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Abstract: The paper presents the optimization of stacking sequence (the lamination angles in
subsequent composite layers) of the composite cylinder in order to simultaneously maximize the
values of the first natural frequency f1 and the first buckling force Pcr. The optimization problem
involves either two objective functions or one which combines both problems using a coefficient
whose optimal value is also being searched for. The main idea of the paper is the application
of two neural network metamodels which substitute very time- and resource-consuming Finite
Element (FE) calculations. The metamodels are created separately through a novel iterative procedure,
using examples obtained through Finite Element Method (FEM). The metamodels, once ready,
are able to assess the values of f1 and Pcr instantly and thus enable the application of nature-inspired
Genetic Algorithm (GA) minimization with reasonable calculation times. Obviously, the maxima of
f1 and Pcr may be located in different points of the design parameters (i.e., lamination angles) space,
the considered optimization task is to find a solution for which both f1 and Pcr simultaneously reach
values as close to their maxima as possible. All the investigated optimization examples are repeated
several times and basic statistical analysis of the results is presented.
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1. Introduction

In many engineering fields composite materials are used more and more often, e.g., in aircraft,
mechanical, environmental or civil engineering [1,2]. Composites are applied as auxiliary or main
structural materials, they have a very desired, high ratio of strength to weight and high durability.
Most of the composite cylindrical shells are used under dynamic loading, unfortunately their dynamic
behavior have not yet been widely investigated. Understanding this behavior may be crucial in
the application of composite materials in structural engineering [3]. Another phenomenon which
must be analyzed is buckling [4], associated with a process where a structure suddenly changes
its shape. Triggered by a varying external load, this change in configuration often happens in
a catastrophic way—named bifurcation buckling—which is predicted by means of an eigenvalue
analysis. The composite structures are quite often subjected to in-plane or external loads which may
cause buckling.

Multilayer composite structures have a remarkable ease of forming various shapes, while each
change of the composite structure topology may significantly change their dynamic behavior and/or
buckling properties [5]. In case of layered composite material, created using the same matrix and
reinforcement in each of the layers, the properties of the entire composite structure may vary [6–9].
A change of only the angles of reinforcement placement in subsequent composite material layers
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may cause the values of a structure natural frequencies and/or buckling forces increase or decrease
significantly. Other structural changes, such as a change in the number of composite layers or their
thickness, can of course cause substantial changes of a structure properties as well. The possibility of
choosing the topological parameters of a composite structure may be very significant from the practical
point of view.

Optimization is one of the important stages in the design process. The optimization of static
and/or dynamic parameters of a composite structure (e.g., mass, buckling force, stiffness, or the
first natural frequency) requires repeatedly calculating the value of the so-called objective function
describing the distance of parameters being optimized from their desired values. Real-life engineering
problems are typically characterized by more than one objective conflicting with each other.
For this reason, an appropriate trade-off between these objective functions should be made using
Multi-Objective Optimization (MOO). The computing power demand and time consumption can be
reduced if zero-order optimization algorithms are applied (no derivatives of the objective functions
are necessary) and modern metamodels of a considered structure are used. The application of
nature-inspired metaheuristic algorithms, such as Genetic Algorithms GAs, supported by the use of
Neural Networks (NNs) can meet these assumptions [10,11].

Many works have been done on the vibration, buckling and optimization of cylindrical shells.
In [8], the author deals with multi-objective optimization of laminated cylindrical shells to maximize
a weighted sum of the frequency and buckling load under external load. In [12], multiple objective
functions in the optimal design problem of laminated composite plates are considered.

As the design variable the layer fiber orientation may be used, and the multi-objective
optimization may also be formulated as the weighted combination of the considered objective
functions, dealing e.g., with frequency and buckling force under external load. In [10], a multi-objective
optimization strategy for the optimal stacking sequence of laminated cylindrical panels is presented,
with respect to the first natural frequency and critical buckling load, using the weighted summation
method. Neural networks were used to reproduce the behavior of the structure in both free vibration
and buckling conditions, which improved the speed of the optimization process. The paper [13]
presents vibration and lateral buckling optimization of thin-walled laminated composite beams with
channel sections. While flanges’ width, web’s height, and fiber orientation are simultaneously treated
as design variables, the objective function involves maximizing the fundamental natural frequency and
critical buckling moment. The problem of optimal stacking sequence for maximization of the natural
frequency has also been considered in [14–16]. The design of hybrid composite laminates made of
high-stiffness skin and low-stiffness core layers was investigated in [17]. The method of simultaneous
maximization of fundamental frequency (or the gap between two consecutive frequencies) and
minimization of cost by seeking the optimal stacking sequences of both skin and core layers was
presented. In the paper [18], a multi-objective design methodology was presented for maximizing the
fundamental frequency, buckling load and effective stiffness of laminated composite plates. Lamination
parameters were used to characterize the stiffness properties in a compact form and multi-objective
optimization solutions was computed in lamination parameter domain for different combinations of
design objectives. The multi-objective robust optimisation of T700S carbon/E glass fibre-reinforced
epoxy hybrid composites with respect to minimum weight and cost and subject to a prescribed
minimum flexural strength has been investigated in [19]. The Pareto optimal front obtained using the
NSGA-II and modified hybrid algorithm have been presented and compared.

In this paper the properties of a composite structure are optimized through the changes of the
values of basic topological parameters (lamination parameters). The proposed optimization procedure
involves nature-inspired optimization algorithms [4] such as GAs [20,21], and Deep Neural Networks
(DNNs) [11,22] as a tool to replace time-consuming FEM calculations in dynamic and buckling
parameters prediction. The main purpose of this work is to build a multi-objective optimization
(for maximizing the first natural frequency and the buckling load) framework for composite circular
shells based on lamination parameters. The distributions of Pareto fronts in objective parameter space,
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which are informative for multi-objective optimization studies, were presented, different materials
are also considered. In order to solve the above given optimization task the following problems
are considered:

• the application of two separate metamodels for the prediction of two parameters being optimized
(the first natural frequency and the buckling load),

• application of an internal feedback (loop) for the metamodels refinement,
• three different approaches to scaling of the objective function arguments,
• full multi-objective approach vs. scalarization approach leading to single-objective approach,
• novel definition of the optimal result of multi-objective optimization problem (Nadir point of the

Pareto front).

The analysis of the problems leads finally to a proposition of composite material design by the
optimization approach.

2. Formulation of the Problem

2.1. Solution of the Buckling and Vibration Problems

Once the numerical model of a considered structure is known, the so called initial buckling
problem can be described by:

[KL + µKσ(s?)] v = 0, (1)

where KL is linear stiffness matrix, Kσ(s?) is initial stress matrix, µ is a vector of critical load
multiplayers (to be determined) and v is a buckling form possible to be obtained once µ is known.
The solution of Equation (1) needs prior solution of the pre-buckling state:

KLd? = P?, (2)

where P? = µP (for µ = 1) is initial load configuration and d? is a corresponding displacement state.
Once d? is known, initial stress matrix Kσ(s?) can be obtained. Equation (1) can be then solved giving
pairs (µi, vi), where µi is a consecutive critical load multiplayer and vi is a corresponding buckling
form. The critical buckling force is given as Pcr = µ1P.

The second phenomena analyzed in here is the dynamic behavior of a structure. It can be
described by:

Mẍ + Cẋ + Kx = P , (3)

where M, C, and K = KL are mass, damping, and stiffness matrices, respectively, while x and P are
nodal displacement and external force vectors, respectively. The derivatives with respect to time t are
marked using dot notation; that is, ẋ = dx/dt and ẍ = d2x/dt2.

Equation (3), if P ≡ (0) and C ≡ (0) (i.e., excitation does not occur and the damping is neglected),
simplifies to

Mẍ + Kx = 0. (4)

This leads to the generalized eigenproblem [23]:

KΦ = MΦΩ2, (5)

where the matrix Φ consists of modal shapes φi (in columns) and Ω is a diagonal matrix with angular
frequencies ωi matching the vectors φi. Each of the angular frequencies (also known as radial or circular
frequencies, measured in [rad/s]) after dividing by 2π, gives an ordinary frequency (measured in [Hz]):

fi =
ωi
2π

, (6)

called here the natural frequency fi.
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2.2. Investigated Structure and Its Finite Element Model

The investigated structure is a multilayer composite cylinder. The radius of the cylinder middle
surface is R = 0.6103 m, the thickness of the shell is t = 0.016 m, and the length is l = 6.0 m.
The considered model was one of the side models investigated in the project carried out at the authors’
university, leading finally to the construction of all-composite road bridge [1]. The walls of the
cylinder consist of L = 16 composite material layers of equal thickness, where the fiber angles may be
different for each layer. The material properties correspond to the graphite-epoxy composite material,
the properties of graphite fibers and epoxy matrix are gathered in Table 1. The ratio κ of graphite/epoxy
differs from κ = 0.1 to κ = 0.8, for κ = 0.2 the properties of graphite-epoxy composite material are as
follows: E1 = 62.16 GPa, E2 = 6.23 GPa, ν12 = 0.42, G12 = G13 = 2.40 GPa, and ρ = 1354 kg/m3.

Table 1. Material properties of graphite fibers and epoxy matrix.

E ν ρ
(GPa) (-) (kg/m3)

graphite fibers 294.0 0.2 1810
epoxy matric 62.16 0.3 1240

The finite element model of the investigated structure, shown in Figure 1a, was built using
rectangular multi-layered shell 4-node MITC4 elements (first-order shear theory). There were
60 elements in the circumferential direction and 115 elements along the direction of the axis of
symmetry, altogether 6900 elements. The overall number of nodes and degrees of freedom was 9680
and 58,080, respectively. The FE model parameters were based on the author’s previous experience,
gained while implementing the same model (see [6,24]) and a similar model of thin-walled, composite
cylinder. The decision on the finite element mesh and the choice of finite element were made on the
basis of detailed studies of FE convergence, the comparison of the results of numerical simulations
obtained from two competitive FE codes and the results of experimental tests. The analysis of the
dependence of the size of the finite element on the calculated natural frequencies was carried out with
the assumption that the obtained accuracy of the numerical model should be at the level determined
by the accuracy of the the neural network trained to predict the same values. The neural network
accuracy (expressed by the network root mean square error) in the calculations performed by the
authors was equal to 0.086 Hz, the adopted FE mesh provided an even lower error of the first natural
frequency computations. The results obtained from two FE codes (Adina and Abaqus) were consistent.
The experimental tests, involving the measurements of dynamic parameters, were performed on a real
scale model of a similar, 9 m long, cantilever thin-walled cylinder, and were carried out at the request
of an external company producing composite structures. The tests confirmed that the assumptions
made when creating the models of thin-walled cylindrical shells were correct.

(a) (b) (c)

Figure 1. The FE model (a) and examples of the first buckling form (b) and the first mode shape (c).

The boundary conditions are defined on the shell edges by fixing the translation in all directions
(XYZ) at the clamped end of the cylinder. The values of natural frequencies and buckling forces
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(for the buckling analysis the structure was loaded with an axial force, see Figure 1a) were obtained
using the commercial FE code Adina [14].

2.3. The GA+DNN Optimization Procedure

The optimization task—for the shell structure made of multi-layer composite material—analyzed
here is the simultaneous maximization of the fundamental natural frequency f1 and the first
buckling force Pcr. Obviously, the maxima of f1 and Pcr may be located in different points of the
design parameters (i.e., lamination angles) space, the considered optimization task is to find a
solution for which both f1 and Pcr simultaneously reach values as close to their maxima as possible.
The Multi-Objective Optimization (MOO) task can be written as

Λ∗ = arg min
Λ∈LL

{
g f (Λ), gP(Λ)

}
, (7)

where Λ = {λ1, λ2, . . . , λL} is a vector of L = 16 variables (16 lamination angles in consecutive
layers of the composite shell), LL is the L-dimensional space of the arguments, and g f (Λ) and gP(Λ)

are the objective functions to be minimized. The simultaneous maximization of the fundamental
natural frequency f1 and the first buckling force Pcr can also be solved using Scalarization Method
(SM) approach [25], where the only scalar objective function gs(Λ) is a linear combination of g f (Λ)

and gP(Λ):
Λ∗ = arg min

Λ∈LL
{gs(Λ)} , (8)

gs(Λ) = −
[
α g f (Λ) + (1− α) gP(Λ)

]
, for 0 ≤ α ≤ 1. (9)

where α is a weighting factor. Both approaches are applied in what follows.
The objective functions g f (Λ) and gP(Λ) are defined using the following formulas:

g f (Λ) = − f1(Λ)

f 0
1

(10)

gP(Λ) = −Pcr(Λ)

P0
cr

(11)

where f 0
1 and P0

cr are the scaling factors.
In order to make the optimization procedure less time-consuming, the value of the first natural

frequency for the given lamination angles (as gathered in vector Λ) was calculated—instead of the usual
FEM calculations—using Deep Neural Network (DNN) based metamodel: f1 = DNN f1(Λ), the value of
the first buckling force Pcr was calculated using separate neural network metamodel: Pcr = DNNPcr (Λ).
Finally, Genetic Algorithm (GA) was applied to solve either the MOO or SM optimization problem
(i.e., to find the lamination angles that yield the maximum value of the fundamental natural frequency
f1 and simultaneously the maximum value of the first buckling force Pcr). Non-dominated Sorting
Genetic Algorithm of type II (NSGA-II) has been applied, which has the following main features:
“uses an elitist principle, uses an explicit diversity preserving mechanism, emphasizes non-dominated
solutions” [26] and low computational requirements [27]. This algorithm is considered to be one of the
standard approaches and is therefore implemented in many math codes [28,29].

The above described approach—involving two metamodels—differs from usual nature-inspired
approach to multi-objective optimization, where one metamodel is applied. Since f1 and Pcr are
predicted using the same input data (lamination angles gathered in vector Λ) such a metamodel may
predict both f1 and Pcr simultaneously:

[ f1, Pcr] = DNN f1,Pcr (Λ). (12)
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As it was shown by Miller and Ziemiański in [30] for a graphite-epoxy composite material
with graphite/epoxy ratio κ = 0.2, a significantly higher accuracy of f1 prediction by DNN
metamodel and in consequence better results of f1 maximization are obtained when not the set of first
natural frequencies (even the one containing only f1) is predicted but when the DNN metmodel
predicts a set of natural frequencies fMS matching selected mode shapes gathered in a M set,
namely fMS = DNNfMS(Λ) (see Figure 2). The learning data for DNNfMS metamodel have to
be pre-processed, namely the mode shapes obtained for a given Λ have to be identified and the natural
frequencies are arranged according to the mode shapes they correspond to, instead of usually applied
ascending order. If the considered mode shapes are gathered inM set and the corresponding natural
frequencies are gathered in fMS the mode shape-based metamodel is given as:

fMS = DNNfMS(Λ). (13)

Higher accuracy of the metamodel defined by Equation (13) is related to the fact that the
first natural frequency f1 corresponds—for different lamination angles—to different mode shapes
(see Figure 3). The DNN f1(Λ) metamodel is therefore less precise than DNNfMS(Λ).

36
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f 1
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z]

Number of variables : 16

DNNf1
1000 DNNf_MS

1000 DNNf1
4000 DNNf_MS

4000

42.91
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Figure 2. The accuracy of f1 maximization using either fMS = DNN f1(Λ) or fMS = DNNfMS(Λ)metamodels.
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Figure 3. Natural frequencies variations in 3-layer cylinder, stacking sequence [λ/0/λ].

The diagram presented in Figure 2 is a boxplot representing the following values describing the
analyzed population of results (250 repetitions of optimization process were performed): the maximum
(including possible outliers), the third quartile (Q75%, the upper limit of the box), the median, the first
quartile (Q25%, the lower limit of the box), and the minimum (including possible outliers). The data
presented in Figure 2 were obtained for a structure the same as the one analyzed in this paper but with
different material properties (see [30]). The superscript (·) f1 or (·) fMS in metamodel names informs
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whether the metamodel predicted directly f1 or a set of frequencies fMS. The subscript (·)1000 and
(·)4000 in metamodel names shows the number of patterns at the disposal during the metamodel
creation phase. In what follows DNNfMS

n000(Λ) will be called Pn (n stands for the number of patterns
divided by 1000).

The vector fMS is composed as a set of natural frequencies matching eleven selected mode shapes
(three circumferential modes with the second circumferential wave: C21, C22, C23; three circumferential
modes with the third circumferential wave: C31, C32, C33; two circumferential modes with the fourth
circumferential wave: C41, C42; two bending modes: B1, B2; and one torsional mode: T1):

fMS = { fC21, fC22, fC23, fC31, fC32, fC33, fC41, fC42, fB1, fB2, fT1}. (14)

The number of the mode shapes selected to create the fMS vector was determined by the arbitrarily
selected limiting value of 100 Hz; thus, the vector should include all natural frequencies smaller than
this limit value.

The first buckling force Pcr matches always—in the analyzed range—the same buckling shape,
so it was not necessary to apply for Pcr prediction a similar approach as in the case of f1 prediction.
Moreover, the application of one metamodel

[fMS, Pcr] = DNNfMS ,Pcr (Λ) (15)

gives worse accuracy than the application of two separate metamodels.
In all the above discussed cases instead of deep networks other data-driven models could be

applied, DNNs were chosen since they work very well with huge learning sets and the description of
16-dimensional space of lamination angles needs at least a few thousands examples.

The decision of applying the vector fMS, composed of natural frequencies matching selected mode
shapes, leads to a new definition of the objective function g f (Λ):

g f (Λ) = −min fMS(Λ)

f 0
1

, for MS ∈ M. (16)

The objective function definition requires prior identification of the mode shapes and corresponds
to the maximization of the lowest of the natural frequencies matching the selected mode shapes.

The main optimization (either MOO or SM) is preceded by the creation of two DNN metamodels,
which predicted the model natural frequencies (the DNNfMS metamodel) and the first buckling force
(the DNNPcr metamodel) for the given set of model parameters. The metamodels are Deep Neural
Networks (DNN), trained on examples generated using FE model, which approximate the values of fMS
or Pcr, respectively. The accuracy of metamodel approximation is verified through the single-objective
maximization of f1:

Λ∗ = arg min
Λ∈LL

{
g f (Λ)

}
= arg min

Λ∈LL

{
−

min f ?MS(Λ)

f 0
1

}
, for MS ∈ M, (17)

or Pcr:

Λ∗ = arg min
Λ∈LL

{
gP(Λ)

}
= arg min

Λ∈LL

{
−P?

cr(Λ)

P0
cr

}
, (18)

where the star (·)? in f ?MS and P?
cr means that those values were obtained from the

appropriate metamodels.
The whole optimization procedure (either MOO or SM), together with the metamodels creation

phase, is presented in Figure 4.
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Figure 4. The applied optimization procedure, metamodels creation procedure with the Curriculum
Learning loop, see [24,30].

In order to provide a clear description of the metamodels creation procedure a new symbol of o
is introduced. In case of metamodel predicting the natural frequencies o = fMS and go(Λ) = g f (Λ),
in case of metamodel predicting the buckling force o = {Pcr} and go(Λ) = gPcr (Λ).

The idea, proposed by Miller and Ziemiański in [24] for maximization of f1 and now adopted to
the problem of simultaneous maximization of f1 and Pcr, consists of the following steps, performed
separately for both metamodels:

1. FEM examples for DNNo training (coarse grid): Ln space is intentionally described by a limited
number of examples (so called patterns) Po = {(o, Λ)j}P

j=1, where o is obtained using FE
calculations: o = FE(Λ). The role of the patterns is not to precisely describe the value of the
objective function go(Λ) but to approximately locate the extremes of this function.

2. DNNo training: A deep network is trained to map Λ into o; that is, DNNo should be capable of
working as function that returns vector oj for a given vector Λj: oj = DNNo(Λj).

3. GA+DNNo optimization: single-objective GA optimization (maximization of o), with DNNo

applied to calculate the objective function, is performed; the result of this optimization is not
significant with regard to a single Λ∗ vector; the number of repetitions of this procedure should
produce a set of Λ∗,k vectors around the global minimum. Since there is a usual system shift of
the results of GA+DNNo optimization relative to the results of FEM (herein called “real” results),
it would be advisable to interrupt GA optimization before it reaches any sharp minimum of
DNNo approximation of the objective function (possibly shifting from the “real” minimum of the
objective function being sought).

4. FEM verification (fine grid around the optimum): For each Λ∗,k obtained in the previous step
(there is not a single vector Λ∗,k but a group of vectors since the tentative optimization in the
previous step is repeated K times), a vector of parameters being predicted o∗,k is calculated
o∗,k = FEM(Λ∗,k), and a new set of patterns is created Po,∗ = {(o∗, Λ∗)k}K

k=1.
5. Stop criteria: The usual stop criteria are verified; if the criteria are not fulfilled, the procedure

returns to GA+DNNo optimization following additional DNNo training (retraining).
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6. DNNo additional training: The DNNo already trained in the second step of the procedure is
trained again (retrained) with the original set of patterns Po expanded with Po,∗; the DNNo

should then be more precise in the area of the expected global minimum.

The iterative searching for a precise metamodel, described above in Point 6 is called Curriculum
Learning (CL). The number of CL loops applied is denoted by i in CLi (e.g., CL1 means that one CL
loop is applied). Since two metamodels are applied, it is possible to refine them separately.

Once both DNNo metamodels (DNNfMS and DNNPcr ) are ready, the main optimization task
(MOO or SM) is performed without further application of time-consuming FE model. The application
of the numerical model (or, when possible, analytical one) is necessary only to tune the metamodels
and to verify the obtained results.

All DNN training and testing processes were performed in the Mathematica (V12.0, Wolfram
Research Inc., Champaign, IL, USA) environment [28], the completed ANNs were then transferred
to Matlab (R2019a, The MathWorks Inc., Natick, MA, USA) [29], where GA optimization phase
was conducted.

3. Optimization of the Cantilever Cylinder

3.1. Metamodel DNNfMS and Single-Objective Optimization of f1

According to the procedure shown in Figure 4 the creation of DNNfMS(Λ) starts with the
generation of a set of patterns describing the relation between randomly chosen parameter vectors Λ

and selected natural frequencies gathered in fMS, where natural frequencies were computed using
FEM: fMS = FEM(Λ). Deep networks were then trained to mimic this relation, and so the neural
metamodel was obtained:

fMS ≈ DNNfMS(Λ) (19)

and the GA-DNN optimization was performed with g f1(Λ) objective function (see Equation (17)).
The summary of f1 maximization results is shown in Figure 5 (for the details of boxplots see the
description of Figure 2).

29.4
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30.36

30.59
30.97 30.92

1 2 3 4 8 10

25

26
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32

f 1
[H
z
]

Number of variables : 16

Figure 5. Maximization of f1 through GA-DNN procedure.

Each of boxes in Figure 5 shows the results of 250 repetitions of GA-DNNfMS optimization with
the metamodel trained using Pn set of patterns, where n shows the number of patterns divided by
1000. The improvement of the maximization results with the increase of the number of employed
metamodel training patterns is clearly visible; however, over 8000 of patterns the increase disappears.
For the main task—the simultaneous maximization of f1 and Pcr—the metamodel trained using P8 set
of patterns (called here DNNfMS

8000) has been applied.
The maximal value of f1 obtained from DNNfMS

8000, namely 30.97 Hz, is in what fallows called f max
1 .

It is used as one of the scaling factors f 0
1 in the main optimization procedure.
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3.2. Metamodel DNNPcr and Single-Objective Optimization of Pcr

In the second initial step to the main optimization procedure the metamodel DNNPcr was created
and verified during a single-objective maximization of Pcr. A number of new example sets, composed of
different number of randomly generated vectors Λ and corresponding FEM-generated critical forces
Pcr = FEM(Λ), were tried out. The appropriate pattern sets were generated, according to the scheme
in Figure 4, independently of the patterns to be used for DNNfMS metamodel training. In this case,
the increase in the number of patterns did not cause a satisfactory increase in metamodel accuracy,
so the Curriculum Learning loop—presented in Figure 4—was applied. In each of the analyzed cases
CL loops caused significant improvement of the metamodel accuracy and Pcr maximization results,
an example of this phenomenon for DNNPcr

8000 metamodel is presented in Figure 6.

22.43 22.52 22.72 22.49

8 CL1 CL2 9

10

15

20

25

P
c
r
[k
N
]

Number of variables : 16

Figure 6. Maximization of Pcr through GA-DNN procedure.

For the main task, the simultaneous maximization of f1 and Pcr, the P8-CL2 metamodel
(also called DNNPcr

8000-CL2) has been applied.
The maximal value of Pcr obtained from DNNPcr

8000-CL2, namely 22.72 Hz, is in what fallows called
Pmax

cr . It is used as one of the scaling factors P0
cr in the main optimization procedure.

3.3. Multi-Objective Optimization of f1 and Pcr

The metamodels DNNfMS
8000 and DNNPcr

8000-CL2 were applied as tools to predict the values of
parameters being minimized within a GA optimization procedure with the objective function given by
Equation (7). After initial test the main GA parameters were selected as follows: floating-point coding
of parameters, 100 individuals in each population, 500 generations, tournament selection function,
adaptive feasible mutation function, constraints −90 ≤ λi ≤ 90 applied on each lamination angle λi
(for details of Matlab implementation of GA see [29]). The optimization procedure was repeated 250
times in order to get a statistical description of the obtained results, moreover each result (final f ?1
and P?

cr values obtained by metamodels for a particular lamination angles vector Λ) was verified
using FEM.

Three different variants of scaling factors pairs (see Equations (11) and (16)) have been considered:

(a) no scaling at all: f 0
1 = P0

cr = 1,
(b) scaling to an arbitrarily selected lamination angles case: f 0

1 and P0
cr obtained for Λ = [45/− 45]8 [10],

(c) scaling to maximal values of f1 and Pcr obtained in previous steps: f 0
1 = 30.97 Hz and

P0
cr = 22.72 MN.

As a result of each of the above described 250 repetitions of MOO a cloud of points is obtained,
each of them being an element of one of 250 so called Pareto Fronts (PFs) obtained in each of the
repetitions. Pareto front is a border line between the feasible and the infeasible results, given in the
optimized parameters’ space, here in ( f1, Pcr) two-dimensional space. In other words, the PF gathers
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all non-dominated results, in the sense that for the points on PF there is not possible to improve any of
the ( f1, Pcr) values without worsening the other.

Figure 7 shows the cloud of points (in blue) obtained from MOO involving GA and DNN
metamodels and verified through FEM, namely for each of the points ( f ?1 , P?

cr) obtained from MOO
involving neural metamodels, FE verification was carried out and a number of ( f FE

1 , PFE
cr ) points was

obtained. Figure 7 shows also the values of f max
1 and Pmax

cr obtained during the initial phase of neural
metamodels creation and so called Utopia Point (UP, see [25,31]) at their intersection. The scaling
factors f 0

1 and P0
cr applied in this approach were both equal to 1 (so no scaling was performed).

Although the points in Figure 7 are all the elements of PFs obtained in independent repetitions
of MOO, the final PF is obtained from the analysis of all the partial results. The red line in Figure 7
connects all the non-dominated results.
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Figure 7. Pareto front obtained through MOO procedure, f 0
1 = P0

cr = 1.

Figure 8 shows final PFs obtained for the other considered values of scaling factors, namely:

(a) scaling to an arbitrarily selected lamination angles case: f 0
1 and P0

cr obtained for Λ = [45/− 45]8,
(b) scaling to maximal values of f1 and Pcr obtained in previous steps: f 0

1 = 30.97 Hz and
P0

cr = 22.72 MN.
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Figure 8. Pareto front obtained through MOO procedure: (a) f 0
1 and P0

cr obtained for Λ = [45/− 45]8,
(b) f 0

1 = f max
1 = 30.97 Hz; P0

cr = Pmax
cr = 22.72 MN.
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Table 2 shows the data describing the so called Nadir Point (NP, see [31]). Usually NP is selected
as the one giving the minimal Euclidean distance DNU , from Utopia Point (UP) whose coordinates are
( f max

1 , Pmax
cr ):

DNU = min

√√√√( f utopia
1 − f1

f norm
1

)2

+

(
Putopia

cr − Pcr

Pnorm
cr

)2

= min

√(
f max
1 − f1

f max
1

)2

+

(
Pmax

cr − Pcr

Pmax
cr

)2
(20)

Here the normalization factors in the objective space are f utopia
1 = f norm

1 = f max
1 and Putopia

cr =

Pnorm
cr = Pmax

cr :

Table 2. Nadir points selected as the ones giving minimal Euclidean distance to UP, norm = max.

Scaling Factors f1 f1/ f max
1 Pcr Pcr /Pmax

cr
Hz % MN %

f 0
1 = 1, P0

cr = 1 30.4 99.0% 18.8 82.8%
f 0
1 and P0

cr obtained for Λ = [45/− 45]8 30.8 99.4% 18.3 80.5%
f 0
1 = f max

1 , P0
cr = Pmax

cr 30.5 98.6% 19.1 84.1%

This approach to the selection of NP prefers one or the other of the minimized values (depending
on the chosen scaling variant), another approach is thus proposed. Table 3 shows the NPs coordinates,
where NP is the point number i∗ giving the maximum of the minimal value among f1/ f max

1
and Pcr/Pmax

cr :

i∗ = arg max
i

(
min

(
f i
1

f max
1

,
Pi

cr
Pmax

cr

))
(21)

Table 3. Nadir points selected as the ones maximizing the relative values of f1 and Pcr.

Scaling Factors f1 f1/ f max
1 Pcr Pcr /Pmax

cr
Hz % MN %

f 0
1 = 1, P0

cr = 1 28.9 93.4% 21.2 93.4%
f 0
1 and P0

cr obtained for Λ = [45/− 45]8 28.7 92.5% 21.1 92.8%
f 0
1 = f max

1 , P0
cr = Pmax

cr 28.7 92.5% 21.1 92.9%

The analysis of Figures 7 and 8 and Tables 2 and 3 reveals that there are are no significant
qualitative differences between three scaling approaches.

3.4. Scalarization Method Approach to Optimization of f1 and Pcr

The same metamodels (DNNfMS
8000 and DNNPcr

8000-CL2) together with GA optimization, were applied
as a tool to solve the SM approach to the optimization problem, with the objective function given
by Equation (9). After initial test the main GA parameters were selected as follows: floating-point
coding of parameters, 50 individuals in each population, 100 generations, stochastic uniform selection
function, Gaussian mutation function, constraints −90 ≤ λi ≤ 90 applied on each lamination angle λi
(for details of Matlab implementation of GA see [29]). The optimization procedure was repeated 250
times in order to get a statistical description of the obtained results, moreover each result (final f1 and
Pcr values obtained by metamodels for a particular lamination angles vector Λ) was verified using
FEM.

The results, obtained for scaling factors f 0
1 and P0

cr computed for the lamination angle case
Λ = [45/− 45]8, for graphite/epoxy ratio κ = 0.2, are presented in Figure 9a.

The best values of f1 and Pcr, obtained from the SM optimization procedure for different α

coefficient values (0 ≤ α ≤ 1) and are—only to create a plot—divided by f max
1 = 30.97 Hz or
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Pmax
cr = 22.72 MN, respectively. The intersection of the two lines ( f1/ f max

1 and Pcr/Pmax
cr ) in Figure 9a

shows the location of NP fulfilling the condition given in the previous section: the maximum of the
minimal value among f1/ f max

1 and Pcr/Pmax
cr . For the SM optimization procedure such a result is

obtained for α ≈ 0.6 and reads f1 = 29.1 Hz (94% of f max
1 ) and Pcr = 21.3 MN (93.9% of Pmax

cr ).
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Figure 9. The results of f1 and Pcr optimization, obtained for different values of coefficient α and
constant κ = 0.2, f 0

1 = P0
cr = 1: (a) only the best results for each κ, (b) all the obtained results, presented

in two-dimensional coordinate system of the results (Pcr- f1).

The same results are shown (in green) also in Figure 9b, the only difference is that they are
presented in the two-dimensional coordinate system of the results (Pcr- f1). The blue points in this
figure represent the dominated solutions among all the other results obtained from SM optimization
procedures (250 repetitions for each considered value of α). The green line, connecting the best results
obtained for different values of α, may be considered as a kind of PF. In order to make the plots
compatible with the plots created for MOO also the PF is created as the line connecting all the
non-dominated results and presented (in red) in Figure 10 for different scaling cases. The optimal
results (Nadir points) are gathered in Table 4, NPs are obtained using the same approach as in Table 3
and show slightly better accuracy of SM approach.
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Figure 10. The envelope Pareto front, obtained for different values of coefficient α and constant κ = 0.2,
(a) f 0

1 = P0
cr = 1, (b) f 0

1 and P0
cr obtained for Λ = [45/− 45]8, (c) f 0

1 = f max
1 , P0

cr = Pmax
cr .
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Table 4. Nadir points in SM approach.

Scaling Factors f1 f1/ f max
1 Pcr Pcr /Pmax

cr
Hz % MN %

f 0
1 = 1, P0

cr = 1 29.1 94.0% 21.4 94.3%
f 0
1 and P0

cr obtained for Λ = [45/− 45]8 29.1 94.0% 21.3 93.9%
f 0
1 = f max

1 , P0
cr = Pmax

cr 29.1 94.0% 21.4 94.0%

3.5. Multi-Objective Optimization vs. Scalarization Method

The results obtained from MOO and SM optimization are gathered in Figure 11. Each line presents
the Pareto front obtained either from MOO (continuous line) of from SM optimization (dashed line),
moreover three different variants of scaling factors pairs have been considered: (a) no scaling at all:
f 0
1 = P0

cr = 1, (b) scaling to an arbitrarily selected lamination angles case: f 0
1 and P0

cr obtained for
Λ = [45/− 45]8, (c) scaling to maximal values of f1 and Pcr obtained in previous steps: f 0

1 = 30.97 Hz
and P0

cr = 22.72 MN.
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Figure 11. The final PFs obtained from MOO (continuous lines) and SM (dashed lines) optimization.

The differences between scaling scenarios are negligible, there is however subtle but clear
advantage of SM over MOO approach.

4. Simultaneous Maximization of f1 and Pcr for Varying Graphite/Epoxy Ratio

The above described maximization of f1 and Pcr was performed for different fiber/matrix ratio κ.
Only SM approach was applied, with f 0

1 and P0
cr obtained for Λ = [45/− 45]8 (scaling to an arbitrarily

selected lamination angles case). The results are shown in Figure 12 and in Table 5.

Table 5. Nadir points for different values of κ.

κ
f1 f1/ f max

1 Pcr Pcr /Pmax
cr

Hz % MN %

0.2 29.1 94.0% 21.3 93.9%
0.4 38.6 94.3% 39.4 93.7%
0.6 45.5 94.2% 59.9 93.8%
0.4 52.4 94.5% 87.4 94.3%
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Figure 12. The results of f1 and Pcr optimization, obtained for different values of coefficient κ,
(a) κ = 0.2, (b) κ = 0.4, (c) κ = 0.6, (d) κ = 0.8.

The results gathered in Tables 4 and 5 show that using the SM approach it is possible to obtain the
optimal results with both f1 and Pcr only 6% smaller than their maximum values.

Figure 13 show the dependence of NP coordinates (optimal values of f1 and Pcr) on κ (ratio of
graphite fibers to epoxy matrix), and thus on the mass m of the cylinder. The horizontal axis of
Figure 13 shows the relative mass of the investigated cylinder where m is an overall mass and mmx is a
theoretical mass of the cylinder made of the epoxy matrix only, without any graphite fibers (κ = 0).
An additional case with κ = 0.1 is included.

The analysis of Figure 13 allows to design a composite material for the analyzed cylinder to obtain
the expected properties of the investigated structure.
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Figure 13. The optimal values of f1 and Pcr in relation of the relative mass of the cylinder.

5. Conclusions

The paper presents the optimization of stacking sequence (the lamination angles in subsequent
composite layers) of the composite cylinder in order to maximize simultaneously values of the first
natural frequency f1 and the first buckling force Pcr. The optimization problem is solved using:

• two separate metamodels,
• CL loops for metamodels refinement,
• multi-objective optimization with two objective functions, or
• scalarization method approach, where the only scalar objective function is a linear combination of

two objective functions involved in the previous approach.

Moreover, three different scaling of the input data for the optimization procedure are verified:

• no scaling at all: f 0
1 = P0

cr = 1,
• scaling to an arbitrarily selected lamination angles case: f 0

1 and P0
cr obtained for Λ = [45/− 45]8,

• scaling to maximal values of f 0
1 = f max

1 and P0
cr = Pmax

cr obtained during metamodel
creation phase.

New proposition of ND (optimal result) selection is also proposed.
In the presented examples the scalarization method gives slightly better results, while the three

investigated scaling approaches are barely distinguishable.
The two neural network metamodels substitute very time- and resource-consuming FE

calculations. The metamodels are created using examples obtained through FEM, but once the
metamodels are ready they are able to assess the values of f1 and Pcr instantly and thus enable
the application of nature-inspired GA minimization with no further involvement of time-consuming
FEM. The application of the proposed approach reduces the number of necessary FE calls by about
two orders of magnitude (from 2,500,000 to 26,500) what gives huge time and resource consumption
savings in each of the considered cases.

The applied metamodels enable the precise tuning of the investigated structure parameters,
it is possible to obtain such a values of the design parameters (i.e., the lamination angles of laminate
layers) that the value of the fundamental natural frequency reaches a value close to its maximum,
simultaneously with the buckling force also being near its maximum. In fact in every considered case
the final solution gives the values of both f1 and Pcr smaller then the maximum values by only 6%.

Genetic algorithms and DNN are very suitable tools to find global (or near-global) optimal
solution in the analyzed problems, where laminated composite is used.

The presented approach allows to design cylinder composite material through
optimization approach.
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The research should be carried out further, the following problems should be addressed:

• other parameters—like overall mass and/or stiffness—should be taken into account,
• wider range of control variables, also some geometric and/or material properties should

be considered,
• CL approach on the level of the whole MOO procedure should be applied, not only on the level of

metamodel creation.
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FE Finite Elements
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MOO Multi-Objective Optimization
SM Scalarization Method
PF Pareto Front
NP Nadir Point
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