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ABSTRACT

Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) has 
attracted a great deal of attention because of its association with severe asthma. However, 
it remains widely underdiagnosed in asthmatics as well as the general population. Upon 
pharmacological inhibition of cyclooxygenase 1 by NSAIDs, production of anti-inflammatory 
prostaglandin E2 and lipoxins ceases, while release of proinflammatory cysteinyl leukotrienes 
increases. To determine the underlying mechanisms, many studies have attempted to 
elucidate the genetic variants, such as single nucleotide polymorphisms, responsible for 
alterations of prostaglandins and leukotrienes, but the results of these genetic studies could 
not explain the whole genetic pathogenesis of NERD. Accordingly, the field of epigenetics 
has been introduced as an additional contributor to genomic alteration underlying the 
development of NERD. Recently, changes in CpG methylation, as one of the epigenetic 
components, have been identified in target tissues of NERD. This review discusses in silico 
analyses of both genetic and epigenetic components to gain a better understanding of their 
complementary roles in the development of NERD. Although the molecular mechanisms 
underlying NERD pathogenesis remain poorly understood, genetic and epigenetic variations 
play significant roles. Our results enhance the understanding of the genetic and epigenetic 
mechanisms involved in the development of NERD and suggest new approaches toward 
better diagnosis and management.
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INTRODUCTION

Oral aspirin challenge is the best method of diagnosing nonsteroidal anti-inflammatory 
drug (NSAID)-exacerbated respiratory disease (NERD), but this is a time-consuming 
procedure that results in serious complications in some cases. Therefore, the development 
of noninvasive biomarkers for easy diagnosis has been attempted to confirm the diagnosis 
of NERD and prevent unexpected complications of nonsteroidal anti-inflammatory drugs 
(NSAIDs)/aspirin use in susceptible patients. Using several genetic approaches, including 
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biologically plausible candidate genes and genome-wide association studies (GWAS), more 
than 100 genetic variants have been identified in association with NERD. Among them, 
the best mechanistic evidence supports intrinsic dysregulation of the leukotriene (LT)/
prostaglandin (PG) pathway, leading to increased recruitment of eosinophils and immune 
effector cells into the target tissues. These effects are mainly mediated by single nucleotide 
polymorphisms (SNPs) of the genes that regulate mRNA and protein expression responsible 
for PG and LT metabolism, i.e., LTC4S,1,2 ALOX5,3,4 CYSLTR1,5-7 CYSLTR2,5,6 TBX,6,8 EP2,9 and 
COX210,11 (Table 1).
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Table 1. NERD-associated single nucleotide polymorphisms in the genes for cysteinyl LTRs, PG, and thromboxane synthesis and their receptors
Gene Locus rsnumber Genotype Race No. of study 

subjects (AIA/ATA)
MAF (AIA/ATA) P value OR (95% CI) AF Reference 

(PMID)
LTC4S Promoter rs730012 −444 A>C Polish 76/110 0.39/0.27 0.01 2.61 (1.38–4.98) 0.50 (0.35–0.66) 10970818

Japanese 60/100 0.19/0.11 0.042 1.88 (0.91–3.87) 0.26 (0.14–0.42) 12063521
American 51/33 0.27/0.33 Negative - 10887308

Korean 93/181 0.14/0.18 Negative - 14749922
ALOX5 Promoter - VNTR American 6/25 - < 0.05 (Luc activity) - 9062372

Japanese 55/63 Negative 12063521
HT1 - (G-C-G-A) Korean 93/181 0.69/0.36 0.01 5.0 (1.54–17.9) 0.77 (0.51–0.92) 14749922

CysLTR1 Promoter rs321029 −634 C>T Korean 105/110 - 0.02 in male 2.89 (1.14–7.28) 16630147
Novel −475 A>C
Novel −336 A>G

Exon1 Novel 927 T>C UK 341 asthmatic 
families

- - - 16776674

- Spanish 87 (41 asthma with 
atopic dermatitis)

0.47/0.08 < 0.008 in male 9.78 (1.73–55.30) 0.82 (0.44–0.96) 16846449

Exon3 Novel 899 G>A Tristan da 
Cunha

52/60 (atopic/ 
non-atopic 

asthma)

0.11/0.03 < 0.0001 6.28 (2.2–17.7) 0.40 (0.19–0.66) 17558309

CysLTR2 Exon rs41347648 601 G>A Caucasian 1st 359, 2nd 384 
asthma families

0.03 0.04 - 15475736

Promoter Novel −1220 A>C Japanese 137 asthmatic 
families

0.93 0.0066 - 15454733

Promoter rs7324991 −819 T>G Korean 66/134 0.51/0.43 0.031 2.04 (1.06–3.85) 0.51 (0.35–0.66)
3'UTR Novel +2078 C>T 0.44/0.30 0.013 2.28 (1.19–4.40) 0.50 (0.34–0.66) 15970796

rs912278 +2534 A>G 0.47/0.39 0.031 2.02 (1.07–3.84) 0.48 (0.33–0.64)
PTGER1 3'UTR rs2241363 −500 G>C Korean 268/137 0.42/0.36 0.37 (0.19–0.73) 0.13 (0.07–0.23)
PTGER2 5'-up-stream Novel −12813 G>A Japanese 198/282/274 0.31/0.22/0.22 0.0017 3.21 (1.53–6.75) 0.50 (0.32–0.67) 15898979

−10814 T>A 0.49/0.39 0.0025
Promoter - −6179 A>G Korean 108/93 0.37/0.45 0.0199 -

rs2075797 −616 C>G 0.34/0.44 0.039 0.64 (0.42–0.98) 0.17 (0.12–0.25) 17496729
rs1353411 −166 G>A 0.45/0.38 0.023 2.60 (1.14–5.92) 0.53 (0.33–0.72)

PTGER3 Promoter rs7551789 −1709 T>A Korean 108/93 0.38/0.30 0.043 3.02 (1.04–8.80) 0.53 (0.28–0.77)
Intron rs7543182 A>C 243/919 0.29/0.24 0.02 1.31 (1.04–1.66) 0.27 (0.23–0.32) 15632198
3'UTR rs959 A>G 0.44/0.38 0.005 1.36 (1.10–1.68) 0.37 (0.33–0.42) 17496729

PTGER4 Promoter Novel −1254 A>G Korean 108/93 0.28/0.20 0.018 1.90 (1.12–3.22) 0.34 (0.23–0.47) 17496729
PTGIR 3'UTR rs1126510 +1915 T>C Korean 108/93 0.06/0.13 0.015 0.37 (0.17–0.83) 0.02(0.01–0.04) 21449675
PTGDR Diplotype - CCCT/CCCC 

(−613CC, −549CC, 
−441CC, −197TC)

Spanish 75/51 0.11/0.10 - - 23101307

TBXAS1 Intron 9 rs692291 +141931 T>A Korean 115/270 0.38/0.49 0.04 0.27 (0.13–0.57) 0.09 (0.04–0.18)
TBXA2R Exon3 rs11085026 +795 T>C Korean 93/172 0.41/0.36 0.009 - 15898979

Promoter rs4807491 −4684 C>T 108/93 0.46/0.43 0.032 2.57 (1.09–6.09) 0.54 (0.33–0.73) 17496729
0.39/0.47 0.027 0.42 (0.19–0.91) 0.14 (0.06–0.26)

NERD, nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease; LTR, leukotriene; PG, prostaglandin; AF, attributable fraction; AIA, aspirin-
induced asthma; ATA, aspirin-tolerance asthma; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; LTC4S, leukotriene C4 synthase; ALOX5, 
arachidonate 5-lipoxygenase; CysLTR1, cysteinyl leukotriene receptor 1; CysLTR2, cysteinyl leukotriene receptor 2; PTGER2, prostaglandin E receptor 2; PTGER3, 
prostaglandin E receptor 3; PTGER4, prostaglandin E receptor 4; PTGIR, prostaglandin I2 receptor; TBXAS1, thromboxane A synthase 1; TBXA2R, thromboxane A2 
receptor; RGS7BP, regulator of G protein signaling 7-binding protein.



An LTC4S−444A/C promoter SNP (rs730012) is among the most widely reported variants 
associated with NERD, although its association with NERD across studies is inconsistent.12-16 
Three ALOX5 promoter variants have been shown to be associated with NERD and/or its 
severity of hyperresponsiveness.4,17,18 However, some results have not been replicated due to 
small sample sizes, ethnic differences between study populations, or epigenetic changes, for 
the latter of which there is compelling evidence for a role in NERD.19,20

CLINICAL EVIDENCE OF EPIGENETIC COMPONENTS IN 
NERD
The prevalence of NSAID/aspirin hypersensitivity in adult asthmatics varies depending on 
the method used for diagnosis. In a recent meta-analysis,21 the prevalence was highest when 
determined by oral provocation test (adults 21%, children 5%), as compared to verbal history 
(adults 3%, children 2%). In Korea, 6.2% of 836 adult asthmatics showed a positive responses 
to oral aspirin challenge tests,22 and 5.8% of 1,173 adult asthmatics showed a positive 
response for NSAID/aspirin hypersensitivity n histories and/or provocation tests.23 NERD 
shows less familial aggregation compared with asthma, although the European Network 
on Aspirin-Induced Asthma found that 6% of NERD patients had a family history of aspirin 
hypersensitivity.24;a study of 1,344 Turkish patients revealed a 3.7% family history of NSAID/
aspirin hypersensitivity,25 suggesting an intermediate genetic background for this condition.

NSAID/aspirin hypersensitivity is more common in women than in men, beginning in 
adulthood at an average age of 30 years. Once developed, it remains throughout life, 
although sporadic disappearance of intolerance has been reported.26 However, considerable 
discordance in clinical manifestations of the disease has been noted in identical twin 
sisters, suggesting the greater influence of environmental factors.27,28 As NERD usually 
develops in middle age after relatively long-term exposure to NSAIDs, and with a low level 
of familial aggregation,24,29 epigenetic mechanisms may make greater contributions than 
genetic variations.

GLOBAL CHANGES IN CPG METHYLATION OF NASAL 
POLYPS FROM SUBJECTS WITH NERD
Epidemiological studies have shown that regular use of NSAIDs reduces the risk of 
development of at least some cancers.30,31 via the well-known targets, including COX-1 and 
COX-2, and other intracellular pathways, including cell cycle, cell differentiation, apoptosis, 
and regulation of transcription factors (TFs).32 In our previous in vitro study, DNMT3a and 
3b mRNAs were elevated in a mucoepidermoid cell line (NCI-H292) within 1 day after 
stimulation with medium and high doses of aspirin, while DNMT1 and MeCP2 showed no 
significant changes in expression (Fig. 1). DNMT3b mRNA was enhanced by stimulation for 2 
hours with 0.2 and 2 mM aspirin. DNMT3a mRNA level was increased progressively for up to 
3 days by treatment with high-dose aspirin. These data suggest that aspirin may induce global 
CpG methylation, which may affect gene expression. In contrast, NSAIDs are known induce 
promoter demethylation of Secreted Protein Acidic and Cysteine Rich (SPARC) by repressing 
DNMT expression.33 In agreement with the experimental data, an epidemiological study 
showed that chronic aspirin use may be associated with a lower prevalence of E-cadherin 
(CDH1) promoter methylation in non-neoplastic gastric mucosa.34

781https://e-aair.org https://doi.org/10.4168/aair.2019.11.6.779

Genetics and Epigenetics in NERD



There have been few studies on global DNA CpG methylation in NERD. In a genome-wide 
CpG methylation study of nasal polyps in subjects with NERD and aspirin-tolerant asthma 
(ATA) patients,35 332 CpG sites on 296 genes were hypomethylated and 158 sites on 141 genes 
were hypermethylated in NERD (Fig. 2). Thus, the NERD-associated proportion of global 
differential methylated CpG (DMC) was 1.78% (490/27,587 CpGs analyzed in the test kit), 
which was about 10 times higher than the proportion of DMC in the bronchial epithelium of 
patients with atopic asthma (0.19%, 53/27,578 CpGs).36 The 490 DMCs were located on 437 
genes and, thus, the global proportion of differentially methylated genes (DMGs) was 3.02% 
(437/14,457 genes analyzed in the test kit). In silico analysis of the 490 DMCs indicated that 
409 CpG sites (83.5%) were on promoter regions with 130 hypermethylated CpGs and 279 
hypomethylated CpGs (Fig. 3). In general, hypermethylation of cytosines within CpG islands 
of promoters causes gene silencing, and hypomethylation triggers active transcription.37,38 
Thus, differential promoter CpG methylation may affect gene expression levels in nasal 
polyps of NERD patients, as compared to ATA patients. Ontological classification of the 
36,127 genes in AmiGo2 (http://amigo.geneontology.org/amigo/search/ontology) indicated 
259 genes in the arachidonate pathways (Table 2). Among them, 66 genes were differentially 
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Fig. 1. Effects of aspirin on DNA methyltransferase genes in the mucoepidermoid NCI-H292 lung cell line. Quantitative real-time polymerase chain reaction assay 
was conducted in a Smart Cycler instrument, and the relative levels of DNMT3a, DNMT3b, and DNMT1 mRNAs were normalized relative to that of peptidylprolyl 
isomerase A. The data are representative of 3 consecutive experiments. 
*P < 0.05 vs. 0 mM aspirin.

http://amigo.geneontology.org/amigo/search/ontology
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Fig. 2. CpG DNA methylation patterns of nasal polyps and peripheral blood mononuclear cells obtained from subjects with NERD and ATA. Volcano plot of 
differential methylation levels between NERD and ATA in nasal polyp tissues (A) and buffy coat samples (B). Red dots, delta beta ≥ 0.5 and P ≤ 0.01; blue dots, 
delta beta ≤ −0.5 and P ≤ 0.01; gray dots, −0.5 ≤ delta beta ≤ 0.5 and P > 0.01. Delta beta, difference in DNA methylation level (subtracting DNA methylation level 
of ATA from NERD). −log (p), log-transformed t-test P values. (C) Heat map of 490 differentially methylated CpGs between NERD and ATA in buffy coat and nasal 
polyps. Reproduced with permission from Allergy Asthma Immunol Res 2013;5:258-7619 (license number: EU826007151). 
NERD, nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease; ATA, aspirin-tolerant asthma.

Table 2. Proportions of differently methylated and SNP genes in arachidonic acid pathways in NERD compared to those in ATA
Ontology No. of genes DMG SNP-gene DMG & SNP cgSNPs
Arachidonic acid binding 5 3 (60) 2 (40) 1 (20) 1 (20)*
Arachidonic acid metabolism 62 34 (54.9) 11 (17.8) 4 (6.5) 0 (0)
Prostaglandin biosynthetic process 25 6 (25) 5 (20) 0 (0) 0 (1)
Leukotriene biosynthetic process 20 3 (15) 4 (20) 1 (5) 0 (2)
Arachidonic acid products 93 13 (14) 13 (14) 0 (0) 0 (3)
Leukotriene products 38 5 (13) 9 (24) 1 (2.6) 0 (4)
Lipoxygenase 16 2 (12.5) 5 (31.3) 0 (0) 0 (5)
Total 259 66 (22.5) 49 (18.9) 7 (2.7 ) 1 (0.4)
Values are presented as number (%). The 259 genes were recruited from 36,127 genes in the AmiGo2, the web-based set of tools for searching and browsing the 
Gene Ontology database. Number in parenthesis is proportion of genes among the total gene.
NERD, nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease; DMG, differentially methylated gene; SNP, single nucleotide 
polymorphism; ATA, aspirin-tolerance asthma; SNP-gene, number of genes having single nucleotide polymorphism associated with nonsteroidal anti-
inflammatory drug (NSAID)-exacerbated respiratory disease; cgSNPs, CpG site related single nucleotide polymorphisms.
*S100A9 (S100 Calcium Binding Protein A9); This protein is a calcium- and zinc-binding protein which plays a prominent role in the regulation of inflammatory 
processes and immune response.



methylated (25.5%), which was 10 times higher than the global proportion of DMG (3.02%). 
These observations indicated that the genes in the arachidonate pathways are much more 
labile to CpG methylation in NERD compared to ATA.

GENOME-EPIGENOME INTERACTION VIA CPG SITE-
RELATED SNPS (CGSNPS)
Some SNPs influence the presence of CpG sites, where DNA modification, such as 
methylation and hydroxymethylation, occurs.39 These SNPs can lead to gain or loss of 
CpG sites and are defined as cgSNPs. For example, a C-to-T transition on the “C” of 
CpG dinucleotides leads to loss of a CpG site. A human genome study demonstrated a 
considerable proportion of cgSNPs (23.0%) among 4097556 common variants.40 In the 
nasal polyps of NERD,35 42 cgSNPs were present in about 11% of the 409 DMC sites on the 
promoter and one cgSNP was located in the body of the gene (Table 3). Forty-seven TFs were 
predicted to bind to the DNA sequences of these sites (Fig. 4) on PROMO search (http://
alggen.lsi.upc.edu/). Among the TFs, XBP-1, GR-alpha, and EKNTF-1 bind to more than 10 
CpGs sites. The XBP-1 protein is a TF that regulates the expression of genes important to 
the immune system and the cellular stress response.41 In addition, the expression of this 
protein is required for transcription of a subset of class II major histocompatibility genes.42 
GWAS studies performed by our group and other investigators have revealed that SNPs on 
HLA-DPB1 (rs1042151 and rs3128965) show the most significant association with NERD 
susceptibility.43 The rs1042151 acts as a potential cis regulator of the expression of HLA-DPB1 
with an expression quantitative trait loci (eQTL) score of 36.83, as calculated using the eQTL 
browser (http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/). In silico analysis of SNP function 
indicated that the rs1042151 SNP is located in an exonic splicing enhancer region.44 Thus, 
XBP-1 is thought to be one of the key TFs binding to the DMCs in the development of NERD, 
which will be validated in future studies.
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Fig. 3. In silico analysis of the 490 DMCs between NERD and ATA indicated that 409 CpG sites (83.5%) were on promoter regions with 130 hypermethylated CpGs 
and 279 hypomethylated CpGs. 
DMC, differential methylated CpG; NERD, nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease; ATA, aspirin-tolerant asthma; TSS200, 
0–200 bases upstream of the transcription start site; TSS1500, 200–1,500 bases upstream of the transcription start site.
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Table 3. List of 42 cgSNPs of 409 differentially methylated CpG sites between NERD and ATA and their transcription binding factors
Gene name Description Chromosome CpG 

coordinate
Position DeltaBeta 

(AIA-ATA)
P value SNP Genotype Transcription factor

PIK3CG Phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit gamma

7 106293008 TSS200 −0.58 8E-05 rs189643115 C/T GCF, TFII-I

SLA Src like adaptor 8 134141793 TSS200 −0.56 5E-04 rs193193464 A/G/T TFIID, GCF
DOK2 Docking protein 2 8 21827392 TSS1500 −0.55 2E-04 rs116745856 A/G ENKTF-1, AP-2alphaA
EVL Enah/vasp-like 14 99601344 TSS200 −0.55 2E-04 rs142509033 A/G RXR-alpha, ENKTF-1, E2F-1, Pax-

5, p53, sp1, WT1
ARHGAP15 Rho GTPase activating protein 15 2 143602842 TSS1500 −0.54 4E-05 rs145004467 C/T XBP-1, ENKTF-1, E2F-1, AhR:Arnt
GPR77 Complement component 5a receptor 2 19 52530972 TSS1500 −0.54 1E-04 rs190777242 A/G TFII-I, PEA3, XBP-1
PLD4 Phospholipase D family member 4 14 104462063 TSS200 −0.53 3E-04 rs138509471 A/G GR-alpha, AP-2alphaA, ENKTF-1, 

Pax-5, p53, E2F-1
LILRA2 Leukocyte immunoglobulin like teceptor A2 19 59776830 TSS1500 −0.52 6E-05 rs73612405 C/T XBP-1
EGFL7 EGF like domain multiple 7 9 138676375 TSS1500 −0.52 9E-05 rs111978941 A/G/T AR, TFII-I
ITGAM Integrin subunit alpha M 16 31178510 TSS1500 −0.52 1E-03 rs184907050 A/G USF2, GCF, AP-2alphaA
TYROBP TYRO protein tyrosine kinase binding 

protein
19 41091889 TSS1500 −0.51 3E-04 rs146068432 C/T XBP-1

TSPAN32 Tetraspanin 32 11 2279317 Body −0.51 9E-05 rs74048220 C/G/T ENKTF-1, GR-alpha, AP-2alphaA
NALP12 NLR family pyrin domain containing 12 19 59019592 TSS200 −0.5 7E-05 rs187459687 A/G E2F-1, c-Ets-1, STAT1beta, NF-AT1, 

IRF-1
PUM2 Pumilio RNA binding family member 2 2 20391116 TSS1500 0.5 7E-04 rs114135728 C/T XBP-1, ENKTF-1, AR
METTL4 Methyltransferase like 4 18 2562965 5'UTR 0.5 2E-03 rs200286634 C/T GR-beta, C/EBPbeta, TFIID
KLK11 Kallikrein related peptidase 11 19 56223296 TSS1500 0.5 6E-05 rs183746430 A/G GR-alpha, TFIID, RXR-alpha
TSPAN8 Tetraspanin 8 12 69838603 TSS1500 0.5 2E-04 rs77641542 A/G GR-beta, AP-1, XBP-1
MYOZ3 Myozenin 3 5 150020473 TSS200 0.5 1E-03 rs188156985 A/G GR-alpha, RXR-alpha
CHRNA10 Cholinergic receptor nicotinic alpha 10 

subunit
11 3649733 TSS1500 0.5 3E-03 rs190940880 A/G FOXP3, IRF-1, TFII-I, STAT4, 

c-Ets-1
LGALS8 Galectin 8 1 234746847 TSS1500 0.5 2E-03 rs192328273 A/G
UGT1A6 UDP glucuronosyltransferase family 1 

member A6
2 234264888 TSS200 0.51 5E-05 rs45594938 A/C/G/T ENKTF-1, c-Myb, RXR-alpha

SYCP2 Synaptonemal complex protein 2 20 57940627 TSS200 0.52 1E-06 rs140425806 C/G GR-alpha, GATA-1, HNF-1C, 
HNF-1B

SERPINB13 Serpin family B member 13 18 59405541 5'UTR 0.52 3E-03 rs73468602 C/T AhR:Arnt,XBP-1
SH2D4B SH2 domain containing 4B 10 82287377 TSS1500 0.53 1E-04 rs137943319 C/T FOXP3, HNF-3alpha, GR-beta, 

XBP-1
NID1 Nidogen 1 1 234304366 TSS1500 0.53 5E-04 rs187127213 A/C/G GR-alpha, EBF, T3R-beta1, 

RXR-alpha
VTCN1 V-Set domain containing T cell activation 

inhibitor 1
1 117555488 TSS1500 0.53 4E-04 rs146060859 A/G GR-alpha, YY1

PCK1 Phosphoenolpyruvate carboxykinase 1 20 55569418 TSS200 0.53 1E-04 rs146925480 A/G PR B, PR A, p53, Pax-5, AhR:Arnt
TECTA Tectorin alpha 11 120478484 TSS200 0.54 6E-04 rs79614045 C/T XBP-1, c-Jun, YY1, Ik-1
LAMB3 Laminin subunit beta 3 1 207892479 TSS200 0.54 4E-04 rs191233438 C/T RXR-alpha, E2F-1, Pax-5, p53, 

GR-alpha, EBF
RIPK1 Receptor interacting serine/threonine 

kinase 1
6 3021353 TSS1500 0.54 1E-04 rs186932816 C/T c-Ets-1, c-Myb, IRF-1, YY1

SLC39A2 Solute carrier family 39 member 2 14 20537113 TSS200 0.54 8E-07 rs141598581 A/G GATA-1
TMEM184A Transmembrane protein 184A 7 1562743 TSS200 0.57 6E-06 rs73287493 C/T GR-alpha, AP-2alphaA, ENKTF-1
LIPC Lipase C, hepatic type 15 56510949 TSS1500 0.58 3E-04 rs200997055 A/G XBP-1, c-Jun, ATF3
CDH26 Cadherin 26 20 57966838 TSS200 0.59 2E-04 rs188408166 A/G E2F-1, c-Ets-1, Elk-1
TNKS1BP1 Tankyrase 1 binding protein 1 11 56846646 5'UTR 0.59 2E-05 rs113688171 G/T GR-beta, NFI/CTF
PFDN2 Prefoldin subunit 2 1 159355726 TSS1500 0.6 2E-04 rs200278216 C/T RAR-beta:RXR-alpha,YY1, XBP-1
IL22RA1 Interleukin 22 receptor subunit alpha 1 1 24342378 TSS200 0.6 7E-05 rs138275016 A/C/G c-Ets-2, TFII-I, c-Ets-1, Elk-1
PAQR6 Progestin and AdipoQ receptor family 

member 6
1 154484566 TSS200 0.6 7E-05 rs144755038 A/C GR-alpha, C/EBPbeta

GCNT4 Glucosaminyl (N-acetyl) transferase 4 5 74363037 TSS1500 0.61 5E-05 rs73122571 A/G GR-alpha, PR B, PR A, AP-
2alphaA, SRF, Pax-5, p53

ACKR2 Atypical chemokine receptor 2 3 42825852 TSS200 0.63 3E-05 rs117154133 C/T XBP-1, AR, AP-1, c-Jun
CCN4 Cellular communication network factor 4 8 134271552 TSS1500 0.64 1E-04 rs138160356 C/T c-Myc, c-Jun, USF1, XBP-1, ATF3
RDH5 Retinol dehydrogenase 5 12 54400422 1stExon 0.66 2E-04 rs185215037 C/T
SLC28A1 Solute carrier family 28 member 1 15 83227915 TSS1500 0.7 6E-05 rs139316942 C/T C/EBPbeta, GR
cgSNP, CpG site-related single nucleotide polymorphism; NERD, nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease; AIA, aspirin-
induced asthma; ATA, aspirin-tolerant asthma; SNP, single nucleotide polymorphism.



Interestingly, the frequency of cgSNPs was much lower in the arachidonate pathways. Among 
the total of 259 genes involved in these pathways, the number of genes with SNPs associated 
with NERD was 49 (18.9%), which was slightly less than the proportion of DMG (25.5%) 
(Table 3). Seven genes had both DMCs and SNPs. Among them, only one SNP (rs19980990 
of S100A9) was related to a CpG site (i.e., a cgSNP). Thus, among the 259 genes, gene 
expression may be regulated by CpG methylation on 59 genes, by SNPs on 42 genes, and by 
both CpG methylation and SNPs on 7 genes.

DIFFERENTIALLY METHYLATED CPGS OF THE GENES 
INVOLVED IN THE PG AND LTR BIOSYNTHESIS 
PATHWAYS

Among 37 CpGs on 19 genes found in the PG and LT biosynthesis pathways (Supplementary 
Table S1), there were 14 DMCs on 11 genes, i.e., ALOX12 (cg03760483, cg08946332), ALOX12B 
(cg03742272), ALOX15 (CG15843823), ALOX15B (CG15799267, CG12343777), ALOX5AP (CG08529529), 
LOXHD1 (cg17903316), PGDS (cg12554857), PTGDS (CG00563932), PTGES (cg26672426, cg17683775), 
PTGIS (CG07612655), and TBXAS1 (CG14116569) (Fig. 5). Among them, PGDS (cg12554857) and 
ALOX5AP (CG08529529) were highly hypomethylated (delta beta: −0.67 and −0.522, respectively), 
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while PTGES (cg26672426) was robustly hypermethylated (delta beta: 0.56) in NERD compared 
to ATA (Fig. 5). Although the genomic impact of DMCs in NERD has not been analyzed 
with regard to changes in their genes or metabolites, prostanglandins, cysteinyl LTs, and 
thromboxanes are expected to be elevated, while PGE may be downregulated by varying the 
extent of CpG methylation of the relevant genes of NERD patients.

Therapeutic concentrations of aspirin mainly inhibit cyclooxygenase 1 (COX-1). COX-1, also 
known as PGG/H synthase 1, PG-endoperoxide synthase 1, or PGH2 synthase 1, is an enzyme 
encoded in humans by the PTGS1 gene. Therefore, blocking of COX-1 results in a reduction 
of multifunctional PGH2 level, which is a common precursor substrate for PGD2, PGE2, 
PGF2, PGI2, and TXB2 (Fig. 6A). Accordingly, the levels of all of these end products are 
expected to be decreased after aspirin challenge or even in the basal state in NERD. However, 
systemic PGF245 and PGD2 levels46 and the ratio of local PGD2/PGE2 levels were increased in 
NERD47 compared to ATA (Fig. 6B-E). These data are in good agreement with the methylation 
changes of these genes.

Although systemic basal TBX2 levels were significantly higher in NERD than ATA, the levels 
were downregulated after aspirin challenge,48 while PGF2 and PGD2 levels were persistently 
elevated.45,46 The different responses to aspirin challenge may be due to genetic differences 
in these genes between NERD and ATA. A genetic variant study of a Korean population 
demonstrated that the frequency of the minor allele +141931T>A (rs6962291) in intron 9 
of TBXAS1 was significantly lower in the NERD group than the ATA group (Table 1). Taken 
together, these observations suggest that DNA CpG methylation may exert a regulatory 
role in synthesis of PG metabolites, especially PGD2 and PGE, while the genetic variants and 
hypomethylation of TBX2 may be responsible for that of thromboxane B2.49

The other important mechanistic evidence for NERD pathogenesis supports intrinsic 
dysregulation of the activity of the 5-LO/LTC4S pathway, i.e., LTC4S1 and ALOX54 (Table 1). 
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Fig. 5. Delta beta values of 16 DMCs (P < 0.05) on 11 genes involved in the prostaglandin and leukotriene pathways 
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each CpG site. 
DMC, differential methylated CpG; NERD, nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory 
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LTC4S is among the most widely reported variants associated with NERD, although its 
association with NERD across studies is inconsistent.50,51 A recent meta-analysis of 13 
case–control studies of asthma revealed significantly increased risk in asthmatic patients 
carrying the CC or AC genotype vs. the AA genotype.16 Three ALOX5 promoter variants are 
associated with NERD4,17,18 (Table 1). Interestingly, ALOX5AP showed hypomethylation with 
delta beta of −0.52, which may affect gene expression. Thus, cysteinyl LTs may be elevated 
by both differences in the extent of methylation of ALOX5AP and genetic variants of ALOX5 
and LTC4 synthase. Among the 14 receptor genes involved in the PG and LTR pathways, 5 
genes showed 6 DMC (Supplementary Table S2). However, LTB4R and LXA4 Receptor (FPRL1) 
are significantly hypomethylated with delta beta > 0.2 (Fig. 7). As shown in Table 1, CysLTR1 
and CysLTR2, and PTGER1, PTGER2, PTGER3, and PTGER4, PTGDR, PTGD2R (CRTH2), PTGIR 
and TBXA2R have different frequencies of SNPs on their respective genes in patients with 
NERD or those with nasal polyps,52 indicating that the receptors for PG and LTR metabolites 
have genetic effects due to SNPs except for LTB4R and FPRL1, which are modulated by 
differences in methylation (Fig. 7).
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CONCLUSION

PGE synthesis may be decreased due to hypermethylation of PGEs, while PGD and 
thromboxane synthesis may be elevated by hypomethylation of PTDS and TBXAS. The 
imbalance of PGE/PGD may be accentuated by genetic variants of PGERs (EP2–EP4) and 
PTGDR. In the LT pathways, cysteinyl LTR synthesis may be elevated by hypomethylated 
ALOX5AP and genetic variants of ALOX5 and LTC4S. Furthermore, the effects of cysteinyl LT 
may be maximized by genetic variants of CysLR1 and 2 (Fig. 8). Accordingly, the imbalance 
of PG/cysteinyl LT synthesis may be dominantly regulated by the changes in methylation and 
may be complemented by the SNPs of LTC4S and ALOX5, and the effects of the imbalance 
may be accentuated by the genetic variants of PGERs, CYSLTR1, and CYSLTR2 (Fig. 8). Taken 
together, these observations indicated that subjects with NERD may have genetically distorted 
and epigenetically susceptible arachidonate pathways to environmental factors, including 
exposure to NSAIDs or other agents. In addition, DNA methylation may indeed be tightly 
regulated by genetic factors such as SNPs that affect NERD development (Fig. 8). However, 
the precise mechanisms by which NSAIDs induce dysregulation of CpG methylation in NERD 
are still unknown. It remains to be determined when and how the epigenetic effects of NSAIDs 
begin and the initial mechanisms underlying the changes in CpG methylation. Other possible 
actions of NSAID may involve modification of other epigenetic components, including histone 
proteins and miRNA, or altered metabolism of methylating nutrients. Although the molecular 
mechanisms underlying NERD pathogenesis remain poorly understood, genetic and epigenetic 
variations play significant roles. Our results enhance the understanding of the genetic and 
epigenetic mechanisms involved in NERD development and suggest new approaches toward 
the diagnosis, treatment, and management of NERD.
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Supplementary Table S2
DNA methylation level of differentially methylated CpGs in receptor genes of arachidonic 
acid pathways in AIA compared to those in ATA
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