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2-Methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine, an
edaravone analog, exerts neuroprotective effects against acute
ischemic injury via inhibiting oxidative stress
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China.

Abstract

Oxidative stress plays an indispensable role in the pathogenesis of cerebral ischemia. Inhibiting oxidative stress has
been considered as an effective approach for stroke treatment. Edaravone, a free radical scavenger, has been shown to
prevent cerebral ischemic injury. However, the clinical efficacy of edaravone is limited because it has a low
scavenging activity for superoxide anions (O, ). Here, we report that 2-methyl-SH-benzo[d]pyrazolo[5,1-b][1,3]
oxazin-5-imine, a novel small-molecule compound structurally related to edaravone, showed a stronger inhibitory
effect on oxidative stress in vitro. In vivo, 2-methyl-SH-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine reversed
transient middle cerebral artery occlusion-induced dysfunctions of superoxide dismutases and malondialdehyde, two
proteins crucial for oxidative stress, suggesting a strengthened antioxidant system. Moreover, 2-methyl-5H-benzo[d]
pyrazolo[5,1-b][1,3]oxazin-5-imine decreased blood brain barrier permeability. Then, we found that 2-methyl-5H-
benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine had a stronger neuroprotective effect than edaravone. More importantly,
2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine decreased not only infarct size and neurological deficits in
the acute phase but also modified neurological severity score and escape latency in Morris water maze task in the
delayed period, indicating enhanced neuroprotection, sensorimotor function and spatial memory. Together, these
findings suggest that 2-methyl-SH-benzo[d]pyrazolo[5,1-b][1,3]Joxazin-5-imine could be a preferable option for
stroke treatment.
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in 2020t Currently, recanalization and neuroprotec-
tion are the two main strategies for ischemic stroke
treatment. Tissue plasminogen activator (tPA), which
can promote thrombolysis by activating the endogenous
fibrinolytic system, is the only FDA approved agent for

Introduction

Ischemic stroke remains a vexing public health
problem and it is estimated that the costs of stroke
care will account for 6.2% of the total burden of illness
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acute ischemic stroke (AIS)?!. Unfortunately, the
narrow time window and the risk of symptomatic
intracerebral hemorrhage limit the clinical use of tPA. In
clinical trials, few encouraging preclinical results of
neuroprotectants have been translated into positive
outcomes’®!. Therefore, it heightens the need to develop
new pharmacological treatments for stroke patients.

Oxidative stress is a major component of the ischemic
stroke cascadel®). Free radicals are endowed with highly
reactive activity, causing the oxidation of other
molecules, including DNA, lipids and proteins'®!, and
thus leading to ischemic injury!® ). This process
indicates that free radicals could be a valid target for
stroke treatment®. Reactive oxygen species (ROS),
including superoxide anions (O, "), hydroxyl radicals
(HO-), and hydrogen peroxide (H,0,), are generated
during normal cellular respiration and metabolic
processes’), physiologically serving as signaling mole-
cules. Brain appears particularly vulnerable to free
radical-mediated attacks, due to its limited antioxidant
defenses'® and heavy demand for oxygen. Acute
ischemia leads to the activation of ROS-generating
enzymatic systems, including NADPH oxidases
(NOXs), respiration chain in the mitochondria and
xanthine oxidase!'' '3, thereby causing noxious
effects!'¥l. Recently, it has been well accepted that
NOXs generate the majority of ROS, especially O, ™ in
AIS!'S! Notably, in our previous work, inhibiting
NOXs was confirmed to attenuate oxygen and glucose
deprivation-induced damage in vitro!'®), making NOXs
the target for neuroprotectants.

Phenolic compounds with keto-enol tautomerism
were identified with antioxidant property. Among
them, edaravone showed a strong scavenging activity
for ROS. Since then, an increasing number of pre-
clinical studies have reported that edaravone signifi-
cantly attenuated acute ischemic damage via scavenging
ROS and inhibiting ROS-induced deleterious signaling
cascade!®'7""%1 " including lipids peroxidation, blood
brain barrier disruption, and neuronal and vascular
damage. Though antioxidant activity is a major effect of
edaravone against acute ischemic injury!?®)) other
mechanisms, such as the counteraction of microglia-
induced inflammation and neurotoxicity’?' ?%, may also
account for the edaravone-induced improvements in
stroke outcomes, to some extent. In 2001, edaravone
was approved in Japan as a neuroprotectant for
treatment of AIS*!. There has been wide agreement
that O, can react with nitric oxide (NO) to produce
peroxynitrite (ONOQ"), a stronger oxidative radical,
and lead to protein nitration and dysfunction®.
However, edaravone was reported to have no major
scavenging effect on O, 1'7'%1, thus probably limiting

its potency. Here, we used edaravone as a leading
compound, designed and synthesized a novel com-
pound (2-methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxa-
zin-5-imine), and named it TR. We thus wonder whether
TR exerts stronger neuroprotective effects against acute
ischemic injury via inhibiting oxidative stress.

Materials and methods

Animals

Adult male Sprague-Dawley rats (250-300 g; B&K
Universal Group Limited, Shanghai) were used. Rats
were raised in an air-conditioned room [(20+2) °C, 12
hours light/dark circle] with food and water ad libitum.
The experimental protocol was approved by the
Institutional Animal Care and Use Committee of
Nanjing Medical University.

Reagents and drugs

5,5-Dimethyl-1-pyrroline N-oxide (DMPO), hypox-
anthine, xanthine oxidase and 2,3,5-tripenyltetrazolium
chloride (TTC) were purchased from Sigma-Aldrich
(St. Louis, USA). Edaravone and 2-methyl-5H-benzo
[d]pyrazolo[5,1-b][1,3]oxazin-5-imine were supplied
by Simcere Pharmaceutical Group and Nanjing Zhon-
grui Pharmaceutical Co., Ltd., respectively. Assay Kkits
for superoxide dismutases (SODs) and malondialde-
hyde (MDA) were obtained from Jiancheng Bioengi-
neering Institute (Nanjing, China).

Synthesis of 2-methyl-5H-benzo[d]|pyrazolo[S,1-b]
[1,3]oxazin-5-imine

For synthesis of 2-methyl-5H-benzo[d]pyrazolo[5,1-
b][1,3]oxazin-5-imine, 2-aminobenzonitrile (59 g, 0.9
mol) was mixed with concentrated hydrochloric acid
(600 mL) and crushed ice (500 mL), and the mixture
was vortexed until completely dissolved. Under —7 °C
to —3 °C, the solution was added dropwise with a
solution of sodium nitrite (34.5 g) in H,O (150 mL), and
stirred for 10 minutes to produce an orange-yellow
liquid. Stannous chloride (350 g) and concentrated
hydrochloric acid (1,000 mL) were mixed and stirred
until completely dissolved. Under —5°C, the solution
was added dropwise with the above product to present
the white sediment, and stirred for 2 hours. Precipitated
solid was isolated by filtering the reaction mixture and
dried to obtain 2-hydrazinylbenzonitrile hydrochloride.

The intermediate 2-hydrazinylbenzonitrile hydro-
chloride (8.5 g) and ethyl acetoacetate (6 g) were
dissolved in methanol (100 mL), and the solution was
added with a solution of 50% sodium methanolate
(5.5 g) in CH;0H (50 mL) and stirred for 10 minutes.
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The mixture was heated to reflux for 6 hours, and then
filtered to obtain the solid, which was eluted with
methanol (20 mL). The eluent was added with H,O (200
mL) to precipitate solid, and then filtered. The residues
were washed with water to obtain the buff solid (7 g).

The intermediate 1-(2-Cyanophenyl)-3-methylpyra-
zole-5-one (20 g) was dissolved in anhydrous tetra-
hydrofuran (200 mL). The dry hydrogen chloride gas
was passed into the solution until saturation. The
mixture was stirred at room temperature overnight, and
then concentrated under reduced pressure. The product
was added with anhydrous tetrahydrofuran (100 mL)
and anhydrous sodium acetate (10 g). Then, the mixture
was stirred at room temperature for 1 hour. The filtrate
was obtained by filtering the reaction mixture, concen-
trated under reduced pressure, and recrystallized with
ethyl acetate (13 g).

Electron spin resonance (ESR)

TR and edaravone quenching activities for O, and
HO- were determined by an ESR spectrometric
method!"®). Measurements were performed using a
Bruker EMX-10/12 ESR spectrometer operating at X-
band with a TE 102 cavity with a capillary. The
magnetic field, sweep width, microwave frequency,
power, modulation frequency, modulation amplitude,
temperature, gain and sweep time was 347 mT, 20 mT,
X-band, 20 mW, 100 kHz, 0.1 mT, 25 °C, 5 x 10%, and
84 seconds, respectively.

For the detection of O, ", 20 uL of 0.7 U/mL
xanthine oxidase, 40 pL of 4.4 mmol/L hypoxanthine,
40 pL of 1.0 mmol/L DTPA, 60 pL of 250 mmol/L
DMPO, 20 uL of PBS, and 20 uL of TR or edaravone
(24 mmol/L, 12 mmol/L, 6 mmol/L, 3 mmol/L,
1.5 mmol/L) were mixed at room temperature. The
amount of DMPO-OOH spin adduct formed was
measured within 2 minutes.

For the detection of HO-, 50 uL of 4 mmol/L FeSO,4
solution, 50 pL of TR or edaravone (12 mmol/L, 6
mmol/L, 3 mmol/L, 1.5 mmol/L, 0.75 mmol/L, 0.375
mmol/L), 50 pL of 250 mmol/L DMPO and 50 pL of 40
mmol/L H,O, were mixed in a test tube. The amount of
DMPO-OH spin addition formed was estimated exactly
at 30 seconds after adding H,O,. The signal intensity
was evaluated by the relative peak of the second special
signal of the quartet of the DMPO-OH spin adduct.

Surgical preparation

Transient middle cerebral artery occlusion (tMCAQ)
and permanent middle cerebral artery occlusion
(pMCAO) were performed in rats as described
previously“g]. Briefly, under ketamine anesthesia, a

4/0 surgical nylon monofilament with rounded tip was
introduced into the left internal carotid artery through
the external carotid stump, advanced 2021 mm past the
carotid bifurcation until a slight resistance was felt. The
filament was left in place for 120 minutes and then
withdrawn for reperfusion. Sham-operated rats received
the same procedure as tMCAO rats except that the
occluding filament was inserted only 7 mm above the
carotid bifurcation. For pMCAO preparation, the
operation was the same as tMCAO except that the
filament was not withdrawn.

SODs and MDA measurement

Rats were subjected to tMCAO for 120 minutes,
treated with TR, edaravone or vehicle (6 mg/kg, i.v.)
immediately after reperfusion and decapitated at
24 hours after reperfusion. The ipsilateral hemispheres
were dissected and homogenized in 6 mL
physiological saline. The homogenates were centri-
fuged at 3,500 r/minute for 15 minutes at 4 °C. The
concentrations of SOD and MDA were measured in the
supernatant, using commercially available kits (Jian-
cheng Bioengineering Institute, Nanjing, China) and
expressed as U/mg protein and mmol/mg protein,
respectively.

Blood brain barrier (BBB) permeability

To test the BBB permeability, we treated tMCAO rats
with TR, edaravone or vehicle (6 mg/kg, i.v.)
immediately after reperfusion. Evans blue (4%,
3 mL/kg) was infused intravenously at 22 hours after
reperfusion. Two hours later, the rats were completely
perfused with saline. After decapitation, the brains were
removed rapidly and divided into contralateral and
ipsilateral hemispheres. Each hemisphere was weighed,
homogenized in 2 mL of 50% trichloroacetic acid, and
centrifuged at 10,000 r/minute for 20 minutes. The
extracted dye was diluted with ethanol (1:3), and its
fluorescence was determined with a luminescence
spectrophotometer (610 nm). Evans blue contained in
tissue was quantified from a linear standard line and was
expressed as Evans blue (png) / tissue (g).

Infarct size measurement, neuroscore assessment,
modified neurological severity score (mNSS) test

The infarct volume measurement, neuroscore assess-
ment and mNSS test were performed as described®* 2%,
Infarct volume was expressed as a percentage area of the
coronal section in the infarcted hemisphere. In brief,
brains were removed rapidly and frozen at —20 °C for 5
minutes. Coronal slices were made at 1-2 mm from the
frontal tips, and sections were immersed in 2% 2,3,5-
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tripenyltetrazolium chloride (TTC; Sigma T8877) at
37 °C for 20 minutes. Neuroscore assessment was
performed based on a five-point scale system. (Rating
scale: 0 =no deficit, 1 = failure to extent left forepaw, 2
= decreased grip strength of left forepaw, 3 = circling to
left by pulling the tail, and 4 = spontaneous circling).
To evaluate the long-term effects of TR on sensor-
imotor function, mNSS test was performed®®). In the
severity scores of impairment, one point was scored for
inability to perform the task or lack of proper response
for a given reflex; thus, a higher score meant a more
severe injury. The score was graded from 0 to 18
(normal score, 0; maximal deficit score, 18). Severe
injuries were indicated by a score range of 13 to 18,
moderate injuries 7 to 12, and mild injuries 1 to 6.

Morris water maze task (MWM)

The spatial cognitive performance of rats was
evaluated by MWM, as described in our previous
reports!' . A circular swimming pool (Jiliang Neu-
roscience Inc., Shanghai, China) measuring 180 c¢m in
diameter and 48 cm in height was filled with water to a
depth of 26 cm at (24+2) °C. Four starting points
around the edge of the pool were designated as N, E, S,
and W, dividing the pool into four quadrants. A
platform, 10 ¢cm in diameter, was located in a constant
position in the middle of one quadrant. To render it
invisible to the rats, the platform was submerged 2.0 cm
below the surface of the water. The task for the rats was
to escape from the water by locating the hidden
platform. Two days before training, the animals were
habituated to swimming for 60 seconds in the pool
without a platform. One block of four trials was given
for 4 consecutive days. For each trial, the rats were
placed in the water facing the wall of the pool at one of
the four starting points and allowed to swim for a
maximum of 90 seconds. If the rats found the platform,
they were allowed to stay on it for 10 seconds; the rats
who failed to find the platform were guided to it and
allowed to stay there for 10 seconds. Each trial was
videotaped via a ceiling-mounted video camera and the
animal's movement was tracked using Ethovision
software (Noldus Information Technology, Wagenin-
gen, The Netherlands), which allows the measurements
such as latency (time to reach the platform) and
swimming speed. On the next day, the rats were given
one 60-second retention probe test with the platform
removed from the pool. During retention, the time spent
in the target quadrant was measured.

Statistical analysis

Data were presented as mean+SEM. Statistical

analysis was performed using SPSS software (version
22). Comparisons among multiple groups were made
with one-way or two-way analysis of variance
(ANOVA) , followed by Scheffe post hoc test.
Behavioral data collected at repeating time points
were analyzed by two-way repeated measures
ANOVA, followed by Bonferroni post hoc test.
P <0.05 was considered statistically significant.

Results

TR effectively scavenges free radicals in vitro

Edaravone has been shown as a neuroprotectant in
clinical practice®, due to its scavenging activity of
ROS. TR was designed and synthesized to be
structurally related to edaravone (Fig. 1A4). So, we
hypothesize that TR has the ability to scavenge ROS, as
edaravone does. To test this, we detected signal
intensities of DMPO-OOH adduct and DMPO-OH
adduct, indicators of O, ~ and HO-, respectively, using
an ESR spectrometric method. As expected, TR and
edaravone effectively scavenged O, ~ dose-dependently
(Fig. 1B-D). Meanwhile, we compared the scavenging
effects of the two drugs on O, , and calculated that half
maximal inhibitory concentration (ICso) of TR and
edaravone was 3.35 and 7.97 mmol/L (Fig. IE),
respectively, suggesting that the scavenging effect of
TR on O, was 2.4-fold stronger than that of edaravone.
Moreover, we also found that TR and edaravone
scavenged HO- in a dose-dependent manner (Fig. 1F-
H) with comparable ability, as indicated by their ICs, of
1.86 and 1.42 mmol/L (Fig. 1I), respectively.

TR significantly prevents tMCAO-induced focal
cerebral ischemia

Given the data that proved TR and edaravone could
scavenge ROS (Fig. I) and the reports that edaravone
could prevent cerebral ischemial'”'”), we explored
whether TR exerts neuroprotective effects against acute
ischemic injury. We induced tMCAO in rats, treated the
rats with TR or edaravone immediately after reperfu-
sion, and tested the neurological outcome and infarct
size at 24 hours after reperfusion. TR significantly
produced dose-dependent decreases in infarct size and
neurological deficits (Fig. 24, B), so did edaravone
(Fig. 2C, D), at least in lower doses (0.75-6 mg/kg). To
evaluate the effects of TR and edaravone, we plotted a
dose-infarct size inhibition curve (Fig. 2E), and found
that TR showed better efficacy in inhibiting acute
ischemic injury (Fig. 2E). SODs, as antioxidant
enzymes, play a pivotal role in maintaining redox
homeostasis under physiological conditions!®). ROS-
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induced lipid peroxidation was well established after
stroke, and the unstable lipid peroxides decomposed to
form MDA[P”) thus making MDA a marker of lipid
peroxidation. Interestingly, we found that both TR and
edaravone substantially reversed the ischemia-induced
dysfunctions of SODs and MDA (Fig. 2F, G). To test
the BBB permeability, we infused the two drugs and
Evans blue into tMCAO rats immediately and at 22
hours after reperfusion, respectively, and measured the
Evans blue concentration in the contralateral and
ipsilateral hemisphere at 24 hours after reperfusion.
Consistent with the previous reportsi®®, ischemia
dramatically increased BBB permeability in the ipsi-
lateral hemisphere, and more importantly, TR and
edaravone rescued ischemia-induced BBB dysfunction
(Fig. 2H). Notably, TR showed even better neuropro-
tection than edaravone (Fig. 2E—H). Together, TR
prevents cerebral ischemia via inhibiting oxidative
stress and maintaining BBB integrity.

TR has a 2-hour therapeutic window after reperfu-
sion

Previously, we reported that the therapeutic window
of edaravone is 2 hours after reperfusion!'®). We chose
edaravone (2 hours) as a positive control in this study.
Unfortunately, edaravone (2 hours) displayed reduction
trends, without significant decreases in infarct size or
neurological deficits, probably owing to the differences
in edaravone doses (3 mg/kg in the present study,
6 mg/kg in the previous study)!'®. TR (3 mg/kg, 2
hours) showed robust neuroprotection against ischemic
injury, reflected by significant reductions in infarct size

and neurological scores (Fig. 34, B). Thus, we
concluded that the therapeutic window of TR was 2
hours after reperfusion in our experimental conditions.

TR significantly attenuates permanent ischemic
injury

Considering that some stroke patients are not able to
receive thrombolytic therapy and thrombectomy, we
induced permanent middle artery occlusion (pMCAO)
and re-evaluated the efficacy of TR in pMCAO rats.
Consistent with the results from the tMCAO model, we
found that TR partially reduced permanent ischemia-
induced infarct size and neurological deficits in a dose-
dependent manner (Fig. 4), thereby suggesting that TR
prevented permanent ischemia. We also observed that
TR (6, 12 mg/kg) slightly decreased infarct size and
neurological deficits, compared to edaravone, support-
ing that the effectiveness of TR in neuprotection was
more pronounced.

TR has long-term protective effects

To investigate the long-term effects of TR, we
induced tMCAO in rats, treated the rats with edaravone
or TR immediately and from 1 to 14 days after
reperfusion once daily, and detected sensorimotor
function and spatial memory. Edaravone (6 mg/kg)
group was set as a positive control. TR decreased
mortality in a dose-dependent manner (Fig. 5A4).
Ischemia significantly resulted in growth retardation
and impairments in sensorimotor function and spatial
memory (Fig. 5B—FE). Notably, TR was shown to
markedly reverse the ischemia-induced growth retarda-
tion (Fig. 5B), neurological deficits (Fig. 5C) and
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subjected to tMCAO for 120 minutes, treated with ED or TR (i.v.) at the indicated doses immediately and from 1 to 14 days after reperfusion once
daily. Sensorimotor and spatial cognitive functions were detected at the indicated time. A: Time course of the rats’ mortality (at 0 day, n =10 for
sham, n = 14-22 for other groups; at 42 days, n = 10 for sham, n = 7—-10 for other groups). B: Time course of rats’ body weight gain (» = 7-10 per
group). C: Modified neurological severity scores (mNSS) measured at 14, 21, 28, 35 days after reperfusion (n = 7-10 per group). D-E: Escape
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prolonged escape latency in the Morris water maze
(MWM) task (Fig. 5D), dose-dependently, so was
edaravone. In MWM task, we also found that TR (6 mg/
kg) strongly prolonged the time in the target quadrant
(Fig. 5E). More importantly, these results indicate that
TR (6 mg/kg) further improves sensorimotor function
and spatial memory (Fig. 5C-E), compared to Vehicle
and edaravone (6 mg/kg). Taken together, these findings
suggest that TR could be a more preferable option for
stroke treatment, compared to edaravone.

Discussion

To date, stroke remains a life-threatening disease and
leads to high mortality and morbidity worldwide.
Currently, intravenous administration of tPA is the
mainstay of acute stroke therapy®. Despite its con-
firmed efficacy, tPA has been reported to have some
toxic effects!!”?%), such as infarct volume expansion,
hemorrhagic transformation and BBB disruption. Neu-
roprotection is an alternative treatment for AIS. It has
been well known that mild hypothermia and drugs
targeting post-synaptic density-95 are two neuroprotec-
tive strategies for acute ischemic injury*®). However,
the successful application of these two strategies are
merely in animal models, most clinical trials are
uninspiring®!. Therefore, new pharmacological targets
need to be developed for AIS treatment.

The mechanisms underlying the stroke-induced
neurological deficits are multifaceted. Although N-
methyl-D-aspartate receptor-mediated excitotoxicity
has been considered as a major contributor, oxidative
stress plays a pivotal role in the pathologenesis of
cerebral ischemial®. Oxidative stress is closely related
to some neurodegenerative diseases other than
stroke®®!, including Alzheimer’s disease and Parkin-
son’s disease. Under physiological conditions, ROS,
including O, ", HO- and H,O,, are used for maintaining
redox homeostasis and other essential biological
processes’. However, excessive oxidative stress may
lead to damage to lipids, proteins and DNA), and cause
pathological changes. Ischemia-induced ROS over-
production leads to further damages to neuronal
cells®?, resulting in cerebral cytotoxic edema and
infarction. Thus, scavenging ROS can be considered as
a strategy for AIS treatment.

In both animal experiments and clinical researches,
edaravone has been systematically demonstrated to exert
neuroprotective effects against acute ischemic injury by
scavenging ROS!'® 19217221 Gince 2001, edaravone, as
a neuroprotectant, has been given a grade B recommen-
dation in clinical treatment of AIS in Japan®**). ONOO',

a stronger oxidative radical leading to protein nitration
and dysfunction'), is mainly generated by the chemical
reaction between O, and NO. edaravone has been
reported to have potent scavenging activity for ROS, but
no effects on O, 1'7'). Thus its potency is quite limited.
Fortunately, in the present study, we found that TR, a
novel compound structurally related to edaravone,
possesses 2.4-fold higher scavenging ability for O,
than edaravone, whereas the eliminating effects of TR
and edaravone on HO- are comparable, suggesting TR
has more potent scavenging effect on ROS. Expectedly,
TR showed better efficacy on rescuing neurological
deficits and ischemic injury. More importantly, it had
further improved behavioral results, compared to
edaravone. In this study, we also observed that TR
treatment strengthened the antioxidant system, indica-
tive of increased SODs, decreased MDA, and BBB
integrity. Thus, TR could be a preferable option for AIS
treatment.

Edaravone in combination with tPA is widely used in
clinical practice!’®**33] and exerts synergetic neuro-
protection on stroke patients. Multiple reasons are
responsible for the synergetic effect. Firstly, tPA
accelerates recanalization of the occluded artery, thus
promoting the access of neuroprotectants in adequate
concentrations to the ischemia area®l. Secondly, ROS
accounts for reperfusion-induced secondary damage
and brain edema'®?. Edaravone rescues the damage and
brain edema via scavenging ROS!”). Thirdly, edar-
avone decreases the risk of symptomatic intracerebral
hemorrhage and BBB permeability[ls]. Thus, TR
combined with tPA may provide a stronger synergetic
effect against AIS.
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