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Abstract: The possibility of producing stable thin films, only a few atomic layers thick, from a variety
of materials beyond graphene has led to two-dimensional (2D) materials being studied intensively in
recent years. By reducing the layer thickness and approaching the crystallographic monolayer limit,
a variety of unexpected and technologically relevant property phenomena were observed, which
also depend on the subsequent arrangement and possible combination of individual layers to form
heterostructures. These properties can be specifically used for the development of multifunctional
devices, meeting the requirements of the advancing miniaturization of modern manufacturing
technologies and the associated need to stabilize physical states even below critical layer thicknesses
of conventional materials in the fields of electronics, magnetism and energy conversion. Differences
in the structure of potential two-dimensional materials result in decisive influences on possible
growth methods and possibilities for subsequent transfer of the thin films. In this review, we focus
on recent advances in the rapidly growing field of two-dimensional materials, highlighting those
with oxidic crystal structure like perovskites, garnets and spinels. In addition to a selection of
well-established growth techniques and approaches for thin film transfer, we evaluate in detail
their application potential as free-standing monolayers, bilayers and multilayers in a wide range of
advanced technological applications. Finally, we provide suggestions for future developments of this
promising research field in consideration of current challenges regarding scalability and structural
stability of ultra-thin films.

Keywords: ultra-thin films; two-dimensional; monolayer; transition metal oxides

1. Introduction

Crystalline thin-films of complex oxide materials possess a wide range of fascinating
physical, electronic, chemical and optical 2D correlated properties which can be tuned
due to their stoichiometry- or composition-dependency and deviate entirely from the
behaviour of the bulk solid due to the reduction of dimensions and symmetry [1–3]. They
include phase transitions and nanoscale elasticity [4], unconventional high-temperature
superconductivity [5–11], colossal magnetoresistance [12,13], Mott metal-insulator tran-
sitions [14,15], multiferroicity [16–18] and other exotic magnetic properties [19] as well
as strong light interaction [20] and distinctive electronic properties as a result of strong
electron-electron correlations [21]. For example, as the layer thickness is reduced approach-
ing the monolayer limit, the band structure and the mechanical properties such as flexibility
and strength of the material change. Furthermore, thin films are often characterized by
high electron mobility, high thermal conductivity and optical transparency due to strong in-
plane covalent bonds and atomic layer thickness [22–25]. The discovery of unconventional
2D correlated quantum phases and flexoelectric/flexomagnetic effects [26] also contributes
to the potential of ultra-thin oxide films for electronic applications [27–30] and the devel-
opment of next-generation multifunctional devices in the fields of electronic, spintronic,
magnetoelectric, neuromorphic and energy conversion storage [31–34].
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Useful interface functions can be further boosted by stacking layers of unusual mate-
rial combinations to create heterostructures that allow the targeted adjustment of electronic
properties, strongly modify the optical properties [35] and evoke exotic quantum phenom-
ena [20].

In 2017, Tan et al., hypothesized that, with the help of suitable experimental conditions,
the production of any form of two-dimensional materials is possible, provided that their
growth can be restricted to two dimensions and a few atomic layers [2]. However, it has
been assumed that there is a critical limit to the minimum film thickness for stabilizing
crystalline order in ultra-thin films, below which the membrane lattice of the film would
collapse via chemical bond breaking, making it impossible for most materials to form
stable monolayers [36]. Beyond that, crystalline oxides are composed of strong covalent
and/or ionic 3D bonds. Consequently, there is no possibility to exfoliate individual sheets
of layered compounds with weak out-of-plane bonds [36], as it is done for example in the
production of graphene, the most famous 2D material [4]. The isotropic bonding between
atoms or molecules not only complicates the exfoliation of three-dimensional oxide crystals,
but also the detachment of strongly bonded ultra-thin oxide films from their substrate [26].

However, scientists have recently succeeded in synthesizing crystalline quality per-
ovskite films with a minimal thickness down to a single unit cell, which represents the
smallest repeating unit of a periodic lattice, by using a bottom-up layer-by-layer technique
(Figure 1a,b) [26,37,38]. Beyond that, they were able to exfoliate these monolayers by using
intermediate layers of graphene [38] or a water-soluble oriented single crystal with similar
lattice parameters as the target crystal [26,37] to produce free-standing single-crystalline
films of complex oxide materials and to transfer them to other substrates. These findings
greatly expand the technological potential of 2D oxides for the development of multifunc-
tional electronic applications and at the same time raise a number of further questions
regarding the transfer process and its extension to other materials and structures.
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Here, we describe the state-of-the-art scientific knowledge and at the same time
combine it with visionary thoughts regarding the issue of monolayers and ultra-thin films.
This review describes the characteristics of promising oxidic 2D materials and strategies
for their fabrication and transfer. Application fields for ultra-thin films are elaborated to
illustrate their potential and future perspectives.
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2. 2D Materials

2D materials are defined as sheet-like solid crystals composed of a single or few
atomic layers [2]. They are typically free-standing [22,39,40] and have a thickness of 1–10 Å.
Ramesh et al. define three types of thin-film architectures, including (i) single-phase epi-
taxial thin films, i.e., single-crystalline films having their growth orientation dictated by
the orientation of a single-crystalline substrate material, (ii) horizontal heterostructures
in which a magnetic phase is epitaxially interleaved with a ferroelectric (piezoelectric)
phase and (iii) nanoscale ‘vertical heterostructures’ as the vertical analogue [16]. An addi-
tional subdivision into three classes, that can be prepared in the form of single-atom- or
single-polyhedral-thick layers, is given by Butler et al. [22]: (i) layered van der Waals solids
contain individual layers bonded together by van der Waals forces, in which the atoms are
covalently or ionically bonded, (ii) layered ionic solids represent crystal structures consist-
ing of charged 2D polyhedral layers held together by ionic bonding, and (iii) multilayer
assemblies produced by electrostatic layer-by-layer deposition or self-assembly processes.

2.1. Non-Oxidic 2D Materials

The first breakthrough regarding two-dimensional materials was achieved by Novoselov
and Geim in 2004 by the mechanical exfoliation of graphite to form individual graphene
layers [41]. The crystalline monolayer of carbon atoms arranged in a two-dimensional
honeycomb lattice exhibits numerous optical, mechanical, thermal and electrical property
phenomena [23,27,42–44], offering a wide range of applications, including high-speed
electronics [45], optical devices [46], energy generation and storage [46–48] and chemical
sensors [23,49]. Of particular interest are the superconducting properties of graphene
thanks to its electron mobility just below the theoretically predicted limit [42]. These can
be further modified both by stacking two graphene layers that are twisted relative to each
other by a ‘magic angle’ [50] and by intercalating different ions [51].

Driven by the great interest in thin films with exotic properties, further layered 2D
inorganic materials have been the subject of scientific research in recent years. One of the
most important classes of these materials are the transition metal dichalcogenides (TMD),
which consist of hexagonal layers of metal atoms (M = Mo, W, Nb, Re, Ni or V) sandwiched
between two layers of chalcogen atoms (X = S, Se or Te) with a MX2 stoichiometry [52]. The
applications of TMD range from atomically thin semiconductors [53] and transistors [28]
to ultra-sensitive photodetectors [29], optoelectronics and energy harvesting [28].

Other non-oxidic 2D representatives include hexagonal boron nitride insulators [54],
two-dimensional metal carbides and nitrides (MXenes) [55] and topological insulators
consisting of Bi2Te3, Sb2Se3 and Bi2Se3, respectively [56,57]. The structural and property
diversity of these materials allows the exploration of new phenomena [58] that are not
possible in graphene due to the lack of forbidden energy regions [59]. The common
feature of all these materials is their layered structure with strong chemical bonds in two
dimensions and significantly weaker van der Waals interactions along the perpendicular
direction [22,60].

Numerous high-performance applications for ultra-thin non-oxidic materials are
emerging due to their promising coexisting properties, ranging from electronics and opto-
electronics [24,25,28,42,61,62] to energy storage [63–65] and sensors [66–70]. Nevertheless,
the potential of 2D layers could be significantly extended by considering oxide materials
and their structural characteristics.

2.2. Transition Metal Oxides

Transition metal oxides (TMO) represent an ideal platform for the investigation of
interfacial processes and electron correlations due to the dominance of strongly correlated
d electrons and the transfer of metal s electrons to the oxygen ions [71,72]. These d
electrons exhibit more degrees of freedom [73] compared to conventional 2D materials
and thus determine the physical properties of the given material. In addition, thin films
of TMOs differ from the honeycomb lattice of graphene-like conventional 2D materials
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because they exhibit 3D lattices [74,75]. Highly tunable TMO interfaces are of great interest
because of their diverse physical properties such as high temperature superconductivity,
piezoelectricity, ferroelectricity, magnetoresistance and multiferroicity [76] which result
from the correlation of atomic and structural degrees of freedom such as spin, charge,
orbital and lattice [14,77]. Studies on the influence of film thickness and the effect of
epitaxial strain on films [78,79] show, for example, a decrease of the electric polarization
with decreasing film thickness [58] and a strong dependence of the piezoelectric stress and
strain coefficients on an applied mechanical stress as well as on the material structure and
composition [59].

As part of the TMO class of materials, so-called multiferroics represent 2D materials
that are characterized by a combination of several primary ferroics, in particular ferro-
magnets (spontaneous magnetization that is switchable by an applied magnetic field),
ferroelectrics (spontaneous electric polarization that is switchable by an applied elec-
tric field) and ferroelastics (spontaneous deformation that is switchable by an applied
stress) [16,80,81]. Multiferroics, by restricting their geometry to two dimensions, open up
promising possibilities to explore fascinating property phenomena.

2.2.1. Perovskites

Perovskites represent one of the most important crystal structures among TMOs. They
are generally composed of six oxygen ions, which generate a crystal field that acts on the
surrounded transition metal ion [71]. With the general formula ABO3, where the A site is
occupied by the larger charge balancing metallic cation compared to the B site, the perfect
perovskite structure results in a cubic symmetry lattice [82,83] with the B cation located in
the centre of corner-sharing BO6 octahedral building blocks [2] (Figure 2a). Perovskite unit
cells typically have an edge length of 0.4 nm [83]. Besides calcium (A cation) and titanium
(B cation), which constitute the typical perovskite structure calcium titanate (CaTiO3),
perovskites can also contain numerous other metals. Calcium, for example, is replaced by
alkali metals, rare earth metals or iron, while titanium is often substituted by niobium and,
to a lesser extent, by tantalum and zirconium.

In 1989, Matsubara et al., fabricated epitaxially grown films with a thickness of several
hundred nanometers from AB03 oxides such as PbTiO3, BaTiO3 and SrTiO3, by mag-
netron sputtering [84]. Furthermore, thin films of perovskite-type oxides were deposited
by pulsed laser deposition (PLD) or grown by sputtering to analyze the temperature
dependent colossal magnetoresistance [12,85], twinning effects [86] and the influence of
deposition parameters and post-deposition heat treatments on relevant properties [87]. In
1998, Gu et al., succeeded in growing single-layer perovskite Bi4Ti3O12 thin films by using
a sol-gel process [88]. In the following years, numerous studies dealt with the stability of
ferroelectric states in perovskite films with thicknesses ranging from a few unit cells to
several hundred Å [89–92]. SrTiO3 and BiFeO3 as typical representatives of the perovskite
class of material were often used to analyze the preparation of thin films and their prop-
erties [37,93–100]. Akbashev et al., report an atomic layer deposition (ALD) process that
enables the epitaxial stabilization of high-quality, phase-pure, single-crystalline, epitaxial
and dislocation-free BiFeO3 (001) thin films on SrTiO3 (001) (Figure 2b–e) [100]. Further-
more, materials like PbTiO3 [101], (1-x)BaTiO3-xBi(Mg,Ti)O3 [102], La1-xSrxCrO3 [103] and
BaTiO3 [104] were the subject of extensive investigations on thin films.
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(TEM) image of a BiFeO3 thin film grown on (001)-oriented SrTiO3. (c) Fourier-filtered TEM image of the interface between
BiFeO3 and SrTiO3 showing no misfit dislocations. (d,e) SAED patterns of the BiFeO3 film. Reprinted with permission
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Strontium titanate (SrTiO3), a ternary transition metal oxide, represents one of the
most studied thin film materials. Exhibiting a simple cubic crystal structure (space group:
Pm3m, a = 3.9 Å) with mixed ionic-covalent bonding character, the perovskite consists of al-
ternating TiO2 and SrO planes [82,106,107]. The permittivity of this ‘superconducting semi-
conductor’ [108] with an indirect band gap of 3.25 eV [99,109] is tunable within wide limits
via cationic doping [99,110–113], oxygen vacancies [114,115] and field effects [116,117],
extending the achievable range of transport properties. Since epitaxial coherency strains
have the ability to stabilize ferroelectricity in SrTiO3 thin films [112,118–120], an increase
in the superconducting transition temperature can be observed compared to unstrained
films grown under the same conditions [121]. The semiconductor properties of SrTiO3, its
thermal and physiochemical stability and its non-toxicity make the material appealing for
applications including photovoltaic cells, ferroelectrics and thermoelectrics [82,122–127],
as well as for modern electronic and optoelectronic applications [105].

Bismuth ferrite (BiFeO3) represents an intensely investigated single-component mul-
tiferroic [16,78,95]. While bulk single crystals usually crystallize as rhombohedral dis-
torted perovskites (space group: R3c, a = 3.96 Å) [78,95,98], the growth of thin films may
induce the formation of lower symmetry structures due to strain imposed by the sub-
strate [78,95,96,98,128–141] and thus offer great flexibility with regard to the structural
parameters. Semiconducting BiFeO3 films show a significantly lower room-temperature
band gap (2.6–3.0 eV) compared to the majority of ABO3 perovskites [142–146]. The wide
range of functional properties gives BiFeO3 the potential for application in ferroelectric
non-volatile memories [16] and a variety of electronic (capacitor, storage media, memris-
tors) and optical (plasmon resonator, thin film modulator, photovoltaic) devices, as well as
in the field of spintronics [78,147].

The original assumption that a perovskite membrane lattice collapses below a critical
thickness of five unit cells [36] was disproved in 2019 when Ji et al., used molecular
beam epitaxy (MBE) to produce free-standing SrTiO3 and BiFeO3 perovskite films with
high crystalline quality and a thickness of one unit cell [26]. Based on these results,
Xiao et al., investigated tetragonal oxidic perovskite monolayers as 2D materials using the
first-principles method. Apart from SrTiO3, they found LaAlO3 and KTaO3 to be two other
stable, free-standing 2D monolayer materials (Figure 2f–k) [105].
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In general, bulk oxidic perovskite materials display multiple physical effects, includ-
ing piezoelectricity, multiferroic behaviour, high permittivity and conductivity, optical
transparency, photocatalytic properties and colossal magnetoresistance [71,82], potentially
useful for emerging functional materials and devices in photovoltaics, sensor technology or
energy harvesting systems [16,148–150]. The wide range of properties results from the high
flexibility of the chemical composition due to incorporation of different cations [83]. Since
crystalline orientation and perovskite properties are closely related [39], physical character-
istics such as the band structure, electron and hole transport properties, photoluminescence
and dielectric behaviour may be affected by the degrees of tilting of the octahedra [151,152],
the influence of strain relaxation or the preparation of free-standing thin films [39]. For
instance, orientation-dependent ferroelectric and magnetic anisotropy have been detected
in bulk BiFeO3 [153] and SrRuO3 [154,155].

Although it has been assumed for a long time that a critical layer thickness exists
below which spontaneous polarization is suppressed, it has been found that polarization
persists along the (111) plane [98] in one unit cell perovskite films [156] and even in free-
standing thin films [26]. In addition, the reduction of the thickness of thin epitaxial films
increases the magnetization and the occurrence of a strong magneto-electric coupling [16].
Monolayers of the typical perovskites SrTiO3, LaAlO3 and KTaO3 represent 2D wide-gap
semiconductors with indirect band gaps, where the band structure is very different from
the corresponding bulk oxides. The large electrostatic potential energy difference that
occurs between the top and bottom of the thin films induces a large out-of-plane dipole,
leading to gating effects and to special optical properties of the materials [105].

2.2.2. Garnets

The structure of garnets shows a face-centred cubic lattice (space group: Ia3d, point
group: n13m), whose unit cell consists of eight formula units A3B2C3O12 (A = Ca, Mg,
Fe, Mn, etc., B = Al, Fe, Cr, V, etc., C = Si, As, V, Fe, Al, etc.) [157] (Figure 3a). Common
species are pyralspite garnets (almandine Fe3Al2(SiO4)3, pyrope Mg3Al2(SiO4)3, spessar-
tine Mn3Al2(SiO4)3) with aluminium on the B site as well as the ugrandite group (andradite
Ca3Fe2(SiO4)3, grossular Ca3Al2(SiO4)3, uvarovite Ca3Cr2(SiO4)3) with calcium on the A
site. Depending on the composition, garnets usually have ferrimagnetic properties and a
comparatively high hardness.

The decisive criterion for the production of thin films is the dependence of all charac-
teristic properties of crystals with garnet structure on the lattice parameter. If this parameter
increases, there is an increase in elastic interactions, accompanied by a weakening of inter-
atomic bonds [157]. As early as 1958, Dillon et al., reported on 25 µm thick garnet films
for the investigation of magnetostatic modes and power saturation effects. They used the
transmission properties of the magnetic material to distinguish domains of different mag-
netization [158]. In 1967, Mee et al., documented the growth of single-crystalline epitaxial
yttrium iron garnet (YIG) and gadolinium iron garnet (GdIG) films with a thickness of
2–3 µm using chemical vapor deposition (CVD) [159]. Krumme et al., investigated thermo-
magnetic flux reversal in 5 µm thick single-crystal layers of Y3Gal1.1Fe3.9O12, prepared by
liquid-phase epitaxy [160]. In the following years, both optical [161] and magnetic [162]
properties of garnet films of different composition were analyzed. Structural and magnetic
characterizations of single crystal thin-film YIG revealed a 4–6 nm thick interdiffusion zone
at the YIG-substrate (gadolinium gallium garnet, GGG) interface (Figure 3d–g) [163]. The
occurrence of magneto-optical effects affecting the Curie temperature, growth-induced
uniaxial anisotropy, optical absorption behaviour and refractive index confirmed the inter-
est in using thin films with garnet structure in applications such as displays, printers and
components for optical communication [164–167].
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area marked with dotted lines in (f)). (g) High magnification EELS analysis of the interface (rotated 90 degrees to (d)) in the
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In 1997, Levy et al., succeeded in epitaxial lift-off of magnetic Y3Fe5O12 (YIG) grown
by liquid-phase epitaxy. They produced a buried sacrificial layer by deep-ion implan-
tation for the lift-off of 10 µm-thick films of excellent single-crystal quality and bonded
them to various substrates [169]. Although YIG films are normally quite brittle, crack free
materials could be obtained after the lift-off. Neither ion implantation nor the lift-off proce-
dure caused changes in the shape or size of the domains. Using pulsed laser deposition,
Popova et al., were able to produce ultra-thin polycrystalline YIG films (100–500 Å) at
substrate temperatures above 400 ◦C to reproduce the structure of the target and avoid the
formation of amorphous membranes [170]. With decreasing film thickness, an increasing
deviation of the magnetic and opto-magnetic behaviour from the properties of the bulk
material has been observed. For example, decreasing film thickness causes a significant
decrease of the saturation magnetization. Furthermore, variations in the oxygen partial
pressure lead to changes in lattice deformation, surface roughness and film thickness.

Epitaxial single crystalline YIG thin films can be deposited on (111)-oriented GGG
(Figure 3b,c) or other garnet substrates at different temperatures via sputtering processes [168].
The stabilization of the garnet phase and an increase in transmittance via doping to im-
prove the material’s magneto-optical performance [171] as well as possibilities to control
perpendicular magnetic anisotropy [172] and magnetization dynamics by substrate ori-
entation [173] have recently been demonstrated. Kotov et al., achieved an important step
towards the fabrication of high-performance ultra-thin garnet films by using magnetron
sputtering deposition and crystallization annealing for the growth of magneto-optical
bismuth-substituted iron-garnet films [174]. The crystallization behaviour of the garnet
layer was supported by the deposition of a thin protective bismuth oxide (Bi2O3) layer,
which led to a strong increase in magneto-optical quality with record-low optical losses
in the ultra-high frequency spectral region, confirming the material’s potential for the
development of spintronics and modern microwave devices. Such magneto-optical gar-
nets could play an important role in the future development of ultra-fast optoelectronic
devices, spintronics and modern microwave devices [175]. Various nano-electronic device
types [176] and applications in photonics [177,178] are conceivable.
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2.2.3. Spinels

Spinels are cubic crystals with the general structural formula AB2O4. Their large
unit cell contains 8 A (= Mg, Zn, Fe, Mn, Mg, Cu, Ni, Ti, etc.), 16 B and 32 oxygen atoms
(Figure 4a). On the basis of the B cation, spinels are grouped together, including in particu-
lar aluminum, iron, chromium, cobalt and vanadium spinels. The variety of remarkable
physical, chemical, electrical and magnetic properties of spinels can be explained by the
distribution possibilities of the cations in spinel bulk crystals [179]. This results in superior
chemical stability and mechanical hardness [180] in certain cases. Magnetic anisotropy can
be incorporated by Co ions [181]. Lattice dimensions of spinels correlate directly with the
composition [179].

Miikkulainen et al., reported on the production of uniform polycrystalline lithium
manganese oxide spinels by atomic layer deposition. Due to its high electrochemical
capacities, structural cycling stability, low costs and high safety, this material appears
promising for its use in thin-film lithium-ion batteries [182]. Other representatives of spinel
oxides, which were also produced as high-quality crystalline thin films using the ALD
process, include Li4Ti5O12 [183] and (Co1-xNix)3O4 (Figure 4b,c) [184]. The latter was also
grown using PLD [185] and has potential applications in photovoltaics, spintronics and
thermoelectrics. Suzuki et al., grew high-quality crystalline CoFe2O4 and (Mn,Zn)Fe2O4
spinel films with a thickness ranging from 700 to 3000 Å using the PLD method [186].
Only by using spinel structured buffer materials, namely CoCr2O4, CuMn2O4, FeGa2O4
and NiMn2O4, highly crystalline ferrite films with bulk magnetization properties could be
produced. Uhrecky et al., successfully achieved the growth of Ba2Zn2Fe12O22(Y) ferrite
using a chemical solution deposition method [187], while Lüders et al., reported on the
epitaxial growth of spinel NiFe2O4 ultra-thin films [188] showing an enhanced magnetic
moment and a metallic character in comparison to the bulk material. In 2014, Coll et al.,
produced ultra-smooth and pure magnetic Co2FeO4 thin films with a thickness of 5–25 nm
using ALD (Figure 4d,e) [189]. The increase in magnetization and coercivity compared to
the bulk crystal of the Co-rich spinel ferrite is maintained to a film thickness of 10 nm and
is lost when the thickness is further reduced due to the high density of structural defects.
Heteroepitaxial stabilization leads to the formation of fully relaxed films showing high
coercive fields and a high saturation magnetization. It is suggested that inducing epitaxial
stabilization by the use of a substrate with smaller lattice mismatch would further improve
the magnetic properties. Instead of traditional thin-film deposition techniques that require
high processing temperatures or post annealing treatments to achieve such characteristics,
this low-temperature and low-cost epitaxial growth process offers promising opportunities
regarding future applications of Co2FeO4 films which include sensors, microelectronics
and spintronics.
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Figure 4. (a) Unit cell of spinel AB2O4 (A: blue, B: red, O: grey; orange cubes are also included in the rear half of the
unit cell). (b) Low-magnification TEM image and (c) SAED pattern of a (Co1-xNix)3O4 film (x = 0.33). Republished
from Hagen et al. [184] with permission of Royal Society of Chemistry. Copyright 2021. Permission conveyed through
Copyright Clearance Center, Inc. (d,e) Cross-sectional TEM images of Co2FeO4 samples grown on (d) SrTiO3 (001) (inset:
corresponding SAED pattern) and (e) SrTiO3 (110), viewed along the zone axis [010] of SrTiO3 [189].
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In general, spinel-type ferrite oxide materials are very flexible for application as elec-
tromagnetic devices due to their remarkable electrical and magnetic properties [180] and
are used as conductors, dielectrics, resistors or magnetic sensors [190–192]. Compared to
garnets, ferrite films are characterized by low conductivity and high saturation magneti-
zations and Curie temperatures, which makes them ideal for the use in high frequency
applications [186].

However, limiting factors for the use of 2D materials, apart from their quality and
quantity, are production yield and poor long-term stability. In order to meet commercial
requirements, the problem of mass production of ultra-thin films must therefore be solved
in the future.

3. Fabrication Strategies
3.1. Growth Techniques

Methods for synthesizing thin films can be divided into two categories, top-down
and bottom-up approaches. The former are based on exfoliation of individual layers from
a layered bulk crystal and are probably the simplest non-destructive technique for the
fabrication of ultra-thin 2D materials. This form of micromechanical cleavage using Scotch
tape ensures perfect crystal quality and also has other advantages such as wide applicability
and large lateral size of exfoliated layers [27,193–195]. However, it is a process with a low
production rate and a relatively low yield. At the same time, this manual production
method offers only limited possibilities to adjust the size, thickness and shape of the thin
films with sufficient precision and repeatability. Top-down approaches can be used for
graphene and other conventional 2D materials, but not for complex oxides because they do
not have a layered structure.

Bottom-up approaches are based on the chemical reaction of individual precursors,
self-assembly or epitaxial growth [83], where thin films are deposited on the surface of
crystalline substrates acting as a starting material [4]. In addition to these epitaxial growth
targets, the formation of thin layers is characterized by a weak van der Waals bond to
the substrate, referred to as van der Waals epitaxy [22]. In general, epitaxial films can be
divided into homoepitaxial (grown on a substrate of the same material) and heteroepitaxial
(grown on a substrate of a different material) layers [196]. Freund et al., define three typical
modes of film growth: (i) two-dimensional layer-by-layer growth with thin films growing
layer by layer (the Frank-van der Merwe mode), (ii) three-dimensional island growth with
individual islands growing directly on the substrate (the Volmer-Weber mode) and (iii)
the 2D-3D island-on-layer growth representing a combination of the previous two growth
modes, with the growth of three-dimensional islands taking place on a previously formed
thin wetting layer (the Stranski-Krastanov mode) [197]. From this variety of nucleation
and growth models [198], the layer-by-layer growth will be highlighted as one of the
most common modes. In a first step, impinging atoms move on the substrate surface
until they are immobilized at an energetically favorable position [198] and nucleate into
2D islands that act as steps to which further arriving atoms can attach to complete the
monolayer and create a smooth surface [196]. Optimization of the deposition conditions by
e.g., the substrate temperature and ambient gas pressure must also be considered as well
to obtain the desired two-dimensional growth [199]. However, the requirement that the
nucleation of each subsequent layer occurs only after the previous layer is completed is
never achieved [198,200]. Under constant conditions, the nucleation of new islands on the
underlying incomplete layer cannot be avoided once a critical island size is exceeded [201].
Near-perfect layer-by-layer growth and accompanying atomically sharp interfaces can
be achieved by delaying the nucleation of new islands until the growing underlying
monolayer is completed [198]. Rijnders et al., developed a kinetic growth manipulation
method that involves rapid deposition of the required amount of material to complete one
monolayer. In the following interval, the deposition is interrupted to allow reorganization
of the deposited film [200].
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3.1.1. Pulsed Laser Deposition

Pulsed laser deposition (PLD) represents a layer-by-layer thin film fabrication tech-
nique to prepare complex oxide heterostructures (combination of individual thin films
to create defined interfaces), superlattices (periodically layered structure of at least two
materials) and controlled interfaces [198,202]. The PLD process is characterized by the use
of a laser radiation source, typically a high-energy KrF excimer laser with a wavelength of
248 nm and pulse durations in the nanoseconds range [108,198]. The pulsed laser radiation
is focused on a rotating target, ablating the target material by local heating and forming a
high-energy expanding plasma [198,203]. The plasma and the atoms and ions it contains
from the target spread out in vacuum and condense on the surface of a (heated) substrate,
which serves as a nucleation site for the epitaxial growth (Figure 5a).
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A large number of studies address the influence of controllable PLD growth parame-
ters on the formation of thin oxide layers [76,99,107,198,203–206]. Important parameters
affecting the PLD process are the laser power, background pressure and the distance be-
tween the target and the substrate. Shape and size of the plasma plume are influenced
by the background pressure and therefore affect the deposition rate and film homogene-
ity [206]. The background gas can also be used to incorporate oxygen into the film or to
improve its quality by preventing bombardment of the thin film by high-energetic plasma
particles [206] and delaying scattering events on the trajectory [107]. Increasing the sub-
strate temperature improves surface diffusion and growth kinetics of impinging species,
resulting in enhanced 2D growth and suppressed incorporation of defects [107].

A major advantage of PLD compared to most other deposition techniques is the ability
to set a desired stoichiometry of the thin film due to stoichiometric material removal at the
target [198]. Nevertheless, deviations between the stoichiometric ratios of target and thin
film, e.g., due to preferential scattering of lighter ablated species [76], have to be considered.
Furthermore, the stoichiometry shows a strong dependence on the laser fluence, which
consequently also affects the structure and properties of the thin films [94,99,207]. PLD
is a suitable method to synthesize complex oxide materials, obtain interfaces or spatial
variations of the composition on a larger substrate, control lateral thickness variation or
approximate temperature-gradients [198]. By taking advantage of the fact that a single
laser pulse leads to the deposition of significantly less than a monolayer of material,
it is also possible to alternate between different materials during the process to build
heterostructures or enable superlattice growth [198,203].
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3.1.2. Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) is a technique for growing high-quality epitaxial
thin films based on a variety of materials, including oxides, but also semiconductors and
metals [196]. The process is mainly used in semiconductor technology and benefits from
the precise control of composition during growth. After thermal evaporation of various
elements, the beam of atoms or molecules in an ultra-high vacuum environment is directed
onto a heated crystal with an almost atomically clean surface, forming a crystalline layer.
Its crystal structure strongly depends on the structural properties of the substrate, which
provides sufficient thermal energy at elevated temperatures to ensure surface diffusion of
the incoming atoms (Figure 5b).

Possible contaminants surrounding the growing crystal have a decisive influence
on electrical properties, film morphology and growth behaviour. Therefore, the vacuum
must be kept as high as possible [196]. The temperature of the sources also has to be
controlled precisely to adjust the flux of all kinds of materials being involved in the
growth process to obtain the desired film ratio [196]. Another important parameter is
the substrate temperature, which affects the reaction rate of the species, their kinetics
and both the composition and quality of the resulting film. During growth, the correct
temperature window must be set to avoid amorphous or polycrystalline films due to
insufficient diffusion energy (temperature too low) or the growth of 3D islands (temperature
too high) [208].

MBE enables outstanding precision in adjusting the chemical composition of the
growing films [209]. The ability to rapidly change the composition while maintaining
stoichiometric ratios allows the fabrication of crystalline interfaces with almost atomic
accuracy. Another advantage of MBE is the minimal contamination of the growing surface
due to the cleanliness of the growth environment. This ensures the formation of structures
that closely resemble idealized models of solid state theory [196]. Based on their studies on
thin perovskite films, Brooks et al., found that the MBE method is able to produce slight
off-stoichiometry films with lattice constants much closer to the bulk material compared to
higher energy growth methods such as PLD [209].

Yang et al., successfully fabricated more than 10 kinds of perovskite oxide thin films
and their heterostructures, including SrTiO3, BaTiO3, LaAlO3, LaTiO3 and others, using
laser MBE, a technique combining the advantages of conventional MBE and PLD. Topogra-
phy and lattice structure of the epitaxial films show atomic precision [210].

3.1.3. Atomic Layer Deposition

One possibility to control the film thickness at the atomic level is offered by the
technique of atomic layer deposition (ALD) as a special modification of chemical vapor
deposition processes. The material to be deposited is chemically bonded to precursors and
deposited as a thin film on the substrate surface in a self-limiting layer-by-layer growth
mode [211,212]. The gaseous, liquid or solid precursors must be volatile and thermally
stable to provide a sufficiently high deposition rate by reacting rapidly with surface groups
or chemisorb on the surface [213]. In this stepwise repetition of self-limiting surface
reactions, the layer thickness increases constantly in each deposition cycle (Figure 5c).

Compared to other techniques, ALD is characterized by the ability to deposit only
0.1 to 3 Å of material per cycle. The fact that only a fraction of a monolayer is deposited
in one cycle means that, on the one hand, the process is very slow, but on the other hand,
layer thicknesses can be set with atomic precision on large areas [211–215]. Apart from
the accurate thickness control, ALD differs from other deposition methods in 100% confor-
mality [213], low temperature and low vacuum deposition conditions [216–218]. Even on
complex structures, excellent coverage can be achieved by ALD thin film coatings. Further-
more, thanks to atomic precision, optical, chemical and electronic properties of growing
thin films can be precisely adjusted [219] and multilayer structures can be fabricated [213].

Drawbacks of this method include the risk of precursor contamination and low cost
efficiency in the deposition of many technologically relevant materials, including several
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multicomponent oxides [211]. Furthermore, using the ALD method under low process
temperatures for the production of epitaxial multicomponent oxide thin films inevitably
leads to the need for a further annealing treatment [100,220,221].

3.2. Transfer

Since the thin films produced, regardless of the growth process, are initially bound to
a defined substrate that served as an epitaxial growth target, their further use is severely
limited. For the complete characterization of structure and properties as well as for the
exploitation of the full application potential, the transfer of thin films to any substrate
surface is inevitably necessary after completion of the growth process.

The major disadvantage of mechanical processes for the detachment of thin layers in
the production of free-standing films is the unavoidable structural damage that is induced
during this process. To achieve the goal of creating free-standing thin films, epitaxial
growth of various single-crystalline materials is also possible on substrates that have
undergone 2D modification, e.g., in the form of an additional coating. This allows a
subsequent transfer of the thin film, but still ensures epitaxial growth guidance during the
fabrication due to atomic potential fields of the substrate material, penetrating through
the coating. In principle, the interaction of substrate and thin film is partially shielded by
polar 2D materials, while the atomic interaction has a longer range for strongly polarized
bulk materials. Consequently, the strength of the interaction can be selectively controlled
by adjusting the polarity of the substrate and the interlayer [222]. Key advantages of
these methods are the reusability of the substrate [37,223], the ability to fabricate free-
standing oxide membranes of different orientations with minimal damage while retaining
structural properties [37] and the possibility to realize flexible oxide-based electronic
applications [104,224]. The great importance of free-standing thin films becomes clear
when considering the limitations of heteroepitaxial growth methods, where growth can
only be realized with approximately the same lattice constant or crystal structure and is
thus severely limited [38].

A universal method for the generation of free-standing single-crystalline thin films of
complex oxide materials is based on the separation of membrane and substrate by a few
layers of graphene [18] (Figure 6a). The potential fields of the substrate atoms transmit
crystal structure information through the graphene layer, thus serving as a growth guide
for the growing thin film, which can subsequently be easily detached and transferred
to any other material due to the weak van der Waals bonding forces between graphene
and substrate. Calculations using density functional theory, according to which bilayer
graphene has an optimal effect on achieving high crystalline quality, were confirmed using
PLD grown SrTiO3 thin films on a graphene coated SrTiO3 substrate [38].

Epitaxial growth of water-soluble buffer layers using MBE [26] or PLD [39] represents
another promising substrate pre-treatment for the fabrication of free-standing oxide mem-
branes (Figure 6b). Subsequently, thin layers of the material to be deposited can be grown
on the buffer layer via MBE or PLD. To allow subsequent removal of the thin film, the
buffer layer is immersed in deionized water and dissolved [36,37,39] so that the thin film
can finally be transferred to any other substrate using mechanical support [26,39]. Here, the
selection of buffer layer and etchant is constrained by a variety of parameters, in particular
etchant selectivity, correspondence of lattice symmetry for epitaxial growth and stability of
the buffer layer [37].

Some representatives of oxide thin films could already be prepared by this method
using Sr3Al2O6 buffer layers, e.g., BaTiO3 [224], YBa2Cu3O7-x [223] and La0.7Sr0.3MnO3 [37].
Here, the aim should be to develop universal combinations of buffer layer and etchant,
which can be generally used for the preparation of crystalline oxidic 2D membranes as well
as their heterostructures.
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4. Applications

Depending on whether 2D films are used as free-standing monolayers or stacked
into bilayers or multilayers, a wide variety of property phenomena arise, which can
deviate significantly from the behaviour of the bulk crystal, leading to a variety of different
applications.

4.1. Free-Standing Monolayers

Free-standing films are particularly suitable to investigate surface and interface re-
lated material properties such as phase transitions and switchable polarization [26], un-
predictable electronic properties [2] or nanoscale elastic behaviour [4]. The enormous
flexibility resulting from a film thickness of a few unit cells opens the potential to develop
flexible multifunctional electronic applications from these thin films [26].

In 2017, Hong et al., succeeded in synthesizing single-crystalline SrTiO3 membranes
using a SrTiO3 substrate and a Sr3Al2O6 buffer layer. Below a critical threshold of layer
thickness of 4 unit cells, they observed the formation of a mixture of crystalline and
amorphous regions (Figure 7a,b). Further reduction of the layer thickness to two unit cells
led to the formation of an almost completely amorphous layer. The crystalline coherence
length shows a continuous decrease with a qualitative trend change at a thickness below
five unit cells (Figure 7c). According to their theory, the crystalline structure of SrTiO3
thin films is maintained as long as there is an epitaxial connection with a bulk substrate.
The dissolution of the buffer layer and the resulting lift-off cause bond breaks at the
interface, leading to the release of a large amount of free energy, which in turn triggers the
crystalline-amorphous phase transition [36].

Contrary to this original assumption, Ji et al., 2019 succeeded in fabricating free-
standing ultra-thin crystalline SrTiO3 and BiFeO3 films (Figure 7d) of high quality down to
a layer thickness of a single unit cell by using MBE. Despite the strong ionic and covalent
bonding forces that prevail in a three-dimensional oxide crystal, proof was provided for
the first time that there is no critical limit to the minimum film thickness required to
stabilize ultra-thin crystalline oxide films. Approaching the 2D limit, BiFeO3 exhibits a
rhombohedral-tetragonal phase transition, large c/a ratios, enormous polarization and
clear hysteresis loops, indicating that the polarization is switchable (Figure 7e,f). SrTiO3
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films with a thickness of one or a few unit cells allow their use as a flexible ultra-thin oxide
in multifunctional electronics due to their nanoscale elasticity behaviour [26].
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4.2. Bilayers

Research into new physical and chemical properties as well as the development of
functional applications is also possible by combining two layers to form heterostructured
bilayers. The large amount of newly accessible properties creates entirely new application
potentials and motivated initial investigations of thin film phenomena and considerations
of their practical implementation [3,225,226].

Heterostructures of epitaxial, complex oxide thin films consist of a combination of
membranes with different crystal structures and orientations, resulting in synergetic ef-
fects and a hybridization of physical properties. For example, the occurrence of charge
redistribution and induced structural changes between neighbouring crystals could be
observed [38]. Thus, the coupling of physical functionalities by stacking individual oxide
layers enables novel applications. For example, bilayers are suitable for the production
of ferroelectrics [227], spintronics [31,33] and energy conversion storage devices [32,34],
supercapacitors [22], semiconductor device architectures [228] or flexible electronics [229]
as well as multiferroics, piezoelectrics, magnetoresistors and superconductors [230]. The
production of superconductive electronic devices such as transistors or microwave devices
also seems promising [231]. However, to ensure widespread technological deployment,
challenges such as surface reconstruction, charge transfers and built-in electric fields must
be addressed [232].

The most prominent example in the field of bilayered oxide heterostructures is the
combination of LaAlO3 and SrTiO3. Detailed reviews of experimental and theoretical
work on growth conditions, dependence of electronic properties and structural features in
LaAlO3/SrTiO3 systems are provided by Pauli et al. [233], Huijben et al. [234], Pentcheva &
Pickett [235], Chen et al. [236], Zubko et al. [237] and Pentcheva et al. [238]. LaAlO3 films
grown on SrTiO3 show a sharp and coherent interface without defects and dislocations
(Figure 8a) [9]. Although both materials are wide bandgap insulators, a high-mobility
two-dimensional electron gas (2DEG) forms at the interface of the LaAlO3/SrTiO3 thin
films [9,71,239]. Two different models exist to describe the origin of the 2DEG, whereby only
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their combination allows a full explanation of all emerging phenomena. While the ionic
defect mechanism is able to describe large parts of the observed physical properties [234],
according to the polar mechanism a polar discontinuity between nonpolar SrTiO3 and
polar LaAlO3 planes is the reason for the occurrence of 2DEG [240].

In 2018, a significant confirmation of the polar mechanism was provided when
Lee et al., demonstrated the formation of a highly mobile two-dimensional hole gas (2DHG)
that coexists with a 2DEG in epitaxial SrTiO3/LaAlO3/SrTiO3 heterostructures, grown by
PLD [241]. The bilayer structure fulfils the requirements that are crucial for the interfa-
cial charge confinement by avoiding atomic intermixing (Figure 8d). The existence of an
atomically abrupt interface with atomic intermixing confined to about one unit cell was
confirmed by energy dispersive X-ray spectroscopy (EDS) elemental mapping (Figure 8e)
and coherent Bragg rod analysis (COBRA), indicating a sharp change in electron density
at the interface (Figure 8f). The coexistence of 2DEG and 2DHG allows a more detailed
investigation of confined electron-hole systems [241,242] and enables the development of
new mesoscopic superconducting circuits [243]. The conductivity within the interfacial
layer exhibits a strong dependence on the film thickness (Figure 8b,c) and on the sur-
face termination of the individual SrTiO3 layers. The heterostructure is conductive for
a TiO2 termination and insulating for a SrO termination [108,244] when a critical layer
thickness of four unit cells is considered for the sandwiched crystalline LaAlO3 to enable
conductivity [108,240,245]. The superconductivity can also be controlled by applying a gate
voltage [243,246,247]. Beyond its exceptionally high conductivity, emergent magnetism
was observed, although none of the materials is magnetic [108].

Furthermore, 2DEGs occur at LaTiO3/KTaO3 interfaces [248] as well as at epitaxial
LaAlO3 on KTaO3 [249]. KTaO3 is a material that is very similar to SrTiO3 in many
aspects [250,251]. Thus, KTaO3 also possesses promising dielectric, photoconductive and
optical properties [252]. Chen et al., recently reported a 2D superconductivity (Tc ∼ 0.9 K)
at (110)-oriented KTaO3 interfaces after growing amorphous LaAlO3 films on KTaO3 single
crystal substrates using PLD (Figure 8g) [253]. The occurrence of a 2DEG is most likely
due to oxygen vacancies. Higher numbers of 2D layers, thinner superconducting layer
thickness and higher density of disorders contribute to an increase in Tc. The midpoint Tc
of the heterostructure, defined as 50% normal-state resistance, is approximately three times
larger than that in LaAlO3/SrTiO3 interfaces [9,254,255], making fundamental studies and
technical applications of superconducting 2DEGs more easily accessible.

Liu et al., confirmed the results with the discovery of superconducting PLD grown
interfaces between (111)-oriented KTaO3 and insulating overlayers of LaAlO3 [256]. It
was found that the superconductivity of this heterostructure exhibits a crystallographic
direction dependence in contrast to 2DEGs at SrTiO3 interfaces [9,254,255] and can be
continuously tuned from superconducting into insulating states by applying a gate volt-
age [257]. Temperature-dependent sheet resistance Rsheet (T) indicates the occurrence of
superconductivity with a midpoint Tc ∼ 2 K (Figure 8h). The normal-state Hall resistance
indicates electrons as charge carriers rather than holes (Figure 8i) with a carrier density
much higher than that of a typical LaAlO3/SrTiO3 interface. In this case, it seems that
the decisive parameter is not the number of two-dimensional layers, but the mobility of
charge carriers. LaAlO3/KTaO3 interfaces thus offer ideal conditions to investigate physical
phenomena of 2D superconductors.
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Table 1 summarizes published material combinations of bilayers and their most
important properties.
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Table 1. Property phenomena in bilayered heterostructures.

Bilayer System Phenomena and Related Properties Reference

Sr2TiO4/SrTiO3 Dynamic rearrangement during the growth of layered An+1BnO3n+1 oxide systems [258]

LaTiO3/SrTiO3
Highly active participation of a TiO2 adlayer in dynamic layer rearrangement;

magnetotransport properties; formation of a highly mobile conduction channel [259,260]

LaFeO3/SrTiO3

Dynamic interfacial rearrangement of atomic planes as a function of substrate
termination; band alignment affected by interfacial polarity; photocurrent-voltage

curves depending on interface termination; spontaneous polarization evoking
photovoltaic properties

[261–264]

TiO2/SrTiO3
Formation of a defect-free zone and an amorphous boundary layer caused by

differences in chemical potential and defect mobilities of both phases [265,266]

CeO2/SrTiO3
Defect trapping by atomic interface steps leading to localized amorphization

under ion radiation [267,268]

MgO/SrTiO3
Orientation-specific amorphization and intercalated recrystallization at

ion-irradiated interfaces [269]

GdTiO3/SrTiO3

Magnetic order; electrical transport and Mott insulation properties, Curie
temperature of 30 K; intrinsic electron reconstruction; high concentration of mobile

carriers (2DEG); interfacial polar discontinuity
[270–276]

NdTiO3/SrTiO3
Ultra-high carrier densitiy regime due to additional charge transfer from band

alignment [277]

γ-Al2O3/SrTiO3

High quality epitaxial heterointerface (Figure 8j), high electron mobility; quantum
magnetoresistance oscillations; band bending and alignment, thickness-dependent

transport properties (Figure 8k,l)
[141,278,279]

LaCrO3/SrTiO3 Unexpected formation of 2DEG at the initially insulating interface [280]

LaVO3/SrTiO3

Interface conduction based on electronic reconstructions; thickness-dependent
metal-insulator transition; Hall effect at low temperature; growth rate and

substrate temperature-dependent structural and electrical interface properties by
oxygen substrate-to-film transfer

[281,282]

SmTiO3/SrTiO3 Non-Fermi liquid behaviour; very high film carrier densities [283]

La0.5Zr0.5O1.75/LaAlO3,
Nd0.5Zr0.5O1.75/LaAlO3

Dynamic self-assembly during growth creates coherent interfaces between oxide
materials of different crystal structure [284]

By stacking one unit cell BaTiO3 and one unit cell SrTiO3, Jia et al., succeeded in
modifying the electronic properties of both starting materials with respect to a reduced band
gap and a strain-dependent in-plane ferroelectric polarization [73]. Thin-film solar cells
based on mixed organic-inorganic halide perovskites show a power conversion efficiency
of 20% thanks to their high optical absorption coefficient and strong luminescence and are
therefore of great interest for technological applications [285]. In the field of electric energy
storage and supply devices, film capacitors exhibit the highest energy density thanks to
extreme charging and discharging speeds [286–290], enabling an ultra-high efficiency of
approximately 81% in 0.88(BaTiO3)/0.12(Bi(MgTiO3)) films at room temperature [102].
Zhao et al., found that epitaxial 0.5(BiFeO3)/0.5(Sm2O3) composite films grown by PLD
exhibited a 2–3 orders of magnitude reduction in leakage current density compared to
the pure BiFeO3 films [291]. In agreement with previous studies of BiFeO3/CoFe2O4 and
BaTiO3/Sm2O3 [292,293], they concluded that vertical interfaces, defined as interfaces
between two phases in vertically aligned composite films, are the dominant conduction
path as they attract oxygen vacancies.

Figure 9 schematically illustrates the influence of the arrangement of thin layers as
bilayers on selected properties in comparison to bulk materials or monolayers.

An additional modification of the heterostructure properties results from the twisting
of one monolayer relative to another. In contrast to conventional epitaxially grown het-
erostructures, the twisting angle between two free-standing membranes can be arbitrarily
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adjusted. Due to the rotational misalignment, the electrons in the material are trapped in
periodic energy fields called moiré potentials [20]. Such superlattices affect the electronic
band structure of the material and have been shown to lead to altered transport properties
in bilayered graphene [50,294–296]. Similar phenomena occur when stacking different
types of materials into atomically thin heterostructures with the incorporation of a lattice
mismatch [297], when selectively incorporating defect structures [204] and when creating
highly organized lamellar nanostructures and superlattices [58].
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4.3. Multilayers

Stacking at least three layers of thin films leads to the formation of so-called multilay-
ers, which are characterized by exotic properties due to their larger number of interfaces.
In 2019, Meng et al., established a method to analyze the change in electron density at the
interface of multilayer thin films. For this purpose, they prepared Pb(Zr0.2Ti0.8)O3/4.8 nm
La0.8Sr0.2MnO3/SrTiO3 films by MBE and off-axis magnetron sputtering to investigate
their electronic properties [298]. The results extracted from the core-loss EELS spectrum
(Figure 10a) confirm the epitaxial growth mode and support the atomic schematic model
of the heterostructure (Figure 10b).
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[300]. Sun et al., prepared (Ba0.7Ca0.3TiO3/BaZr0.2Ti0.8O3)N multilayer structures with n = 2, 
4, 8 by magnetron sputtering. The microstructural quality of the multilayers was investi-
gated using STEM (Figure 10c) and SAED (Figure 10d), thereby confirming the epitaxial 
orientation. Apart from an increase in breakdown strength with increasing number of in-
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Figure 10. (a) Core-loss EELS spectrum image of Ti L, O K, Mn L and La M edge and (b) atomic schematic model of
a Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3/SrTiO3 structure [298]. (c) Cross-sectional STEM image and (d) SAED pattern of a
(Ba0.7Ca0.3TiO3/BaZr0.2Ti0.8O3)4 multilayer. Black and white arrows indicate Ba0.7Ca0.3TiO3 (BCT) and BaZr0.2Ti0.8O3

(BZT), respectively [299]. (e) Temperature-dependent sheet resistance RS for LaAlO3(5-uc)/SrTiO3(100), LaAlO3(10-
uc)/SrTiO3(100), and SrTiO3(6-uc)/LaAlO3(t-uc)/SrTiO3(100). Samples with the SrTiO3 capped layer show metallic
behaviour down to 5 K even with a thickness of only 3 unit cells of the LaAlO3 layer [242]. Figure 3a reprinted with
permission from Singh et al. [242]. Copyright 2021 by the American Physical Society.
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Sandwich-structured SrTiO3/BiFeO3/SrTiO3 thin films show improved crystalliza-
tion quality and excellent temperature stability of the dielectric constant. Their enhanced
energy storage density results from the increased number of interfaces and makes the
heterostructure a cost-effective and efficient option for electrostatic energy storage appli-
cations [300]. Sun et al., prepared (Ba0.7Ca0.3TiO3/BaZr0.2Ti0.8O3)N multilayer structures
with n = 2, 4, 8 by magnetron sputtering. The microstructural quality of the multilayers
was investigated using STEM (Figure 10c) and SAED (Figure 10d), thereby confirming
the epitaxial orientation. Apart from an increase in breakdown strength with increasing
number of interfaces, an energy storage density of 52.4 J cm−3 has been achieved for n = 8
multilayers. This value is significantly higher in comparison to other Pb-free materials and
comparable to many Pb-based systems [102,286–290,299,301–309].

Singh et al., investigated structural and magnetotransport properties of MBE grown
SrTiO3-capped and uncapped LaAlO3/SrTiO3 (100) heterostructures by tuning their sheet
densities and mobilities through the electrical gating effect and the layer thickness. The
results reveal a conductive interface down to 5 K by using a SrTiO3-capped layer compared
to uncapped samples with high and low sheet density (n2D) (Figure 10e).

5. Future Perspectives

The variety of property phenomena that occur when the film thickness is reduced and
approaches a monolayer emphasizes the potential of atomically thin films and provides
access to a wide range of applications including optoelectronics, nanoelectronics and
spintronics. Thin films could be used, for example, in piezoelectric applications such
as pressure sensors [310], transducers [311], high-voltage generators [312] and nonlinear
energy harvesters [313], meeting demands for minimal dimensions, weight reduction
and lower energy consumption. Similarly, 2D electronics like high-power transistors or
ferroelectric capacitors and memory device applications are conceivable [104,314,315].
Challenges such as defect structure, processability and long-term stability of the devices
must first be solved to fully exploit the potential of ultra-thin heterostructures and enable
their use as transistors, semiconductor circuits or flexible and transparent electronics [240].
To solve the scalability challenge, approaches are already being pursued to increase the
throughput of PLD [316,317] or to rely on MBE as an alternative method [318–320].

The 2D materials presented, as well as the methods for their production, also make an
expansion of ultra-thin layers to other, not yet investigated materials, seem realistic for the
future. The development of further monolayers in conjunction with the discovery of novel
properties thus promises an even more versatile application potential. Although cuprates
are those superconductors with the highest critical temperature, there is hardly any relevant
literature addressing the transfer of thin film technologies to this class of materials [321–325]
although initial investigations have shown promising results [326]. Oxide-based cuprates
consist of layers of superconducting planes of copper oxide alternating with layers of other
metal oxides containing ions such as lanthanum, barium and strontium. Due to the high
structural similarity to the perovskite structure, an application of existing technologies to
produce, characterize and apply cuprate monolayers seems promising. Physical properties
such as conductivity could be targeted via chemical composition, cation substitution or
oxygen content.

In addition, the use of different simulation methods offers far-reaching possibilities to
predict the influence of the reduction of the layer thickness down to the monolayer limit
on the resulting material properties. By using artificial intelligence and machine learning,
it also seems possible to make predictions about the feasibility of producing ultra-thin
layers that would extend conventional bottom-up processes. Furthermore, completely new
material combinations and twists of the layers involved could be considered to predict
their influence on various interfacial properties. Consequently, complex problems could
be solved more efficiently by combining theoretical and experimental disciplines with
numerical methods.
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