01 | G81.02 G81.03 | G81.04 G81.10 | G81.11 G81.12 | G81.13 G81.14 |
|  | G81.90 G81.91 | G81.92 G81.93 | G81.94 |  |  |
| Hypotension | $195.0 \quad 195.1$ | 195.2 I 95.3 | $195.81 \quad 195.89$ | 195.9 |  |
| Intracranial injury | S06.0X0A | S06.0X0D | S06.0X0S | S06.0X1A | S06.0X1D |
|  | S06.0X1S |  | S06.0X9D | S06.0X9S | S06.1X0A |
|  | S06.1X0D | $\begin{aligned} & \text { S06.0X9A } \\ & \text { S06.1X0S } \end{aligned}$ | S06.1X1A | S06.1X1D | S06.1X1S |
|  | S06.1X2A |  | S06.1X2S | S06.1X3A | S06.1X3D |
|  | S06.1X3S | $\begin{aligned} & \text { S06.1X2D } \\ & \text { S06.1X4A } \end{aligned}$ | S06.1X4D | S06.1X4S | S06.1X5A |
|  | S06.1X5D | S06.1X5S | S06.1X6A | S06.1X6D | S06.1X6S |
|  | S06.1X7A | S06.1X8A | S06.1X9A | S06.1X9D | S06.1X9S |
|  | S06.2X0A | S06.2X0D | S06.2X0S | S06.2X1A | S06.2X1D |
|  | S06.2X1S | S06.2X2A | S06.2X2D | S06.2X2S | S06.2X3A |
|  | S06.2X3D | S06.2X3S | S06.2X4A | S06.2X4D | S06.2X4S |
|  | S06.2X5A | S06.2X5D | S06.2X5S | S06.2X6A | S06.2X6D |
|  | S06.2X6S | S06.2X7A | S06.2X8A | S06.2X9A | S06.2X9D |
|  | S06.2X9S | S06.300A | S06.300D | S06.300S | S06.301A |
|  | S06.301D | S06.301S | S06.302A | S06.302D | S06.302S |
|  | S06.303A | S06.303D | S06.303S | S06.304A | S06.304D |
|  | S06.304S | S06.305A | S06.305D | S06.305S | S06.306A |
|  | S06.306D | S06.306S | S06.307A | S06.308A | S06.309A |
|  | S06.309D | S06.309S | S06.310A | S06.310D | S06.310S |
|  | S06.311A | S06.311D | S06.311S | S06.312A | S06.312D |
|  | S06.312S | S06.313A | S06.313D | S06.313S | S06.314A |
|  | S06.314D | S06.314S | S06.315A | S06.315D | S06.315S |
|  | S06.316A | S06.316D | S06.316S | S06.317A | S06.318A |
|  | S06.319A | S06.319D | S06.319S | S06.320A | S06.320D |
|  | S06.320S | S06.321A | S06.321D | S06.321S | S06.322A |
|  | S06.322D | S06.322S | S06.323A | S06.323D | S06.323S |
|  | S06.324A | S06.324D | S06.324S | S06.325A | S06.325D |
|  | S06.325S | S06.326A | S06.326D | S06.326S | S06.327A |
|  | S06.328A | S06.329A | S06.329D | S06.329S | S06.330A |
|  | S06.330D | S06.330S |  | S06.331D | S06.331S |
|  | S06.332A | S06.332D | $\begin{aligned} & \text { S06.331A } \\ & \text { S06.332S } \end{aligned}$ | S06.333A | S06.333D |
|  | S06.333S | S06.334A |  | S06.334S | S06.335A |
|  | S06.335D | S06.335S | S06.334D S06.336A | S06.336D | S06.336S |
|  | S06.337A | S06.338A |  | S06.339D | S06.339S |
|  | S06.340A | S06.340D | S06.339A S06.340S | S06.341A | S06.341D |
|  | S06.341S | S06.342A | S06.342D | S06.342S | S06.343A |
|  | S06.343D | S06.343S | S06.344A | S06.344D | S06.344S |
|  | S06.345A | S06.345D | S06.345S | S06.346A | S06.346D |
|  | S06.346S | S06.347A |  | S06.349A | S06.349D |
|  | S06.349S | S06.350A | $\begin{aligned} & \text { S06.348A } \\ & \text { S06.350D } \end{aligned}$ | S06.350S | S06.351A |
|  | S06.351D | S06.351S |  | S06.352D | S06.352S |
|  | S06.353A | S06.353D | $\begin{aligned} & \text { SU6.352A } \\ & \text { S06.353S } \end{aligned}$ | S06.354A | S06.354D |
|  | S06.354S | S06.355A | S06.355D | S06.355S | S06.356A |
|  | S06.356D | S06.356S | S06.357A | S06.358A | S06.359A |
|  | S06.359D | S06.359S | S06.360A | S06.360D | S06.360S |
|  | S06.361A | S06.361D |  | S06.362A | S06.362D |
|  | S06.362S | S06.363A | $\begin{aligned} & \text { S06.361S } \\ & \text { S06.363D } \end{aligned}$ | S06.363S | S06.364A |
|  | S06.364D | S06.364S |  | S06.365D | S06.365S |
|  | S06.366A | S06.366D | S06.365A | S06.367A | S06.368A |
|  | S06.369A | S06.369D | S06.369S | S06.370A | S06.370D |
|  | S06.370S | S06.371A | S06.371D | S06.371S | S06.372A |
|  | S06.372D | S06.372S | S06.373A | S06.373D | S06.373S |


| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | S06.374A | S06.374D | S06.374S | S06.375A | S06.375D |
|  | S06.375S | S06.376A | S06.376D | S06.376S | S06.377A |
|  | S06.378A | S06.379A | S06.379D | S06.379S | S06.380A |
|  | S06.380D | S06.380S | S06.381A | S06.381D | S06.381S |
|  | S06.382A | S06.382D | S06.382S | S06.383A | S06.383D |
|  | S06.383S | S06.384A | S06.384D | S06.384S | S06.385A |
|  | S06.385D | S06.385S | S06.386A | S06.386D | S06.386S |
|  | S06.387A | S06.388A | S06.389A | S06.389D | S06.389S |
|  | S06.4X0A | S06.4XOD | S06.4X0S | S06.4X1A | S06.4X1D |
|  | S06.4X1S | S06.4X2A | S06.4X2D | S06.4X2S | S06.4X3A |
|  | S06.4X3D | S06.4X3S | S06.4X4A | S06.4X4D | 506.4X4S |
|  | S06.4X5A | S06.4X5D | S06.4X5S | S06.4X6A | S06.4X6D |
|  | 506.4X6S | S06.4X7A | S06.4X8A | S06.4X9A | S06.4X9D |
|  | S06.4X9S | S06.5X0A | S06.5XOD | S06.5X0S | S06.5X1A |
|  | S06.5X1D | S06.5X1S | S06.5X2A | S06.5X2D | S06.5X2S |
|  | S06.5X3A | S06.5X3D | S06.5X3S | S06.5X4A | S06.5X4D |
|  | 506.5X4S | S06.5X5A | S06.5X5D | S06.5X5S | S06.5X6A |
|  | S06.5X6D | S06.5X6S | S06.5X7A | S06.5X8A | S06.5X9A |
|  | S06.5X9D | S06.5X9S | S06.6X0A | S06.6X0D | S06.6X0S |
|  | 506.6X1A | S06.6X1D | S06.6X1S | S06.6X2A | S06.6X2D |
|  | S06.6X2S | S06.6X3A | S06.6X3D | S06.6X3S | S06.6X4A |
|  | S06.6X4D | S06.6X4S | S06.6X5A | S06.6X5D | S06.6X5S |
|  | S06.6X6A | S06.6X6D | S06.6X6S | S06.6X7A | S06.6X8A |
|  | S06.6X9A | S06.6X9D | S06.6X9S | S06.810A | S06.810D |
|  | S06.810S | S06.811A | S06.811D | S06.811S | S06.812A |
|  | S06.812D | S06.812S | S06.813A | S06.813D | S06.813S |
|  | S06.814A | S06.814D | S06.814S | S06.815A | S06.815D |
|  | S06.815S | S06.816A | S06.816D | S06.816S | S06.817A |
|  | S06.818A | S06.819A | S06.819D | S06.819S | S06.820A |
|  | S06.820D | S06.820S | S06.821A | S06.821D | S06.821S |
|  | S06.822A | S06.822D | S06.822S | S06.823A | S06.823D |
|  | S06.823S | S06.824A | S06.824D | S06.824S | S06.825A |
|  | S06.825D | S06.825S | S06.826A | S06.826D | S06.826S |
|  | S06.827A | S06.828A | S06.829A | S06.829D | S06.829S |
|  | S06.890A | S06.890D | S06.890S | S06.891A | S06.891D |
|  | S06.891S | S06.892A | S06.892D | S06.892S | S06.893A |
|  | S06.893D | S06.893S | S06.894A | S06.894D | S06.894S |
|  | S06.895A | S06.895D | S06.895S | S06.896A | S06.896D |
|  | S06.896S | S06.897A | S06.898A | S06.899A | S06.899D |
|  | S06.899S | S06.9X0A | S06.9X0D | S06.9X0S | S06.9X1A |
|  | S06.9X1D | S06.9X1S | S06.9X2A | S06.9X2D | S06.9X2S |
|  | $506.9 \times 3 \mathrm{~A}$ | S06.9x3D | S06.9x3S | 506.9x4A | S06.9X4D |
|  | S06.9X4S | S06.9x5A | S06.9X5D | S06.9X5S | S06.9X6A |
|  | S06.9X6D | 506.9x6S | S06.9X7A | S06.9X8A | S06.9X9A |
|  | S06.9X9D | S06.9X9S |  |  |  |
| Mental and | F10.10 F10.11 | F10.120 F10.121 | F10.129 F10.14 | F10.150 F10.151 | F10.159 F10.180 |
| behavioral disorders | F10.181 F10.182 | F10.188 F10.19 | F10.20 F10.21 | F10.220 F10.221 | F10.229 F10.230 |
| due to use of alcohol | F10.231 F10.232 | F10.239 F10.24 | F10.250 F10.251 | F10.259 F10.26 | F10.27 F10.280 |
|  | F10.281 F10.282 | F10.288 F10.29 | F10.920 F10.921 | F10.929 F10.94 | F10.950 F10.951 |
|  | F10.959 F10.96 | F10.97 F10.980 | F10.981 F10.982 | F10.988 F10.99 |  |
| Nausea and vomiting | R11.0 R11.10 | R11.11 R11.12 | R11.13 R11.14 | R11.15 R11.2 |  |
| Nosocomial condition | Y95 |  |  |  |  |
| Open wound of | S51.001A | S51.001D | S51.001S | S51.002A | S51.002D |
| forearm | S51.002S | S51.009A | S51.009D | S51.009S | S51.011A |
|  | S51.011D | S51.011S | S51.012A | S51.012D | S51.012S |
|  | S51.019A | S51.019D | S51.019S | S51.021A | S51.021D |
|  | S51.021S | S51.022A | S51.022D | S51.022S | S51.029A |
|  | S51.029D | S51.029S | S51.031A | S51.031D | S51.031S |


| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | S51.032A | S51.032D | S51.032S | S51.039A | S51.039D |
|  | S51.039S | S51.041A | S51.041D | S51.041S | S51.042A |
|  | S51.042D | S51.042S | S51.049A | S51.049D | S51.049S |
|  | S51.051A | S51.051D | S51.051S | S51.052A | S51.052D |
|  | S51.052S | S51.059A | S51.059D | S51.059S | S51.801A |
|  | S51.801D | S51.801S | S51.802A | S51.802D | S51.802S |
|  | S51.809A | S51.809D | S51.809S | S51.811A | S51.811D |
|  | S51.811S | S51.812A | S51.812D | S51.812S | S51.819A |
|  | S51.819D | S51.819S | S51.821A | S51.821D | S51.821S |
|  | S51.822A | S51.822D | S51.822S | S51.829A | S51.829D |
|  | S51.829S | S51.831A | S51.831D | S51.831S | S51.832A |
|  | S51.832D | S51.832S | S51.839A | S51.839D | S51.839S |
|  | S51.841A | S51.841D | S51.841S | S51.842A | S51.842D |
|  | S51.842S | S51.849A | S51.849D | S51.849S | S51.851A |
|  | S51.851D | S51.851S | S51.852A | S51.852D | S51.852S |
|  | S51.859A | S51.859D | S51.859S |  |  |
| Open wound of head | S01.00XA | S01.00XD | S01.00XS | S01.01XA | S01.01XD |
|  | S01.01XS | S01.02XA | S01.02XD | S01.02XS | S01.03XA |
|  | S01.03XD | S01.03XS | S01.04XA | S01.04XD | s01.04XS |
|  | S01.05XA | S01.05XD | S01.05XS | S01.101A | S01.101D |
|  | S01.101S | S01.102A | S01.102D | S01.102S | S01.109A |
|  | S01.109D | S01.109S | S01.111A | S01.111D | S01.111S |
|  | S01.112A | S01.112D | S01.112S | S01.119A | S01.119D |
|  | S01.119S | S01.121A | S01.121D | S01.121S | S01.122A |
|  | S01.122D | S01.122S | S01.129A | S01.129D | S01.129S |
|  | S01.131A | S01.131D | S01.131S | S01.132A | S01.132D |
|  | S01.132S | S01.139A | S01.139D | S01.139S | S01.141A |
|  | S01.141D | S01.141S | S01.142A | S01.142D | S01.142S |
|  | S01.149A | S01.149D | S01.149S | S01.151A | S01.151D |
|  | S01.151S | S01.152A | S01.152D | S01.152S | S01.159A |
|  | S01.159D | S01.159S | S01.20XA | S01.20XD | S01.20XS |
|  | S01.21XA | S01.21XD | S01.21XS | S01.22XA | S01.22XD |
|  | S01.22XS | S01.23XA | S01.23XD | S01.23XS | S01.24XA |
|  | S01.24XD | S01.24XS | S01.25XA | S01.25XD | S01.25XS |
|  | S01.301A | S01.301D | S01.301S | S01.302A | S01.302D |
|  | S01.302S | S01.309A | S01.309D | S01.309S | S01.311A |
|  | S01.311D | S01.311S | S01.312A | S01.312D | S01.312S |
|  | S01.319A | S01.319D | S01.319S | S01.321A | S01.321D |
|  | S01.321S | S01.322A | S01.322D | S01.322S | S01.329A |
|  | S01.329D | S01.329S | S01.331A | S01.331D | S01.331S |
|  | S01.332A | S01.332D | S01.332S | S01.339A | S01.339D |
|  | S01.339S | S01.341A | S01.341D | S01.341S | S01.342A |
|  | S01.342D | S01.342S | S01.349A | S01.349D | S01.349S |
|  | S01.351A | S01.351D | S01.351S | S01.352A | S01.352D |
|  | S01.352S | S01.359A | S01.359D | S01.359S | S01.401A |
|  | S01.401D | S01.401S | S01.402A | S01.402D | S01.402S |
|  | S01.409A | S01.409D | S01.409S | S01.411A | S01.411D |
|  | S01.411S | S01.412A | S01.412D | S01.412S | S01.419A |
|  | S01.419D | S01.419S | S01.421A | S01.421D | S01.421S |
|  | S01.422A | S01.422D | S01.422S | S01.429A | S01.429D |
|  | S01.429S | S01.431A | S01.431D | S01.431S | S01.432A |
|  | S01.432D | S01.432S | S01.439A | S01.439D | S01.439S |
|  | S01.441A | S01.441D | S01.441S | S01.442A | S01.442D |
|  | S01.442S | S01.449A | S01.449D | S01.449S | S01.451A |
|  | S01.451D | S01.451S | S01.452A | S01.452D | S01.452S |
|  | S01.459A | S01.459D | S01.459S | S01.501A | S01.501D |
|  | S01.501S | S01.502A | S01.502D | S01.502S | S01.511A |
|  | S01.511D | S01.511S | S01.512A | S01.512D | S01.512S |
|  | S01.521A | S01.521D | S01.521S | S01.522A | S01.522D |
|  | S01.522S | S01.531A | S01.531D | S01.531S | S01.532A |


| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | S01.532D | S01.532S | S01.541A | S01.541D | S01.541S |
|  | S01.542A | S01.542D | S01.542S | S01.551A | S01.551D |
|  | S01.551S | S01.552A | S01.552D | S01.552S | S01.80XA |
|  | S01.80XD | S01.80XS | S01.81XA | S01.81XD | S01.81XS |
|  | S01.82XA | S01.82XD | S01.82XS | S01.83XA | S01.83XD |
|  | S01.83XS | S01.84XA | S01.84XD | S01.84XS | S01.85XA |
|  | S01.85XD | S01.85XS | S01.90XA | S01.90XD | S01.90XS |
|  | S01.91XA | S01.91XD | S01.91XS | S01.92XA | S01.92XD |
|  | S01.92XS | S01.93XA | S01.93XD | S01.93XS | S01.94XA |
|  | S01.94XD | S01.94XS | S01.95XA | S01.95XD | S01.95XS |
| Osteoporosis with fracture | M80.00XA | M80.00XD | M80.00XG | M80.00XK | M80.00XP |
|  | M80.00XS | M80.011A | M80.011D | M80.011G | M80.011K |
|  | M80.011P | M80.011S | M80.012A | M80.012D | M80.012G |
|  | M80.012K | M80.012P | M80.012S | M80.019A | M80.019D |
|  | M80.019G | M80.019K | M80.019P | M80.019S | M80.021A |
|  | M80.021D | M80.021G | M80.021K | M80.021P | M80.021S |
|  | M80.022A | M80.022D | M80.022G | M80.022K | M80.022P |
|  | M80.022S | M80.029A | M80.029D | M80.029G | M80.029K |
|  | M80.029P | M80.029S | M80.031A | M80.031D | M80.031G |
|  | M80.031K | M80.031P | M80.031S | M80.032A | M80.032D |
|  | M80.032G | M80.032K | M80.032P | M80.032S | M80.039A |
|  | M80.039D | M80.039G | M80.039K | M80.039P | M80.039S |
|  | M80.041A | M80.041D | M80.041G | M80.041K | M80.041P |
|  | M80.041S | M80.042A | M80.042D | M80.042G | M80.042K |
|  | M80.042P | M80.042S | M80.049A | M80.049D | M80.049G |
|  | M80.049K | M80.049P | M80.049S | M80.051A | M80.051D |
|  | M80.051G | M80.051K | M80.051P | M80.051S | M80.052A |
|  | M80.052D | M80.052G | M80.052K | M80.052P | M80.052S |
|  | M80.059A | M80.059D | M80.059G | M80.059K | M80.059P |
|  | M80.059S | M80.061A | M80.061D | M80.061G | M80.061K |
|  | M80.061P | M80.061S | M80.062A | M80.062D | M80.062G |
|  | M80.062K | M80.062P | M80.062S | M80.069A | M80.069D |
|  | M80.069G | M80.069K | M80.069P | M80.069S | M80.071A |
|  | M80.071D | M80.071G | M80.071K | M80.071P | M80.071S |
|  | M80.072A | M80.072D | M80.072G | M80.072K | M80.072P |
|  | M80.072S | M80.079A | M80.079D | M80.079G | M80.079K |
|  | M80.079P | M80.079S | M80.08XA | M80.08XD | M80.08XG |
|  | M80.08XK | M80.08XP | M80.08XS | M80.80XA | M80.80XD |
|  | M80.80XG | M80.80XK | M80.80XP | M80.80XS | M80.811A |
|  | M80.811D | M80.811G | M80.811K | M80.811P | M80.811S |
|  | M80.812A | M80.812D | M80.812G | M80.812K | M80.812P |
|  | M80.812S | M80.819A | M80.819D | M80.819G | M80.819K |
|  | M80.819P | M80.819S | M80.821A | M80.821D | M80.821G |
|  | M80.821K | M80.821P | M80.821S | M80.822A | M80.822D |
|  | M80.822G | M80.822K | M80.822P | M80.822S | M80.829A |
|  | M80.829D | M80.829G | M80.829K | M80.829P | M80.829S |
|  | M80.831A | M80.831D | M80.831G | M80.831K | M80.831P |
|  | M80.831S | M80.832A | M80.832D | M80.832G | M80.832K |
|  | M80.832P | M80.832 | M80.839A | M80.839D | M80.839G |
|  | M80.839K | M80.839P | M80.839S | M80.841A | M80.841D |
|  | M80.841G | M80.841K | M80.841P | M80.841S | M80.842A |
|  | M80.842D | M80.842G | M80.842K | M80.842P | M80.842S |
|  | M80.849A | M80.849D | M80.849G | M80.849K | M80.849P |
|  | M80.849S | M80.851A | M80.851D | M80.851G | M80.851K |
|  | M80.851P | M80.851S | M80.852A | M80.852D | M80.852G |
|  | M80.852K | M80.852P | M80.852S | M80.859A | M80.859D |
|  | M80.859G | M80.859K | M80.859P | M80.859S | M80.861A |
|  | M80.861D | M80.861G | M80.861K | M80.861P | M80.861S |
|  | M80.862A | M80.862D | M80.862G | M80.862K | M80.862P |
|  | M80.862S | M80.869A | M80.869D | M80.869G | M80.869K |



| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | W18.2XXS <br> W18.31XD <br> W18.40XA <br> W18.41XS <br> W18.43XD | W18.30XA <br> W18.31XS <br> W18.40XD <br> W18.42XA <br> W18.43XS | W18.30XD <br> W18.39XA <br> W18.40XS <br> W18.42XD <br> W18.49XA | W18.30XS <br> W18.39XD <br> W18.41XA <br> W18.42XS <br> W18.49XD | W18.31XA <br> W18.39XS <br> W18.41XD <br> W18.43XA <br> W18.49XS |
| Other functional intestinal disorders | K59.00 K59.01 <br> K59.4 K59.8 | $\begin{array}{lll} \text { K59.02 } & \text { K59.03 } \\ \text { K59 } \end{array}$ | K59.04 K59.09 | K59.1 K59.2 | K59.31 K59.39 |
| Other hearing loss | H91.01 H91.02 <br> H91.22 H91.23 <br> H91.93  | H91.03 H91.09 <br> H91.3 H91.8X | $\begin{array}{cc} \hline \mathrm{H} 91.10 \mathrm{H} 91.11 \\ 1 \mathrm{H} 91.8 \mathrm{X} 2 \mathrm{H} 91.8 \mathrm{X} \end{array}$ | H91.12 H91.13 H91.8X9 H91.90 | H91.20 H91.21 <br> H91.91 H91.92 |
| Other joint disorders not elsewhere classified | M25.00 M25.011 M25.012 M25.019M25.021 M25.022M25.029 M25.031 M25.032 M25.039 M25.041 M25.042 M25.049 M 25.051 M25.052 M25.059 M 25.061 M 25.062 M 25.069 M 25.071 M25.072M25.073M25.074M25.075M25.076M25.08 M25.10 M25.111 M25.112 M 25.119 M 25.121 M 25.122 M 25.129 M 25.131 M 25.132 M 25.139 M 25.141 M 25.142 M 25.149 M 25.151 M25.152 M 25.159 M 25.161 M 25.162 M 25.169 M 25.171 M 25.172 M 25.173 M 25.174 M 25.175 M25.176M25.18 M25.20 M25.211 M25.212M25.219M25.221 M25.222 M 25.229 M 25.231 M25.232 M25.239 M 25.241 M25.242M25.249 M25.251 M25.252 M25.259 M25.261 M25.262 <br>  <br>  M25.359 M 25.361 M 25.362 M 25.369 M25.371 M25.372 M 25.373 M 25.374 M 25.375 M 25.376 M25.40 M25.411 M 25.412 M 25.419 M 25.421 M 25.422 M 25.429 M 25.431 M 25.432 M 25.439 M25.441 M25.442 M 25.449 M 25.451 M25.452 M 25.459 M 25.461 M 25.462 M 25.469 M 25.471 M25.472M25.473 M 25.474M25.475M25.476M25.48 M25.50 M25.511 M25.512 M 25.519 M 25.521 M 25.522 M 25.529 M 25.531 M 25.532 M 25.539 M 25.541 M 25.542 M 25.549 M 25.551 M 25.552 M 25.559 M 25.561 M 25.562 M 25.569 M 25.571 M 25.572 M 25.579 M 25.60 M 25.611 M 25.612 M 25.619 M 25.621 M 25.622 M 25.629 M 25.631 M 25.632 M 25.639 M 25.641 M 25.642 M 25.649 M 25.651 M 25.652 M 25.659 M 25.661 M 25.662 M 25.669 M 25.671 M 25.672 M 25.673 M25.674 M 25.675 M 25.676M25.70 M25.711 M25.712M25.719M25.721 M 25.722 M 25.729 M25.731 M25.732 M25.739 M 25.741 M25.742 M25.749 M 25.751 M 25.752 M 25.759 M 25.761 M25.762M25.769M25.771 M25.772M25.773M25.774M25.775M25.776M25.78 M25.80 M 25.811 M 25.812 M 25.819 M 25.821 M 25.822 M 25.829 M 25.831 M 25.832 M 25.839 M 25.841 M 25.842 M 25.849 M 25.851 M 25.852 M 25.859 M 25.861 M 25.862 M 25.869 M 25.871 M 25.872 M25.879M25.9 |  |  |  |  |
| Other local infections of skin and subcutaneous tissue | L08.0 L08.1 | L08.81 L08.82 | L08.89 L08.9 |  |  |
| Other medical procedures as the cause of abnormal reaction of the patient | Y84.0 Y84.1 | Y84.2 Y84.3 | Y84.4 Y84.5 | Y84.6 Y84.7 | Y84.8 Y84.9 |
| Other noninfective gastroenteritis and colitis | K52.0 K52.1  <br> K52.838 K52.839 | K52.21 K52.22 <br> K52.89 K52.9 | K52.29 K52.3 | K52.81 K52.82 | K52.831 K52.832 |
| Other septicemia | A41.01 A41.02 <br> A41.59 A41.81 | A41.1 A41.2 <br> A41.89 A41.9 | A41.3 A41.4 | A41.50 A41.51 | A41.52 A41.53 |
| Other soft tissue disorders not elsewhere classified | M79.0 M79.10 M79.602 M79.603 M79.632 M79.639 M79.659 M79.661 M79.7 M79.81 M79.A29M79.A3 | M79.11 M79.12 M79.604M79.605 M79.641 M79.642 M79.662M79.669 M79.89 M79.9 M79.A9 | M79.18 M79.2 M79.606M79.609 M79.643M79.644 M79.671 M79.672 M79.A11 M79.A1 | M79.3 M79.4 M79.621 M79.62 M79.645M79.64 M79.673M79.67 2M79.A1 M79.A2 | M79.5 M79.601 M79.629M79.631 M79.651 M79.652 4M79.675M79.676 1 M79.A22 |
| Other symptoms and signs involving cognitive functions and awareness | $\begin{aligned} & \text { R41.0 R41.1 } \\ & \text { R41.842 R41.843 } \\ & \text { R44.9 } \end{aligned}$ | $\begin{array}{ll} \hline \text { R41.2 R41.3 } \\ \text { R41.844 R41.89 } \end{array}$ | R41.4 R41.81 <br> R4 R44.0 | $\begin{array}{ll} \hline \text { R41.82 } & \text { R41.83 } \\ \text { R44.1 } & \text { R44.2 } \end{array}$ | $\begin{array}{lc} \hline \text { R41.840 R41.841 } \\ \text { R44.3 R44.8 } \end{array}$ |
| Other symptoms and signs involving |  |  |  |  |  |



| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 169.362169 .363 | 169.364169 .365 | 169.369169 .390 | 169.391169 .392 | 169.393169 .398 |
|  | 169.80169 .810 | 169.811169 .812 | 169.813169 .814 | 169.815169 .818 | 169.819169 .820 |
|  | 169.821 I 69.822 | 169.823169 .828 | 169.831169 .832 | 169.833169 .834 | 169.839169 .841 |
|  | 169.842169 .843 | 169.844169 .849 | 169.851169 .852 | 169.853169 .854 | 169.859169 .861 |
|  | 169.862169 .863 | 169.864169 .865 | 169.869169 .890 | 169.891169 .892 | 169.893169 .898 |
|  | 169.90169 .910 | 169.911169 .912 | 169.913169 .914 | 169.915169 .918 | 169.919169 .920 |
|  | 169.921169 .922 | 169.923169 .928 | 169.931169 .932 | 169.933169 .934 | 169.939169 .941 |
|  | 169.942169 .943 | 169.944169 .949 | 169.951169 .952 | 169.953169 .954 | 169.959169 .961 |
|  | 169.962169 .963 | 169.964169 .965 | 169.969169 .990 | 169.991169 .992 | 169.993169 .998 |
| Somnolence stupor and coma | R40.0 R40.1 | R40.20 | R40.2110 | R40.2111 | R40.2112 |
|  | R40.2113 | R40.2114 | R40.2120 | R40.2121 | R40.2122 |
|  | R40.2123 | R40.2124 | R40.2130 | R40.2131 | R40.2132 |
|  | R40.2133 | R40.2134 | R40.2140 | R40.2141 | R40.2142 |
|  | R40.2143 | R40.2144 | R40.2210 | R40.2211 | R40.2212 |
|  | R40.2213 | R40.2214 | R40.2220 | R40.2221 | R40.2222 |
|  | R40.2223 | R40.2224 | R40.2230 | R40.2231 | R40.2232 |
|  | R40.2233 | R40.2234 | R40.2240 | R40.2241 | R40.2242 |
|  | R40.2243 | R40.2244 | R40.2250 | R40.2251 | R40.2252 |
|  | R40.2253 | R40.2254 | R40.2310 | R40.2311 | R40.2312 |
|  | R40.2313 | R40.2314 | R40.2320 | R40.2321 | R40.2322 |
|  | R40.2323 | R40.2324 | R40.2330 | R40.2331 | R40.2332 |
|  | R40.2333 | R40.2334 | R40.2340 | R40.2341 | R40.2342 |
|  | R40.2343 | R40.2344 | R40.2350 | R40.2351 | R40.2352 |
|  | R40.2353 | R40.2354 | R40.2360 | R40.2361 | R40.2362 |
|  | R40.2363 | R40.2364 | R40.2410 | R40.2411 | R40.2412 |
|  | R40.2413 | R40.2414 | R40.2420 | R40.2421 | R40.2422 |
|  | R40.2423 | R40.2424 | R40.2430 | R40.2431 | R40.2432 |
|  | $\begin{array}{r} \mathrm{R} 40.2433 \\ \text { R40.2443 } \\ \hline \end{array}$ | R40.2434 | R40.2440 | R40.2441 | R40.2442 |
|  |  | R40.2444 | R40.3 R40.4 |  |  |
| Speech disturbances not elsewhere classified | R47.01 R47.02 | R47.1 R47.81 | R47.82 R47.89 R47.9 |  |  |
| Spinal stenosis (secondary code only) | M48.00 M48.01 | M48.02 M48.03 | M48.04 M48.05 | M48.061 M 48.062 M 48.07 M 48.08 |  |
|  | M48.10 M48.11 | M48.12 M48.13 | M48.14 M48.15 | M48.16 M48.17 | M48.18 M48.19 |
|  | M48.20 M48.21 | M48.22 M48.23 | M48.24 M48.25 | M48.26 M48.27 | M48.30 M48.31 |
|  | M48.32 M48.33 | M48.34 M48.35 | M48.36 M48.37 | M48.38 M48.40X |  |
|  | M48.40XD | M48.40XG | M48.40XS | M48.41XA | M48.41XD |
|  | M48.41XG | M48.41XS | M48.42XA | M48.42XD | M48.42XG |
|  | M48.42XS | M48.43XA | M48.43XD | M48.43XG | M48.43XS |
|  | M48.44XA | M48.44XD | M48.44XG | M48.44XS | M48.45XA |
|  | M48.45XD | M48.45XG | M48.45XS | M48.46XA | M48.46XD |
|  | M48.46XG | M48.46XS | M48.47XA | M48.47XD | M48.47XG |
|  | M48.47XS | M48.48XA | M48.48XD | M48.48XG | M48.48XS |
|  | M48.50XA | M48.50XD | M48.50XG | M48.50XS | M48.51XA |
|  | M48.51XD | M48.51XG | M48.51XS | M48.52XA | M48.52XD |
|  | M48.52XG | M48.52XS | M48.53XA | M48.53XD | M48.53XG |
|  | M48.53XS | M48.54XA | M48.54XD | M48.54XG | M48.54XS |
|  | M48.55XA | M48.55XD | M48.55XG | M48.55XS | M48.56XA |
|  | M48.56XD | M48.56XG | M48.56XS | M48.57XA | M48.57XD |
|  | M48.57XG | M48.57XS | M48.58XA | M48.58XD | M48.58XG |
|  | M48.58XS | M48.8X1 | M48.8X2 | M48.8X3 | M48.8X4 |
|  | $\begin{aligned} & \text { M48.8X5 } \\ & \text { M48.9 } \end{aligned}$ | M48.8X6 | M48.8X7 | M48.8X8 | M48.8X9 |
| Streptococcus and staphylococcus as the cause of diseases classified to other chapters | B95.0 B95.1 | B95.2 B95.3 | B95.4 B95.5 | B95.61 B95.62 | B95.7 B95.8 |


| HFRS CODES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Superficial injury of | S00.00XA | S00.00XD | S00.00XS | S00.01XA | S00.01XD |
| head | 500.01XS | S00.02XA | S00.02XD | S00.02XS | S00.03XA |
|  | S00.03XD | S00.03XS | S00.04XA | S00.04XD | S00.04XS |
|  | S00.05XA | S00.05XD | S00.05XS | S00.06XA | S00.06XD |
|  | 500.06XS | S00.07XA | S00.07XD | S00.07XS | S00.10XA |
|  | S00.10XD | S00.10XS | S00.11XA | S00.11XD | S00.11XS |
|  | S00.12XA | S00.12XD | S00.12XS | S00.201A | S00.201D |
|  | S00.201S | S00.202A | S00.202D | S00.202S | S00.209A |
|  | S00.209D | S00.209S | S00.211A | S00.211D | S00.211S |
|  | S00.212A | S00.212D | S00.212S | S00.219A | S00.219D |
|  | S00.219S | S00.221A | S00.221D | S00.221S | S00.222A |
|  | S00.222D | S00.222S | S00.229A | S00.229D | S00.229S |
|  | S00.241A | S00.241D | S00.241S | S00.242A | S00.242D |
|  | S00.242S | S00.249A | S00.249D | S00.249S | S00.251A |
|  | S00.251D | S00.251S | S00.252A | S00.252D | S00.252S |
|  | S00.259A | S00.259D | S00.259S | S00.261A | S00.261D |
|  | S00.261S | S00.262A | S00.262D | S00.262S | S00.269A |
|  | S00.269D | S00.269S | S00.271A | S00.271D | S00.271S |
|  | S00.272A | S00.272D | S00.272S | S00.279A | S00.279D |
|  | S00.279S | S00.30XA | S00.30XD | S00.30XS | S00.31XA |
|  | S00.31XD | S00.31XS | S00.32XA | S00.32XD | S00.32XS |
|  | S00.33XA | S00.33XD | S00.33XS | S00.34XA | S00.34XD |
|  | S00.34XS | S00.35XA | S00.35XD | S00.35XS | S00.36XA |
|  | S00.36XD | S00.36XS | S00.37XA | S00.37XD | S00.37X |
|  | 500.401A | S00.401D | S00.401S | S00.402A | S00.402D |
|  | S00.402S | S00.409A | S00.409D | S00.409S | S00.411A |
|  | S00.411D | S00.411S | S00.412A | S00.412D | S00.412S |
|  | S00.419A | S00.419D | S00.419S | S00.421A | S00.421D |
|  | S00.421S | S00.422A | S00.422D | S00.422S | S00.429A |
|  | S00.429D | S00.429S | S00.431A | S00.431D | S00.431S |
|  | S00.432A | S00.432D | S00.432S | S00.439A | S00.439D |
|  | S00.439S | S00.441A | S00.441D | S00.441S | S00.442A |
|  | S00.442D | S00.442S | S00.449A | S00.449D | S00.449S |
|  | S00.451A | S00.451D | S00.451S | S00.452A | S00.452D |
|  | S00.452S | S00.459A | S00.459D | S00.459S | S00.461A |
|  | S00.461D | S00.461S | S00.462A | S00.462D | S00.462S |
|  | S00.469A | S00.469D | S00.469S | S00.471A | S00.471D |
|  | S00.471S | S00.472A | S00.472D | S00.472S | S00.479A |
|  | S00.479D | S00.479S | S00.501A | S00.501D | S00.501S |
|  | S00.502A | S00.502D | S00.502S | S00.511A | S00.511D |
|  | S00.511S | S00.512A | S00.512D | S00.512S | S00.521A |
|  | S00.521D | S00.521S | S00.522A | S00.522D | S00.522S |
|  | S00.531A | S00.531D | S00.531S | S00.532A | S00.532D |
|  | S00.532S | S00.541A | S00.541D | S00.541S | S00.542A |
|  | S00.542D | S00.542S | S00.551A | S00.551D | S00.551S |
|  | S00.552A | S00.552D | S00.552S | S00.561A | S00.561D |
|  | S00.561S | S00.562A | S00.562D | S00.562S | S00.571A |
|  | S00.571D | S00.571S | S00.572A | S00.572D | S00.572S |
|  | S00.80XA | S00.80XD | S00.80XS | S00.81XA | S00.81XD |
|  | S00.81XS | S00.82XA | S00.82XD | S00.82XS | S00.83XA |
|  | S00.83XD | S00.83XS | S00.84XA | S00.84XD | S00.84XS |
|  | S00.85XA | S00.85XD | S00.85XS | S00.86XA | S00.86XD |
|  | S00.86XS | S00.87XA | S00.87XD | S00.87XS | S00.90XA |
|  | S00.90XD | S00.90XS | S00.91XA | S00.91XD | S00.91XS |
|  | S00.92XA | S00.92XD | S00.92XS | S00.93XA | S00.93XD |
|  | S00.93XS | S00.94XA | S00.94XD | S00.94XS | S00.95XA |
|  | S00.95XD | S00.95XS | S00.96XA | S00.96XD | S00.96XS |
|  | S00.97XA | S00.97XD | S00.97XS |  |  |
| Superficial injury of | S80.00XA | S80.00XD | S80.00XS | S80.01XA | S80.01XD |
| lower leg | S80.01XS | S80.02XA | S80.02XD | S80.02XS | S80.10XA |



| HFRS CODES |  |  |  |
| :---: | :---: | :---: | :---: |
| Unknown and unspecified causes of morbidity | R69 |  |  |
| Unspecified acute lower respiratory infection | J22 |  |  |
| Unspecified dementia | F03.90 F03.91 |  |  |
| Unspecified fall | W19.XXXA | W19.XXXD | W19.XXXS |
| Unspecified hematuria | R31.0 R31.1 | R31.21 R31.29 | R31.9 |
| Unspecified renal failure | N19 |  |  |
| Unspecified urinary incontinence | R32 |  |  |
| Vascular dementia | F01.50 F01.51 |  |  |
| Vitamin D deficiency | E55.0 E55.9 |  |  |
| Volume depletion | E86.0 E86.1 | E86.9 |  |

Note: The Hospital Frailty Risk Score was validated by Kundi, H. et al. ["Association of frailty with 30-day outcomes for acute myocardial infarction, heart failure, and pneumonia among elderly adults." JAMA cardiology 4.11 (2019): 1084-1091); Kundi, Harun, et al. "Frailty and related outcomes in patients undergoing transcatheter valve therapies in a nationwide cohort." European heart journal 40.27 (2019): 2231-2239)]. Codes were manually converted from International ICD10 to US ICD10 and US ICD9.

Table S1. Baseline characteristics of all variables included in Elixhauser Comorbidity Index.

|  | Full Cohort |  |  |  | Isolated SAVR |  | Elective TAVR and Elective Isolated SAVR |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SAVR |  | TAVR |  |  |  | SAVR |  | TAVR |  |
| Total Patients | 211,246 | 100 | 179,897 | 100 | 95,016 | 100 | 76,079 | 100 | 147,099 | 100 |
| Congestive Heart Failure | 58,120 | 27.5 | 99,102 | 55.1 | 24,185 | 25.5 | 18,909 | 24.9 | 80,585 | 54.8 |
| Cardiac Arrhythmias | 71,265 | 33.7 | 90,917 | 50.5 | 27,103 | 28.5 | 21,682 | 28.5 | 74,455 | 50.6 |
| Valvular Disease | 170,624 | 80.8 | 161,618 | 89.8 | 80,461 | 84.7 | 69,301 | 91.1 | 135,897 | 92.4 |
| Pulmonary Circulation Disorders | 28,731 | 13.6 | 32,050 | 17.8 | 12,385 | 13.0 | 10,446 | 13.7 | 26,012 | 17.7 |
| Peripheral Vascular Disorders | 57,083 | 27.0 | 70,679 | 39.3 | 26,591 | 28.0 | 22,636 | 29.8 | 59,784 | 40.6 |
| Hypertension (Uncomplicated) | 117,391 | 55.6 | 70,436 | 39.2 | 54,226 | 57.1 | 45,626 | 60.0 | 59,667 | 40.6 |
| Hypertension (Complicated) | 39,660 | 18.8 | 79,805 | 44.4 | 16,179 | 17.0 | 12,597 | 16.6 | 64,834 | 44.1 |
| Paralysis | 1,171 | 0.6 | 1,733 | 1.0 | 455 | 0.5 | 315 | 0.4 | 1,392 | 0.9 |
| Other Neurological Disorders | 7,738 | 3.7 | 13,322 | 7.4 | 3,333 | 3.5 | 2,422 | 3.2 | 10,651 | 7.2 |
| Chronic Pulmonary Disease | 55,017 | 26.0 | 63,088 | 35.1 | 24,695 | 26.0 | 20,000 | 26.3 | 51,313 | 34.9 |
| Diabetes <br> (Uncomplicated) | 45,211 | 21.4 | 30,246 | 16.8 | 19,498 | 20.5 | 16,000 | 21.0 | 25,142 | 17.1 |
| Diabetes (Complicated) | 19,198 | 9.1 | 35,258 | 19.6 | 7,259 | 7.6 | 5,487 | 7.2 | 28,352 | 19.3 |
| Hypothyroidism | 31,534 | 14.9 | 40,096 | 22.3 | 14,678 | 15.4 | 12,004 | 15.8 | 32,872 | 22.3 |
| Renal Failure | 31,296 | 14.8 | 56,842 | 31.6 | 12,655 | 13.3 | 9,564 | 12.6 | 45,197 | 30.7 |
| Liver Disease | 8,144 | 3.9 | 11,718 | 6.5 | 3,889 | 4.1 | 3,133 | 4.1 | 9,865 | 6.7 |
| Peptic Ulcer Disease | 2,680 | 1.3 | 3,431 | 1.9 | 1,146 | 1.2 | 880 | 1.2 | 2,725 | 1.9 |
| AIDS/HIV | 147 | 0.1 | 106 | 0.1 | 67 | 0.1 | 52 | 0.1 | 84 | 0.1 |
| Lymphoma | 2,446 | 1.2 | 3,550 | 2.0 | 1,082 | 1.1 | 844 | 1.1 | 2,861 | 1.9 |
| Metastatic Cancer | 1,349 | 0.6 | 2,744 | 1.5 | 634 | 0.7 | 469 | 0.6 | 2,225 | 1.5 |


|  | Full Cohort |  |  |  | Isolated SAVR |  | Elective TAVR and Elective Isolated SAVR |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SAVR |  | TAVR |  |  |  | SAVR |  | TAVR |  |
| Solid Tumor without Metastasis | 15,759 | 7.5 | 18,150 | 10.1 | 7,078 | 7.4 | 5,691 | 7.5 | 15,099 | 10.3 |
| Rheumatoid Arthritis Collagen | 8,774 | 4.2 | 11,677 | 6.5 | 4,156 | 4.4 | 3,320 | 4.4 | 9,651 | 6.6 |
| Coagulopathy | 10,933 | 5.2 | 15,965 | 8.9 | 4,780 | 5.0 | 3,660 | 4.8 | 12,717 | 8.6 |
| Obesity | 30,343 | 14.4 | 32,607 | 18.1 | 13,870 | 14.6 | 11,438 | 15.0 | 27,104 | 18.4 |
| Weight Loss | 5,706 | 2.7 | 9,553 | 5.3 | 2,428 | 2.6 | 1,608 | 2.1 | 7,321 | 5.0 |
| Fluid and Electrolyte Disorders | 28,742 | 13.6 | 45,904 | 25.5 | 12,022 | 12.7 | 8,621 | 11.3 | 35,703 | 24.3 |
| Blood Loss Anemia | 3,721 | 1.8 | 6,722 | 3.7 | 1,601 | 1.7 | 1,222 | 1.6 | 5,368 | 3.6 |
| Deficiency Anemia | 14,942 | 7.1 | 24,261 | 13.5 | 6,366 | 6.7 | 4,629 | 6.1 | 19,018 | 12.9 |
| Alcohol Abuse | 3,347 | 1.6 | 3,038 | 1.7 | 1,381 | 1.5 | 1,024 | 1.3 | 2,459 | 1.7 |
| Drug Abuse | 1,228 | 0.6 | 1,349 | 0.7 | 526 | 0.6 | 356 | 0.5 | 1,042 | 0.7 |
| Psychoses | 1,249 | 0.6 | 1,085 | 0.6 | 572 | 0.6 | 391 | 0.5 | 801 | 0.5 |
| Depression | 16,814 | 8.0 | 22,099 | 12.3 | 7,871 | 8.3 | 6,074 | 8.0 | 17,740 | 12.1 |

Figure S1. Temporal trends in unadjusted 30-day mortality.


Figure S2. Temporal trends in unadjusted 30-day all-cause hospital readmission.


Figure S3. Temporal trends in unadjusted hospital length of stay.



[^0]:    Correspondence to: Sandra B. Lauck, PhD, Centre for Heart Valve Innovation, University of British Columbia, St. Paul's Hospital, $5261-1081$ Burrard Street, Vancouver, BC V6Z 1Y6, Canada. E-mail: slauck@providencehealth.bc.ca

    Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.021748
    For Sources of Funding and Disclosures, see page 10.
    © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

    JAHA is available at: www.ahajournals.org/journal/jaha

