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Abstract: Vinylpyrazoles, also known as pyrazolyl olefins, are interesting motifs in organic chemistry
but have been overlooked. This review describes the properties and synthetic routes of vinylpyrazoles
and highlights their versatility as building blocks for the construction of more complex organic
molecules. Concerning the reactivity of vinylpyrazoles, the topics surveyed herein include their
use in cycloaddition reactions, free-radical polymerizations, halogenation and hydrohalogenation
reactions, and more recently in transition-metal-catalyzed reactions, among other transformations.
The current state of the art about vinylpyrazoles is presented with an eye to future developments
regarding the chemistry of these interesting compounds. Styrylpyrazoles were not considered in this
review, as they were the subject of a previous review article published in 2020.
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1. Introduction

Pyrazoles have attracted increased attention in recent years owing to their widespread
applications in medicine [1–15], agriculture, [16] materials science [17–20], and cataly-
sis [21,22]. In this review, the chemistry of a particular kind of pyrazoles, the vinylpyrazoles,
is revisited. Vinylpyrazoles (vinyl-1H-pyrazoles), also known as pyrazolyl olefins, are char-
acterized by the presence of a vinyl group linked at one of the pyrazoles’ ring positions (N-1,
C-3, C-4, C-5) (Figure 1). There are few examples of vinylpyrazoles despite their interesting
properties. These compounds are interesting building blocks for the synthesis of more
complex pyrazoles endowed with biological activities and for other advanced structures,
such as indazoles, among others. For example, some 5-vinylpyrazoles were found to be
potent DNA gyrase inhibitors with antibacterial activity against Gram-(+) bacteria [23],
while others have been used as additives in the production of rubbers [24–26]. Furthermore,
these compounds present interesting physicochemical properties, such as tautomerism
and isomerism, owing to the presence of the vinyl group. Consequently, several spectro-
scopic studies on vinylpyrazoles have been reported [27–35]. For example, Skvortsova
and coworkers performed several 1H- and 13C-NMR spectral analyses for evaluation of
electronic and steric effects in 1-vinylpyrazoles [28]. They showed that the substituents
on the pyrazole ring had an effect on the conformation of the vinyl group; 5-methyl-1-
vinylpyrazoles had predominantly S-cis-N2 orientation, while 1-vinylpyrazoles without
substituents at C-5 were a mixture of conformers. These observations were confirmed six
years later by Vashchenko and Afonin [35]. Despite their interesting structural features
and chemistry, vinylpyrazoles have been overlooked, and their reactivity has not been
much explored. However, the discovery of several tools in modern organic synthesis in the
last decades, mainly related to metathesis, transition-metal-catalyzed and C-H activation
reactions, and visible light-driven and green organometallic transformations, among others,
may open novel opportunities towards the investigation of the vinylpyrazoles reactivity
and versatility in organic synthesis. This review intends to show the current state of the
art with an eye to future perspectives concerning the chemistry and reactivity studies of
vinylpyrazoles.
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Figure 1. Structures of 1-vinylpyrazole, 3(5)-vinylpyrazoles, and 4-vinylpyrazole. For sake of sim-
plicity, throughout the manuscript, the nomenclature 1-vinylpyrazole is adopted instead of 1-vinyl-
1H-pyrazole. 

2. Synthesis of Vinylpyrazoles 
One of the first methods described in the literature for the synthesis of 1-vinylpyra-

zoles, namely 3,5-dimethyl-1-vinylpyrazole and 3-methyl-5-phenyl-1-vinylpyrazole, was 
the reaction of acetylene with 3,5-dimethylpyrazole and 3-methyl-5-phenylpyrazole using 
high pressure [36]. The compounds 1-vinylpyrazole and 3,5-dimethyl-1-vinylpyrazole 
were also prepared by dehydration of the corresponding alcohols, 1-(β-hydroxyethyl)py-
razole and 3,5-dimethyl-1-(β-hydroxyethyl)pyrazole. These alcohols were obtained by 
condensing 1,1,3,3-tetraethoxypropane and acetylacetone, respectively, with β-hydroxy-
ethyl hydrazine [36]. Later, 1-vinylpyrazoles were prepared starting from pyrazoles with 
free NH and different substituents at C-4 by reaction with boiling vinyl acetate in the 
presence of mercuric(II) sulfate as a catalyst for 1–7 h. The catalyst was directly produced 
in the reaction medium from mercuric(II) acetate and sulfuric acid added dropwise [37]. 
The 1-vinylpyrazoles were obtained in very good yields (70–86%). Electron-acceptor 
groups at C-4 of the pyrazole nucleus increased the acidity of the NH group and acceler-
ated the reaction. In 1970, Trofimenko reported the synthesis of 1-vinylpyrazoles and their 
analogs containing alkyl substituents on the vinyl group by acid-catalyzed cracking of 
geminal bis(1-pyrazolyl)alkanes 1, obtained from the reaction of pyrazole with acetals or 
ketals [38]. At around 200 °C and in the presence of an acid such as p-toluenesulfonic acid, 
the bis(1-pyrazolyl)alkanes 1 containing β-hydrogens underwent fragmentation to 1-vi-
nylpyrazole 2 and pyrazole 3 (Scheme 1). 

 
Scheme 1. Synthesis of 1-vinylpyrazoles 2 from geminal bis(1-pyrazolyl)alkanes 1 [38]. 

Other methods for the preparation of 1-vinylpyrazoles include the dehydrohalogen-
ation of 1-(2-haloethyl)pyrazoles with potassium hydroxide in ethanol [39]. However, the 
treatment of 1-(2-bromoethyl)-5-hydroxy-(3-methyl- and 3-phenyl)pyrazoles under the 
same reaction conditions afforded the corresponding 2,3-dihydro-(6-methyl- and -6-phe-
nyl)pyrazolo[3,2-b]oxazoles. On the other hand, the treatment of 5-benzoyloxy-1-(2-bro-
moethyl)-(3-methyl- and -3-phenyl)pyrazoles with sodium t-butoxide in butanol gave 5-
hydroxy-(3-methyl- and -3-phenyl)-1-vinylpyrazoles.  

Figure 1. Structures of 1-vinylpyrazole, 3(5)-vinylpyrazoles, and 4-vinylpyrazole. For sake of
simplicity, throughout the manuscript, the nomenclature 1-vinylpyrazole is adopted instead of
1-vinyl-1H-pyrazole.

2. Synthesis of Vinylpyrazoles

One of the first methods described in the literature for the synthesis of 1-vinylpyrazoles,
namely 3,5-dimethyl-1-vinylpyrazole and 3-methyl-5-phenyl-1-vinylpyrazole, was the re-
action of acetylene with 3,5-dimethylpyrazole and 3-methyl-5-phenylpyrazole using high
pressure [36]. The compounds 1-vinylpyrazole and 3,5-dimethyl-1-vinylpyrazole were
also prepared by dehydration of the corresponding alcohols, 1-(β-hydroxyethyl)pyrazole
and 3,5-dimethyl-1-(β-hydroxyethyl)pyrazole. These alcohols were obtained by condens-
ing 1,1,3,3-tetraethoxypropane and acetylacetone, respectively, with β-hydroxyethyl hy-
drazine [36]. Later, 1-vinylpyrazoles were prepared starting from pyrazoles with free NH
and different substituents at C-4 by reaction with boiling vinyl acetate in the presence
of mercuric(II) sulfate as a catalyst for 1–7 h. The catalyst was directly produced in the
reaction medium from mercuric(II) acetate and sulfuric acid added dropwise [37]. The
1-vinylpyrazoles were obtained in very good yields (70–86%). Electron-acceptor groups
at C-4 of the pyrazole nucleus increased the acidity of the NH group and accelerated the
reaction. In 1970, Trofimenko reported the synthesis of 1-vinylpyrazoles and their analogs
containing alkyl substituents on the vinyl group by acid-catalyzed cracking of geminal
bis(1-pyrazolyl)alkanes 1, obtained from the reaction of pyrazole with acetals or ketals [38].
At around 200 ◦C and in the presence of an acid such as p-toluenesulfonic acid, the bis(1-
pyrazolyl)alkanes 1 containing β-hydrogens underwent fragmentation to 1-vinylpyrazole
2 and pyrazole 3 (Scheme 1).
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Other methods for the preparation of 1-vinylpyrazoles include the dehydrohalo-
genation of 1-(2-haloethyl)pyrazoles with potassium hydroxide in ethanol [39]. However,
the treatment of 1-(2-bromoethyl)-5-hydroxy-(3-methyl- and 3-phenyl)pyrazoles under
the same reaction conditions afforded the corresponding 2,3-dihydro-(6-methyl- and -6-
phenyl)pyrazolo[3,2-b]oxazoles. On the other hand, the treatment of 5-benzoyloxy-1-(2-
bromoethyl)-(3-methyl- and -3-phenyl)pyrazoles with sodium t-butoxide in butanol gave
5-hydroxy-(3-methyl- and -3-phenyl)-1-vinylpyrazoles.

Another interesting method that allowed the formation of 1-vinylpyrazoles used water
as solvent under phase transfer catalysis conditions (PTC). This method involved the N-
alkylation of pyrazole 4 with dichloroethane (DCE) followed by dehydrochlorination of
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the obtained 1-(2-chloroethyl)pyrazoles 5, which proceeded smoothly in water under PTC
conditions to the formation of 1-vinylpyrazoles 6 in 75–90% yield (Scheme 2) [40].
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Scheme 2. Synthesis of 1-vinylpyrazoles 6 by dehydrochlorination of 1-(2-chloroethyl)pyrazoles
5 [40].

The reaction of 3,4,5-tribromopyrazole 7 with 1,2-dibromoethane and triethylamine
followed by the elimination of HBr gave 3,4,5-tribromo-1-vinylpyrazole 8 in 75% overall
yield (Scheme 3) [41]. The formation of 1,2-bis(3,4,5-tribromopyrazol-1-yl)ethane 9 by sub-
stitution of both bromine atoms of 1,2-dibromoethane could be suppressed by performing
the reaction in acetonitrile using a large excess of triethylamine.
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dibromoethane [41].

Only a few examples of the synthesis of 3- and 5-vinylpyrazoles are known, espe-
cially when one of the nitrogens bears a proton. In 1976, Sharp reported the synthesis
of 3-vinylpyrazoles by thermolysis and rearrangement of 3H-1,2-diazepines [42]. Later,
Ponticello demonstrated that the cracking of the adducts 12, prepared by a condensation–
cyclization reaction of a β-ketoaldehyde 10 (R1 = H) or a β-diketone 11 (R1 = Me) with
hydrazine or its derivatives, afforded 3(5)-vinylpyrazoles 13 in good yield (Scheme 4) [43].
When R1 = H, the two tautomers corresponding to the 3- and 5-vinylpyrazoles are in-
distinguishable, since very easy interconversion might be expected through ions formed
by addition and loss of a proton. As expected, condensation of methyl hydrazine with
β-ketoaldehyde or β-diketone each gave two isomeric pyrazoles. Substitution on nitrogen
prevents tautomerism; thus, the two isomers were not identical.

Furthermore, 5-vinylpyrazoles 16 could be obtained by aromatization of 5-vinylpyra
zolines 15 generated from N-sulfonyl,C-homoallyl-hydrazones 14 via Pd-catalyzed C-H
oxidative C,N-cyclization through a 5-exo-trig process from a π–allyl complex intermedi-
ate when the Pd(II) center is associated to noncoordinating anions such as tosylates or
triflates. Indeed, 5-vinylpyrazolines with electron-active substituents at the p-position
of the phenyl ring and hindered pyrazolines could be converted to the corresponding
pyrazoles in moderate-to-high yields through a base-induced eliminative aromatization
process (Scheme 5) [44].
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Mohanan and coworkers developed a rapid synthesis of 5(3)-vinylpyrazoles under
mild conditions. The reaction was based on the versatility and dual reactivity of Bestmann–
Ohira reagent (BOR) 18 as a homologation reagent and cycloaddition reactant in a domino
reaction with a cinnamaldehyde 17 (Scheme 6) [45]. The sequence involved a formal 1,3-
dipolar cycloaddition/Horner–Wadsworth–Emmons (HWE) homologation of the resulting
pyrazoline carbaldehydes followed by a 1,3-H shift to give the 5(3)-vinylpyrazoles.
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Scheme 6. Domino reaction for the synthesis of functionalized 5(3)-vinylpyrazoles 19 using Bestmann–
Ohira reagent 18 [45].

The reaction mechanism started with the methanolysis of BOR and generation of a
diazomethyl anion I. Then, a 1,3-dipolar cycloaddition of I to cinnamaldehydes gave pyra-
zoline carbaldehydes II. Reaction of pyrazolines II with another molecule of BOR generated
pyrazoline alkyne intermediates III, which after a 1,3-H shift followed by aromatization
produced 5(3)-vinylpyrazoles 19 (Scheme 7).
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There have also been some reports on the synthesis of 4-vinylpyrazoles. For ex-
ample, the decarboxylation of β-(1-phenyl-4-pyrazolyl)acrylic acid afforded 1-phenyl-4-
vinylpyrazole [46,47]. Another method involved the reaction of 1-methyl-1H-pyrazole-
4-carbaldehyde 20 with the Grignard reagent methylmagnesium iodide to produce the
corresponding alcohol 21, which upon heating afforded 1-methyl-4-vinyl-1H-pyrazole 22
(Scheme 8) [48].
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When tetrahydropyrazolo[3,4-d][1,2]diazepines (23) bearing arylsulphonyl groups
at N-6 and acetyl groups at N-2 were treated with methanolic sodium carbonate (1 g per
g of 23), the corresponding 4-vinylpyrazole-3(5)-carbaldehyde tosyl and phenylsulpho-
nylhydrazones 24 were obtained. Catalytic hydrogenation of the vinyl function gave
4-ethylpyrazoles 25 (Scheme 9) [49].
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3. Reactivity of Vinylpyrazoles

Vinylpyrazole and substituted vinylpyrazoles do not resemble enamines in reactivity.
This is in accord with the nonavailability of electrons from the N-1 to stabilize dipolar
structures of transition states such as those commonly invoked to account for the reactivity
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of enamines. Vinylpyrazoles coexist with pyrazole and show no tendency to add it back.
The shelf life of vinylpyrazoles is good, and no polymerization in the neat liquid is observed
even after 2 years [27–35]. Some reactions with vinylpyrazoles have been described in
the literature. However, the reactivity of these scaffolds has been barely explored. Some
examples of vinylpyrazoles’ transformations are described in the following subsections.

3.1. Cycloaddition Reactions

Diels–Alder (DA) cycloadditions are amongst the most elegant reactions for rapidly
building complex cyclic compounds. Vinylpyrazoles are very reluctant to react as dienes
in DA cycloadditions because of the loss of aromaticity of the pyrazole ring on [4 + 2]
cycloadduct formation being much less reactive than vinylpyrroles and vinylindoles. Harsh
reaction conditions are required, such as sealed vessels and high pressures (8–10 atm) and
temperatures (120–140 ◦C) for long reaction times (several days), to obtain very low or
moderate yields [50,51]. So far, the vinylpyrazoles have been used as dienes in Diels–Alder
reactions for the preparation of compounds with medicinal interest, being these ones of the
most described reactions of vinylpyrazoles in literature. In 1996, Díaz-Ortiz et al. studied
the effect of microwaves in solvent-free conditions in the improvement of the reactivity
of vinylpyrazoles. They found that 4-vinylpyrazoles 26 reacted with dienophiles, such
as methyl and ethyl propiolate, dimethyl acetylenedicarboxylate, N-phenylmaleimide, or
tetracyanoethene, to form 1:1 adducts [52]. The cycloaddition occurred rapidly (6–30 min),
and the yields, while generally fair, were superior to those of conventional methods.
Moreover, with microwave activation, it was possible to use low-reactive dienophiles such
as ethyl phenylpropiolate, and other intermediate products not observed in conventional
methods were isolated and characterized. This type of reaction also occurred with 3- and
5-vinylpyrazoles [53]. Since DA reactions of vinylpyrazoles have been the subject of several
publications, only some examples are provided for the reaction of 4- and 5-vinylpyrazoles
26 and 27 with some common dienophiles (Schemes 10 and 11) [53].
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Sepúlveda-Arques et al. investigated the effects of the presence of substituents either
on the pyrazole ring nitrogen or in the vinyl group on the improvement of the yields of
the cycloadducts obtained from the Diels–Alder reactions. They showed that the reactivity
was not limited to one kind of substituent on the nitrogen ring but was nonetheless limited
and that it failed with small changes by substitution on the vinyl group [54].

Few data on the reactivity of 3- and 5-methyl-1-vinylpyrazoles 28 and 29 as dienophiles
are available in the literature. Asratyan and coworkers studied the behavior of these pyra-
zoles as dienophiles in the reaction with cyclohexa-1,3-diene (Scheme 12) [55]. Although 1H-
and 13C-NMR data showed that 5-methyl-1-vinylpyrazole 29 existed mainly as the S-cis-N2

isomer, while 3-methyl-1-vinylpyrazole 28 was a roughly equimolar mixture of steric iso-
mers [28], no characteristic differences were found in the behavior of these compounds in
the cycloaddition. The reaction with the diene proceeded only at 180 ◦C to give the product
in low yields. When reaction temperature is increased to 220 ◦C, fast polymerization of the
diene and dienophile occurred. The authors suggested that the spatial location of the vinyl
group in 1-vinylpyrazoles 28 and 29 with respect to N-2 took no part in the Diels–Alder
reaction. The obtained products 30 and 31 went through a hydrogenation reaction to afford
compounds 32 and 33.
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In aprotic solvents, 1-vinylpyrazoles 34 reacted with tetracyanoethylene. The reac-
tion gave mainly l-(2,2,3,3-tetracyano-l-cyclobutyl)pyrazoles 35 as a result of a [2 + 2]
cycloaddition involving the formation of a π–π complex at the first stage (Scheme 13) [56].
The reaction occurred in benzene at room temperature for 1-vinylpyrazole but required
heating at 80 ◦C for its 3-methyl and 5-methyl derivatives, while 2–5% of the product was
obtained for 4-bromo-1-vinylpyrazole, and 3,5-dimethyl-4-nitropyrazole did not react to
give the [2 + 2]-cycloaddition product. Using a more polar solvent such as THF or without
a solvent, excess vinylpyrazoles gave high yields of the corresponding l-(2,2,3,3-tetracyano-
l-cyclobutyl)pyrazoles 35 at room temperature.
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3.2. Polymerization Reactions

Polymerization of vinylpyrazoles has been performed with azo initiators [38]. The
rate and extent of polymerization depends on the nature of the substituents on the vinyl
group. For example, neat 1-vinylpyrazole polymerizes almost explosively, while 1-(propen-
2-yl)pyrazole polymerizes to a lesser extent, and the more heavily substituted the analogs
are, the slower the polymerization is. In dilute benzene, 1-vinylpyrazole solution was
cleanly polymerized to polymers of molecular weight 150.000–330.000. Furthermore, 1-
vinylpyrazole polymerized under free-radical initiation to a high polymer. In this case,
the same trend was observed; the extent of polymerization diminished with increasing
substitution on the vinyl group. Nikitenko and coworkers studied the free-radical polymer-
ization of 3-methyl-1-vinylpyrazole and 5-methyl-1-vinylpyrazole separately, as individual
substances and not as a mixture of isomers [57]. In both cases, the rate of polymerization
was proportional to 0.5 order with respect to the initiator azobisisobutyronitrile (AIBN)
concentration. When the concentration of monomer was low (≤3M), the reaction followed
first-order kinetics, but for higher initial concentrations, the order was lower than the unit.
The overall rate of polymerization was found to be higher for 5-methyl-1-vinylpyrazole.

3.3. Halogenation and Hydrohalogenation Reactions

Compared with 1-vinylimidazoles and 1-vinyltriazoles, 1-vinylpyrazoles show a dif-
ferent behavior in bromination reactions [58]. With 1-vinylimidazoles, the formation of
a complex with the halogen occurs, while with 1-vinyltriazoles, addition of bromine to
the double bond of the vinyl group occurs. Notably, 1-vinylpyrazoles 6 do not form
complexes with bromine. The bromination in carbon tetrachloride at −20 ◦C affords a
complex mixture of products that is difficult to separate. The main reaction products are
1-(1’,2’-dibromo)ethylpyrazoles 36 and the product of electrophilic substitution at C-4 37;
however, the coordination of the released hydrogen bromide with the pyrazoles present in
the reaction mixture also produces hydrohalides 38 (Scheme 14). Higher percentages of 36
can be obtained by increasing the temperature, by adding the vinylpyrazole to a solution of
bromine, and by using an excess of bromine, but the stability of the bromination products
depends on the position and number of substituents in the pyrazole ring, especially methyl
groups.
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The products of the hydrohalogenation of vinylpyrazoles depend on the structure
of the pyrazole itself and the nature of the hydrogen halide. Skvortsova and cowork-
ers investigated the hydrohalogenation of a series of vinylpyrazoles 39, (l-vinylpyrazole,
4-bromo-l-vinylpyrazole, 3-methyl-l-vinylpyrazole, 5-methyl-l-vinylpyrazole, 3,5-dimethyl-
l-vinylpyrazole, and 4-nitro-3,5-dimethyl-l-vinylpyrazole) (Scheme 15) [59]. At −150 ◦C,
addition of hydrogen halides to all l-vinylpyrazoles occurred only at the N-2 with formation
of salts 40. However, the hydrohalides of the less basic vinylpyrazoles (l-vinylpyrazole,
4-bromo-l-vinylpyrazole, and 4-nitro-3,5-dimethyl-l-vinylpyrazole) decomposed rapidly.
On the other hand, at 20–25 ◦C, l-vinylpyrazole and 4-bromo-l-vinylpyrazole added pre-
dominantly hydrogen halides at the double bond of the vinyl group, with formation of
l-(l′-haloethyl)pyrazoles 41, which was in accordance with Markovnikov’s rule. Then, the
resulting compounds 41 underwent further hydrohalogenation at the N-2 to give com-
pounds 42. Under these conditions, the more basic alkyl-substituted l-vinylpyrazoles
produced the corresponding hydrohalides. Addition of hydrogen halides to the double
bond of the vinyl group of 4-nitro-3,5-dimethyl-l-vinylpyrazole was more difficult, since
the nitro group decreased the nucleophilicity not only of the N-2 but of the double bond of
the vinyl group. The reaction of 4-bromo-l-vinylpyrazole with HBr formed a mixture of
products, whereas the reaction with HCl proceeded most specifically [59].
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3.4. Difluorocyclopropanation Reactions

Fluorinated cyclopropanes have become extraordinary structural motifs with huge
importance in organic synthesis, drug discovery, and agrochemistry. In fact, highly
potent compounds bearing a gem-difluorocyclopropyl group were disclosed in recent
patents [60–63]. In most of the compounds reported in the literature, the gem-difluorocyclop
ropyl is attached to a carbon atom, while the corresponding N-linked analogues are less
common. N-vinylpyrazoles 43 and 45 undergo difluorocyclopropanation with CF3SiMe3-
NaI system with formation of the corresponding N-difluorocyclopropyl derivatives 44 and
46 in very good yield (Scheme 16). These compounds are stable and undergo further regios-
elective functionalization to afford gem-difluorocyclopropylpyrazole amines, carboxylic
acids, aldehydes, bromides, and boronic derivatives [64]. It is noteworthy that this method
is not successful for the preparation of other azole derivatives, such as imidazoles, triazoles,
and tetrazoles, possibly because of the presence of a nucleophilic nitrogen atom (in the case
of the imidazole) or electronic effects for the other representatives.
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3.5. Phosphorylation Reactions

The phosphorylation of 1-vinylpyrazole 2 with phosphorus pentachloride afforded
phosphorylated azoles 47 and 48 (Scheme 17) [65]. Krivdin and coworkers studied the
effects of intramolecular and intermolecular coordination on 31P nuclear shielding both
experimentally and theoretically, with a special emphasis on the calculation of 31P shielding
constants. They noticed dramatic 31P nuclear shielding to approximately 150 ppm on
changing the phosphorus coordination number by one (+(90–120) ppm for tetracoordinated
phosphorus, −(20–40) ppm for pentacoordinated phosphorus, and −(200–220) ppm for
hexacoordinated phosphorus) and suggested that 31P-NMR chemical shifts could serve as
an unambiguous criterion of intra- or intermolecular coordination involving phosphorus.
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3.6. Ring-Closing Metathesis Reactions

The N-vinylated pyrazoles are also useful intermediates for Grubbs’ ring closure
metathesis reaction (RCM) to generate novel heterocycles [41,66]. For example, 5H-
pyrazolo[5,1-b][1,3]thiazine 50 was obtained in 83% yield, in a short reaction time, by
microwave irradiation of 1-vinylpyrazole 49 with Grubbs’ second-generation catalyst (Ru
gen-2) (Scheme 18) [41,67], which in this reaction was more reactive than Grubbs’ first
generation [68,69] and the Hoveyda–Grubbs’ catalyst [70].
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3.7. Organomettalic Reactions

The vinyl group is a stable and versatile N-protection group for bromine–lithium
exchange reactions in pyrazoles that can be removed easily under mild conditions. Begtrup
and coworkers demonstrated that 3,4,5-tribromo-1-vinylpyrazole 8, underwent regioselec-
tive bromine–lithium exchange at the 5-position. Subsequent addition of an electrophile
gave 5-substituted 3,4-dibromo-1-vinylpyrazoles 51 (Scheme 19) [41]. A range of elec-
trophiles can be introduced at the 5-position. Longer lithiation time (10–15 min) led to
lower yields of the 5-substituted product because of the low stability of the pyrazole anion.
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ent electrophiles [41].

The 5-substituted 3,4-dibromo-1-vinylpyrazoles 51 can undergo subsequent bromine–
lithium or bromine–magnesium exchange using n-BuLi or i-PrMgCl together with protons
from methanol as the electrophile, affording compounds 52 and 53. The reaction occurred
preferentially at C-4, with the regioselectivity between C-3- and C-4 being influenced by
the nature of the metal and the 5-substituent (Scheme 20) [41]. Begtrup and coworkers
found that bromine–lithium exchange took place with higher regioselectivity than bromine–
magnesium exchange.
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The vinyl group can be removed from the 5-substituted compounds 51 by mild
treatment with KMnO4, affording the corresponding NH-pyrazoles 54. Depending on the
substituents, slightly different conditions may be required (Scheme 21) [41]. For example,
the vinyl group of 3,4,5-tribromo-1-vinylpyrazole (E = Br) and 3,4-dibromo-5-methyl-1-
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vinylpyrazole (E = Me) could be removed smoothly in excellent yield (96% for both) by
treatment with a 2% solution of KMnO4 at room temperature and at 10 ◦C. When oxidation
sensitive groups such as SMe (E = SMe) are present, the devinylation should be performed
at −20 to −10 ◦C to avoid concurrent oxidation of SMe to SO2Me.
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3.8. Transition-Metal-Catalyzed Reactions

Transition-metal-catalyzed reactions have gained increasing interest in organic chem-
istry over the last years because of their versatility and high levels of chemo-, regio-, and
stereoselectivity. Many transition-metal complexes of Pd, Au, Zn, Co, Rh, Ru, Mo, Ni,
Cu, and Fe have been developed as catalysts to accelerate these organic reactions. One
of the hottest topics in transition metal catalysis is the development of highly efficient
catalysts for direct C-H bond functionalization reactions. Preferentially, these reactions
should be performed in mild conditions (room temperature, weak base, air atmosphere) to
allow easy access to nitrogen-containing compounds such as pyrazoles frequently found in
pharmaceuticals, crop-protection chemicals, and products for material sciences.

C-H Activation Reactions

Among the transition-metal-catalyzed reactions, C-C bond formation via C-H activa-
tion has gaining increasing interest as a very powerful, selective, and atom-economical tool
in organic synthesis [71]. Aromatic protons have been commonly involved in this process,
but functionalization of the vinyl C-H bond is more challenging because of competitive
polymerization or Michael addition reactions, and electron-rich olefins are much less reac-
tive [72]. The 1-vinylpyrazoles 2 and 6 underwent coupling with alkynes via C-H activation
to afford Markovnikov-selective butadienylpyrazole derivatives 55 and 57 under mild
conditions [73]. This reaction was efficiently catalyzed by the rhodium(I)-N-heterocyclic
carbene catalyst A (A = [Rh(µ-Cl) (IPr) (η2-coe)]2) (Rh-NHC). The reaction occurred both
with terminal or internal alkynes (Scheme 22) and with terminal diynes (Scheme 23) in mild
conditions. With terminal diynes, a mixture of monohydrovinylated Z/gem product 59 and
the doubly coupled derivatives bis-Z/gem 60 and Z/gem Z/E 61 was obtained (Scheme 23).
The presence of the carbene ligand in the rhodium catalyst was found to be essential for
the catalytic coupling and C-H activation of the electron-rich pyrazolyl olefin. Moreover,
1-vinylpyrazole 2 (R1 = R2 = H) was more reactive than 3,5-dimethyl-1-vinylpyrazole 6
(R1 = R2 = Me), but the reaction with the former presented slightly lower selectivity. It is
worth mentioning that even with the diynes, the selectivity trend towards Markovnikov
addition products was maintained, with disubstituted pyrazole 6 being slightly more selec-
tive than 2. Contrarily to aromatic alkynes, aliphatic terminal alkynes were preferentially
hydrovinylated without dimerization, cyclotrimerization, or polymerization of the alkyne.
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Scheme 23. Coupling reaction of 1-vinylpyrazoles 2 and 6 with terminal diynes mediated by Rh-NHC
catalyst [73].

The reaction mechanism started with the C-H activation of the vinylpyrazole assisted
by nitrogen coordination to the metallic center. Then, alkyne coordination, insertion, and
reductive elimination took place to afford the coupling product (Scheme 24) [73].
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[73]. 

3.9. Miscellaneous  
3.9.1. Reaction with Ethyl N-Trichloroethylidenecarbamate 

The reaction of vinylpyrazoles 26, 62, and 27 with N-trichloroethylidenecarbamate, 
which participates in cycloaddition reactions as a dienophile, as a dipolarophile, and even 
as a heterodiene, did not afford any cycloaddition product. Under microwave heating, the 
result of the reaction was found to depend on the nature of the diene and the substitution 
of the pyrazole ring. In fact, an electrophilic substitution reaction occurred through the 
exocyclic double bond, which was activated by conjugation with the pyrazole ring, to give 
Michael addition to the conjugated imine system (Scheme 25) [74]. Even in the 3- and 5-
substituted pyrazoles 62 and 27, the reaction occurred at the double bond and not in the 
activated C-4 of the pyrazole ring. A mixture of trans-63 and cis-64 isomers was otained 
with pyrazole 26 (although the cis was obtained in 15% yield), while the thermodynamic 
trans isomer 65 and 66 was the only product observed in the reactions of pyrazoles 62 and 
27, respectively. Under conventional heating in an oil bath, no reaction occurred under 
similar conditions of temperature and time, and the starting vinylpyrazoles were not 
recovered because of dimerization in these conditions. 

Scheme 24. Plausible catalytic cycle for the coupling reaction of 1-vinylpyrazole 2 with alkynes [73].

3.9. Miscellaneous
3.9.1. Reaction with Ethyl N-Trichloroethylidenecarbamate

The reaction of vinylpyrazoles 26, 62, and 27 with N-trichloroethylidenecarbamate,
which participates in cycloaddition reactions as a dienophile, as a dipolarophile, and even
as a heterodiene, did not afford any cycloaddition product. Under microwave heating, the
result of the reaction was found to depend on the nature of the diene and the substitution
of the pyrazole ring. In fact, an electrophilic substitution reaction occurred through the
exocyclic double bond, which was activated by conjugation with the pyrazole ring, to give
Michael addition to the conjugated imine system (Scheme 25) [74]. Even in the 3- and
5-substituted pyrazoles 62 and 27, the reaction occurred at the double bond and not in the
activated C-4 of the pyrazole ring. A mixture of trans-63 and cis-64 isomers was otained
with pyrazole 26 (although the cis was obtained in 15% yield), while the thermodynamic
trans isomer 65 and 66 was the only product observed in the reactions of pyrazoles 62
and 27, respectively. Under conventional heating in an oil bath, no reaction occurred
under similar conditions of temperature and time, and the starting vinylpyrazoles were
not recovered because of dimerization in these conditions.

3.9.2. Reaction with Alkanethiols

Pyrazoles containing sulfur atoms have interesting biological activities and are used
as drugs [75]. This type of pyrazoles can be prepared from vinylpyrazoles and their alkyl
derivatives, which are known to react with thiols via either ionic or free radical mechanisms,
with the formation of α- and β-addition products, depending on whether the addition
follows the Markovnikov rule or not, respectively [76].

The method of radical thiylation yields more stable products and is easily and rapidly
conducted not only with heating, catalysts, and irradiation with UV light but at 20 ◦C
without special initiation, being a more convenient method of synthesis of pyrazoles with
sulfur-containing substituents.
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β-Addition products, the 1-(pyrazolyl-1)-2-(alkylthio)ethanes (Scheme 26, 67.1a–e–
67.3a–e, 67.4b,d,e), were formed, in 80–85% yield, in the reaction of thiols with 1-vinylpyraz
oles 2 and 6. The ease of the radical addition was a function of both the reactants and the
reaction conditions, namely the temperature. Methyl substituted 1-vinylpyrazoles 6 reacted
more energetically than 2, and the reaction time was reduced to 0.5–2 h by increasing
the temperature to 80 ◦C and using AIBN (1%) as a radical initiator. In the presence of
ionic initiators (BF3(C2H5)2O, SO2, S) with heating, the reaction followed two competing
pathways, with the formation of a mixture of α- and β-addition products 68 and 67, the
ratio of which depended on the reaction conditions used, together with 1,1-bis(pyrazol-
1-yl)ethanes 69 and 1,1-bis(R-thio)ethanes 70, formed as a result of disproportionation of
1-(pyrazol-1-yl)-1-(R-thio)ethanes 68.1a–d, 68.4a–d. The authors isolated some products
of α-addition 68.2b–68.4b, 68.4a,c,d, thioacetals 70a–c, and pyrazoles 69.1–69.4. Thiylation
of vinylpyrazole 6.4 (R1 = R2 = Me) with butane-1-thiol (b) afforded only the product
of β-addition 67.4b, with p-toluenesulfonic acid (3%, 9%, 90 ◦C, 8 h). In the presence of
elemental sulfur, the addition of thiols to alkenes followed the Markovnikov rule, and
sulfur inhibited radical processes. Total yields of thiylation for vinylpyrazole 67.4b were
no greater than 53% in the presence of 3, 9, and 15 mol% of sulfur in heating at 90 ◦C
for 14 h. Increasing the temperature to 120 ◦C, the yield increased to 80–83%. In similar
conditions (120 ◦C, 14 h, 9 mol%), the yield for the formation of vinylpyrazoles 67.1–67.3
was slightly lower (70–75%), and the concentration of α- and β-addition products was
95:5–90:10. When BF3(C2H5)2O was used (9 mol%, 120 ◦C, 14 h), the product of the
β-addition was the main compound. Addition of radical process inhibitors such as benzo-
quinone or hydroquinone (3–6%) allowed increasing the concentration of α-products 68 to
95–98%, although β-addition was not completely suppressed.
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3.9.3. Reaction with Dichlorocarbene

Furthermore, 3-vinylpyrazoles 71 react with dichlorocarbene, generated from chlo-
roform or sodium trichloroacetate, to afford new cyclopropylpyrazoles 72 [77], which are
interesting precursors of bisheterocycles such as 5-(pyrazol-4-yl)isoxazolines. Popov and
coworkers synthesized 1-t-butyl-3-(2,2-dichlorocyclopropyl)-1H-pyrazole 72 by reaction
of vinylpyrazole 71 with chloroform and sodium hydroxide under PTC. The reaction was
carried out at 60 ◦C (10 min), and compound 72 was obtained in 59% yield (Scheme 27).
The reactions of 1-alkyl-5-chloro-3-vinyl-1H-pyrazoles 73a–c under analogous conditions
did not afford the target dichlorocyclopropane derivatives. In fact, 1-alkyl-5-chloro-3-
(2,2-dichlorocyclopropyl)-1H-pyrazoles 74a–c were obtained in good yield only when
dichlorocarbene was generated under neutral conditions, by thermal decomposition of
sodium trichloroacetate in chloroform in the presence of benzyltriethylammonium chloride
(BTEAC) as PTC (Scheme 27) [77].
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4. Conclusions

Few methods have been reported in the literature for the synthesis of vinylpyrazoles,
especially for the preparation of 3(5)- and 4-vinylpyrazoles. In addition, most of the re-
ported methods used harsh conditions and/or toxic reagents and suffered from a lack of
generality and/or substrate scope. Thus, novel methods for the synthesis of these interest-
ing pyrazole scaffolds are highly desirable. Furthermore, reactivity studies with vinylpyra-
zoles have been scarce and mainly restricted to Diels–Alder cycloadditions, polymerization
reactions, and halogenation and dehydrohalogenation reactions. The application of the
novel tools and concepts of modern organic chemistry to vinylpyrazoles, namely solid
supported synthesis, transition-metal catalysis using the more classical and novel cata-
lysts, and visible-light-photoinduced and greener organometallic reactions, may open great
opportunities for the development of novel methods of synthesis and transformations
of vinylpyrazoles. From our point of view, of high interest will be the investigation of
transition-metal-catalyzed reactions of vinylpyrazoles, and especially the more challenging
C-H activation reactions, visible-light-photoinduced reactions, and greener organometallic
reactions that allow the introduction of different electrophiles in the pyrazole ring, to-
wards the development of more environmentally friendly, atom-economic, and selective
transformation of vinylpyrazoles into more advanced molecules with therapeutical interest.
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