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Vascular endothelial cells produce and release compounds regulating vascular tone, blood
vessel growth and differentiation, plasma composition, coagulation and fibrinolysis, and
also engage in interactions with blood cells thereby controlling hemostasis and acute
inflammatory reactions. These interactions have to be tightly regulated to guarantee
smooth blood flow in normal physiology, but also allow specific and often local
responses to blood vessel injury and infectious or inflammatory insults. To cope with
these challenges, endothelial cells have the remarkable capability of rapidly changing their
surface properties from non-adhesive (supporting unrestricted blood flow) to adhesive
(capturing circulating blood cells). This is brought about by the evoked secretion of major
adhesion receptors for platelets (von-Willebrand factor, VWF) and leukocytes (P-selectin)
which are stored in a ready-to-be-used form in specialized secretory granules, the Weibel-
Palade bodies (WPB). WPB are unique, lysosome related organelles that form at the trans-
Golgi network and further mature by receiving material from the endolysosomal system.
Failure to produce correctly matured VWF and release it through regulated WPB
exocytosis results in pathologies, most importantly von-Willebrand disease, the most
common inherited blood clotting disorder. The biogenesis of WPB, their intracellular
motility and their fusion with the plasma membrane are regulated by a complex
interplay of proteins and lipids, involving Rab proteins and their effectors, cytoskeletal
components as well as membrane tethering and fusion machineries. This review will
discuss aspects of WPB biogenesis, trafficking and exocytosis focussing on recent
findings describing factors contributing to WPB maturation, WPB-actin interactions
and WPB-plasma membrane tethering and fusion.
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INTRODUCTION

Endothelial cells comprise the inner lining of blood vessels and thus the first cellular barrier
separating blood and tissue. They form single-layered epithelia that differ in morphology, molecular
characteristics, physiology and function depending on the type of vascular bed. As such they seal
blood vessels and control traffic of nutrients, hormones, growth and differentiation factors, particles
and cells (immune cells, metastasizing tumor cells and even pathogens) to and from the vasculature.
Moreover, through selective secretion and uptake as well as production and decoding of signaling
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molecules they regulate blood vessel homeostasis including
clotting and coagulation, fibrinolysis and thrombosis as well as
vascular tone and local inflammatory reactions.

One striking characteristic of endothelial cells relates to the
adhesive properties of their apical cell surface that faces the blood
vessel lumen. In the normal physiological state this surface does
not interact firmly with leukocytes, erythrocytes and platelets
thereby permitting an unrestricted blood flow and blood cell
circulation. However, upon insult and endothelial cell activation
surface properties change rapidly allowing leukocytes and
platelets to adhere to the vessel wall. These cell interactions
are vital to ensure proper responses to blood vessel injury
(platelet plug formation and initiation of coagulation) and
inflammatory or infectious insult (recruitment of leukocytes to
sites of tissue damage or infection). Endothelial cells can actively
control these surface properties by the regulated presentation of
specific adhesion molecules. To do so, vascular endothelial cells
are equipped with unique secretory organelles that store among
other things leukocyte and platelet adhesion receptors to be
released on demand. In honor of their initial discovery by
Ewald Weibel and George Palade in electron microscopic
analyses of rat and human pulmonary arteries these organelles
were termed Weibel-Palade bodies (WPB) (Weibel and Palade,
1964). Only later these peculiar membrane compartments were
shown to contain the major platelet adhesion molecule von-
Willebrand factor (VWF) and the leukocyte receptor P-selectin
(Wagner et al., 1982; Bonfanti et al., 1989). The physiological and
also pathophysiological importance of WPB and their principal
cargo VWF is emphasized by the fact that failure to produce and
release proper VWF results in von-Willebrand disease, the major
inherited bleeding disorder (for reviews see Schneppenheim and
Budde, 2011; Leebeek and Eikenboom, 2016). On the other hand,
vascular occlusion is a consequence of highly elevated vascular
VWF levels as for instance observed in thrombotic
thrombocytopenic purpura. (for review see Sadler, 2008).
Thus, WPB are pivotal components of the precisely tuned
machinery that orchestrates blood vessel homeostasis. This
mini review will highlight the unique features of WPB
particularly emphasizing recent developments in the
understanding of their maturation and secretion.

WPB Maturation
WPB are born at the trans-Golgi network (TGN) where they bud
off in the form of discernible structures. Their dimensions and
unique morphology are dictated by the main cargo VWF, a large
glycoprotein synthesized and first processed in the ER (for
references and recent crystal structure of the VWF D’D3
domains see Dong et al., 2019). VWF is then transported to
the Golgi where it is assembled into defined quanta. A copacking
of these quanta occurs in the TGN prior to or concomitant with
the actual budding of immature WPB which can maintain
connections to the Golgi for 2–4 h (Zenner et al., 2007;
Ferraro et al., 2014; Mourik et al., 2015). These connections
and the close proximity to the Golgi likely permit the further
addition of VWF and possibly other cargo to the immature WPB
(Mourik et al., 2015). The early WPB released from the TGN
further mature to finally yield the highly elongated cigar-shaped

organelles primarily found in the periphery of endothelial cells
(for reviews see van Mourik et al., 2002; Michaux and Cutler,
2004; McCormack et al., 2017; Karampini et al., 2020). This
maturation is driven on one hand by the continued
multimerization and tight packing of VWF into a quasi-
crystalline arrangement enwrapped by a membrane, which
requires luminal acidification and reflects itself in the
condensation of WPB from an electron lucent immature
organelle to an electron dense mature structure. On the other
hand, post-Golgi maturation is accompanied by acquisition of
additional cytosolic and also endosomal/lysosomal components.
They include the RabGTPase Rab27a and the tetraspanin CD63
identifying WPB as lysosome-related organelles (LRO) that share
molecular features with pigment-storing melanosomes (for
reviews see Raposo et al., 2007; Bowman et al., 2019). It is
worth noting here that the net size of WPB is primarily
determined at the level of the Golgi and that further
maturation mainly leads to condensation and tubular
elongation. Several aspects of WPB size control and
maturation have been addressed recently revealing novel and
exciting connections.

An interesting link between WPB size control and cell
metabolism was discovered recently following the identification of
the Arf guanine nucleotide exchange factor (GEF) GBF1 (a GEF for
Arf1 and 4) as a factor promoting ER/Golgi trafficking of VWF.
GBF1 can be activated by phosphorylation by AMP-activated
protein kinase (AMPK), a key enzyme coupling metabolic
changes to cellular signaling, and it was shown that low glucose
levels and subsequent AMPK activation lead to GBF1
phosphorylation and a resulting upregulation of anterograde
VWF trafficking. This in turn produces smaller WPB and
reduces VWF secretion (Lopes-da-Silva et al., 2019) (Figure 1).
Arf GTPase activating proteins (GAPs) that inactivate their cognate
Arf proteins also appear to regulate WPB size as depletion in
endothelial cells of the ArfGAP SMAP1 leads to a size reduction
in the WPB that form (Watanabe et al., 2021). The SNARE Sec22b
was recently identified as another factor controlling WPB
morphology presumably also by affecting the ER/Golgi transport
route of VWF. Depletion of Sec22b causes a loss of large, elongated
WPB along with a dilation of ER cisternae that accumulate non-
processed VWF (Karampini et al., 2020) (Figure 1). Thus, several
factors regulating VWF maturation and packing into WPB and
thereby affecting WPB size and morphology have been discovered
and approaches to exploit these also in pathophysiological settings
appear promising. Along these lines, Ferraro and coworkers
developed a microscopic screening approach measuring WPB size
that led to the identification of first candidate compounds that
reduce WPB length. As a consequence, this also reduces the pro-
thrombotic activity of secreted VWF as VWF secretion from shorter
WPB significantly dampens its platelet adhesion capability (Ferraro
et al., 2016, 2020).

Once early WPB have emerged from the Golgi they acquire
additional proteins (and presumably also lipids) in the process of
maturation that is accompanied by a microtubule-dependent
movement to the cell periphery (for review see McCormack
et al., 2017). Many of those additional WPB components have
been identified, among other things through proteomic screens
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(van Breevoort et al., 2012; Holthenrich et al., 2019); however,
their delivery to and association with the maturing organelle has
only recently been characterized in a few cases. In line with WPB
representing LRO, some proteins found on mature WPB are of
late endosome/lysosome (LEL) origin (e.g. the tetraspanin and P
selectin cofactor CD63) and most likely routed to the organelle by
direct transport possibly involving tubular carriers. Whereas
earlier studies had identified the Ca2+/phospholipid-binding
protein annexin A8 as a LEL-localized component of the
machinery facilitating LEL-to-WPB delivery of CD63 (Poeter
et al., 2014), Sharda and coworkers (Sharda et al., 2020) recently
reported the participation of biogenesis of lysosome related
organelle-2 (BLOC-2), a protein that can be mutated in the
recessive bleeding disorder Hermansky-Pudlak syndrome.
Among other things Hermansky-Pudlak syndrome is
associated with platelet aggregation and pigmentation defects,
the latter due to compromised maturation of melanosomes, LROs
that show several parallels to WPB (for reviews see Raposo et al.,
2007; Simons and Raposo, 2009). Depletion of BLOC-2 results in
both, compromised LEL-to-WPB transport of CD63 and general
WPB maturation defects with the WPB appearing round instead
of elongated and clustered in the perinuclear region (Figure 1).

As the immature organelles formed under these conditions failed
to process VWF into the highly multimeric forms these were
absent in the material secreted from BLOC-2 depleted endothelial
cells following thrombin stimulation (and intracellular Ca2+

mobilization). Moreover, the exocyst complex was identified as
a target of BLOC-2 in endothelial cells and exocyst depletion or
inhibition phenocopied the WPB maturation defects seen in
BLOC-2 deficient cells. In this study exocyst was also found to
serve a second function in impeding WPB exocytosis at the PM
(Sharda et al., 2020). The involvement of BLOC-2 in proper WPB
maturation was also shown in the respective mutant mice that are
characterized by impaired VWF tubulation (Ma et al., 2016).
Another gene that can be mutated in Hermansky-Pudlak
syndrome is AP3B1 encoding the adaptor complex three β1
subunit. Blood outgrowth endothelial cells from Hermansky-
Pudlak syndrome patients carrying the AP3B1 mutation also
lack CD63 in their WPB indicative of improper organelle
maturation. Moreover, these cells are compromised in their
evoked WPB exocytosis, most likely because they fail to recruit
the v-SNARE VAMP8 to maturing WPB (Karampini et al., 2019)
(Figure 1). While the above-mentioned studies identified
maturation factors/pathways involved in the delivery of

FIGURE 1 | Scheme depicting theWPB itinerary in endothelial cells. WPB formation is driven by VWF that is produced at the ER and trafficked to the Golgi (1). WPB
that bud from the TGN in an AP-1 and clathrin dependent process are then transported to the cell periphery alongmicrotubules. This is accompanied by the BLOC-2 and
annexin A8 dependent transfer of endosomal components such as CD63 and VAMP8 to WPB (2). Maturing WPB acquire certain RabGTPases, e.g. Rab27A and
Rab3B/D, the former required for linking WPB at the cortical actin cytoskeleton (via MyRIP/MyoVc) and supporting exocytosis (via Slp4-a) (3). Secretagogue
induced tethering at and fusion with the PM requires docking factors, such as the annexin A2/S100A10/Munc13-4 complex and a SNARE-based fusion machinery and
can also involve compound and cumulative events (3, 4 and 5). Finally, post fusion actin rings have been observed that support the full release of highly multimeric VWF
(6). Mainly factors identified in the recent years have been included.
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transmembrane proteins (CD63, VAMP8) to maturing WPB,
another hallmark of mature WPB are a specific subset of
cytosolically associated RabGTPases, in particular Rab27a and
the Rab3 isoforms b and d. Addressing this aspect of the
maturation, Kat and coworkers (Kat et al., 2021) could
recently identify MAP kinase-activating death domain
(MADD) as a crucial component involved. MADD serves as a
GEF for these Rabs and silencing of MADD through knockdown
approaches markedly reduced the recruitment of Rab27a, Rab3b
and Rab3d to maturing WPB (Figure 1). Finally, it should be
noted that WPB maturation is not only accompanied by
tubulation and tight packing of VWF and the acquisition of
additional protein contents, it also generates other morphological
characteristics typical for LRO. Specifically, vesicles inside the
lumen of the organelle, a hallmark of many LRO, were observed
recently in mature WPB of endothelial cells. Following WPB
exocytosis these intraluminal vesicles which are positive for CD63
could also be released and possibly function in intercellular
communication, again extending the similarity to other LROs
(Streetley et al., 2019).

Thus, WPB maturation is a highly complex process involving
de novo protein acquisition, LEL-to-WPB protein transport and
morphological alterations that eventually generate the unique
rod-shaped organelle containing the tubulated highly
multimeric VWF.

WPB-Plasma Membrane Tethering and
Secretion
The VWF stored in WPB can be released in different ways. Basal
secretion, typically of less multimeric VWF, provides the
circulation with low levels of these VWF species, and
constitutive secretion, preferentially occurring at the
basolateral membrane surface of endothelial cells, deposits
VWF in the subendothelial matrix. Specific components
regulating these secretory events have not been systematically
investigated with the exception of a recent screen that identified
the regulator of G protein signaling 4 (RGS4) as a negative
regulator of the constitutive pathway (Patella and Cutler,
2020). The majority of fully matured WPB, however, is
retained inside the cell to await secretagogue stimulation, for
example following blood vessel injury or local inflammatory
insults, to present highly multimeric VWF and P-selectin on
the endothelial cell surface by regulated exocytosis. Retention is
achieved by anchorage in the cortical actin cytoskeleton, which is
mediated with help of a complex consisting of Rab27a, the
Rab27a effector MyRIP and the actin binding myosin Va
(Nightingale et al., 2009; Rojo Pulido et al., 2011; Conte et al.,
2016) (Figure 1). Endothelial stimulation, which can be elicited
by a plethora of agonists (Lowenstein et al., 2005; Schillemans
et al., 2019b) and typically results in elevated intracellular Ca2+ or
cAMP levels functioning as second messengers, mobilizes the
cortically anchored WPB and initiates the tethering/docking at
and fusion with the plasma membrane (PM). The detailed
molecular mechanisms responsible for releasing WPB from the
cortical anchorage and enabling their PM contact are largely
unknown, but they are likely to involve WPB associated

RabGTPases. A central role for Rab27a in this event has been
shown by Bierings and coworkers (Bierings et al., 2012) who
reported that the evoked release of mature WPB is regulated by
the interaction of Rab27a with either MyRIP (supporting cortical
anchorage) or synaptotagmin-like protein 4-a (Slp4-a)
(promoting WPB exocytosis) (Figure 1). Rab46 was recently
identified as another Rab regulating selective WPB trafficking
in the cell cortex and thereby specific cargo release following
histamine evoked and Ca2+ mediated exocytosis of WPB. Rab46,
which harbors a Ca2+-binding EF hand, localizes to only a subset
of the peripheral WPB that are negative for the leukocyte receptor
P-selectin but contain angiopoietin-2. It senses the Ca2+ elevation
elicited by histamine stimulation and then triggers a retrograde,
dynein-dependent transport of the associated peripheral WPB to
the cell center. As the Rab46 negative, P-selectin containingWPB
exocytose under these conditions, only a fraction of the WPB
cargo, e.g. the proinflammatory P-selectin, is released (Miteva
et al., 2019) (Figure 1). How and when suchWPB diversification,
i.e. a sorting of P-selectin to only some organelles, occurs and how
Rab46 is recruited to only a subset ofWPB is not known but these
pose interesting and very central cell biological questions.

Following cortical release and in preparation of PM fusion,
WPB are most likely tethered or docked at the membrane. Here,
another Rab27a effector, the mammalian uncoordinated 13–4
(Munc13-4), has been shown to promote WPB exocytosis most
likely by providing a link or tether between the organelle surface
and a PM-bound complex consisting of annexin A2 (AnxA2) and
S100A10 (Zografou et al., 2012; Chehab et al., 2017) (Figure 1). In
this configuration the AnxA2/S100A10 complex most likely
functions as a module binding Ca2+-dependently to PM
phospholipids [e.g. phosphatidylinositol 4,5-bisphosphate,
PI(4,5)P2] via its AnxA2 subunit and to WPB-bound Munc13-
4 via its S100A10 subunit (Chehab et al., 2017). A special
enrichment of certain PM phospholipids is indeed observed at
WPB-PM fusion sites and inhibitor and depletion experiments
suggest that PI(4,5)P2 and the PI(4,5)P2 producing PI4P 5-kinase
are required for efficient histamine-evoked WPB exocytosis
(Nguyen et al., 2020). In the course of regulated exocytosis
tethered WPB are finally recognized by the membrane fusion
machinery consisting of SNAREs and associated proteins. Several
of the factors involved at this stage have been described over the
years, including a trans-SNARE complex consisting of WPB-
localized VAMP3 and PM-localized syntaxin-4 and SNAP23 as
well as syntaxin-binding Munc18 proteins (Matsushita et al.,
2003; Pulido et al., 2011; van Breevoort et al., 2014) (Figure 1).
However, the picture is probably more complex as recent studies
employing blood outgrowth endothelial cells which were isolated
from a patient suffering from variant microvillus inclusion
disease and shown to lack another SNARE, syntaxin-3,
showed markedly impaired agonist-evoked VWF secretion.
Syntaxin-3 interacts with VAMP8, another WPB-associated
v-SNARE, but interestingly, was shown to localize mainly to
WPB (Schillemans et al., 2018, 2019). This suggests that syntaxin-
3, most likely pairing with VAMP8 on another WPB, supports
homotypic fusions of WPB that could occur during compound or
cumulative exocytosis (Zupančič et al., 2002; Valentijn et al.,
2010; Kiskin et al., 2014; Stevenson et al., 2017) (Figure 1). Thus,
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several SNARE complexes are likely to support heterotypic and
homotypic WPB fusion events that characterize the final steps in
regulated exocytosis. Common to these events is their regulation
by signaling mediators, in the case of Ca2+-dependent exocytosis
the elevated Ca2+ concentrations. Several Ca2+ binding proteins
have been implicated in coupling these Ca2+ signals to regulated
WPB exocytosis, including the above-mentioned Slp4-a, AnxA2
and Munc13-4 as well as another Munc13 family member,
Munc13-2 (Zhou et al., 2016; Holthenrich et al., 2019);
however, the actual WPB-associated Ca2+ sensor that could
directly activate the SNARE machinery most likely is a
member of the synaptotagmin family. Synaptotagmin-5 has
recently emerged as an interesting candidate as it localizes to
WPB and is required for histamine evoked WPB exocytosis and
VWF secretion. Importantly, a mutant synaptotagmin-5 lacking
the Ca2+ coordinating asparagine residue in the C2A domain
negatively interferes with histamine evoked WPB exocytosis
directly showing the importance of synaptotagmin-5 Ca2+

binding (Lenzi et al., 2019). Thus, a complex interplay of
Ca2+-regulated proteins, also including the recently identified
Slp2-a (Francis et al., 2021), likely transmits the rise in
intracellular Ca2+ to WPB-PM docking and fusion in the
course of regulated exocytosis.

The Link to Actin
While cargo release in many exocytotic events occurs
automatically with completion of the granule-PM fusion, WPB
and some other secretory organelles carrying large cargo, e.g.
surfactant-loaded lamellar bodies of alveolar epithelial cells
(Miklavc et al., 2015), most likely require mechanical forces
for efficient cargo expulsion. This can be provided by
rearrangements of the cortical actin cytoskeleton that first has
to be weakened to allow granule penetration to the PM and then
site-specifically repolymerizes to support cargo release. In the case
of WPB, it was observed that rings of polymerized actin form at
the distal end of WPB several seconds after the actual PM fusion
event (Figure 1). Furthermore, it was shown that these structures,
in an active myosin motor-dependent process, are required for
the efficient release of highly multimeric VWF cargo from the
fused WPB (Nightingale et al., 2011). In later studies it was
observed that the formation of such actin rings at WPB-PM
fusion sites probably is not obligatory for VWF release, at least in
case of histamine stimulation and Ca2+-dependent WPB
exocytosis (Conte et al., 2015), and that the extent of actin
ring formation at these fusion sites appears to depend on the
type of stimulus (Nightingale et al., 2018; Mietkowska et al.,
2019). Interestingly, a different actomyosin network that is also
positive for the focal adhesion protein zyxin has been observed
around peripheral WPB of endothelial cells stimulated with
cAMP raising agonists. Here, actin framework formation

occurs prior to the actual fusion event facilitating WPB
exocytosis (Han et al., 2017; Li et al., 2018). Clearly, more
work is required to establish a potential link between this
zyxin/actomyosin network and the post-fusion actin rings, e.g.
by identifying the factor(s) promoting actin polymerisation into
the ring/coat-like structures at fused WPB. Moreover, the precise
function of the actin structures also needs further attention. They
could support exocytotic membrane fusion and VWF expulsion
but potentially could also prevent fused WPB from fully
collapsing into the PM, for example to permit rapid and
spatially restricted compensatory endocytosis that has been
shown to occur on the membrane of fused WPB (Stevenson
et al., 2017). Another unresolved issue concerns the regulation of
the spatially restricted changes in cortical actin architecture, in
particular the questions whether certain membrane lipids
enriched at WPB fusion sites such as PI(4,5)P2 are involved
and which molecular players organize the actin reorganization
precisely at the sites where WPB fuse or have fused.

Concluding Remarks
WPB are unique secretory organelles that allow vascular
endothelial cells to respond rapidly to environmental changes
by the secretion of factors that control hemostasis and
inflammation. Marked progress in understanding their
biogenesis, intracellular transport and secretion has been made
in the last decade revealing fascinating cell biological phenomena
that drive the formation of the organelle and its many modes of
exocytosis. However, our picture of the organelle is far from
complete and important questions, e.g. concerning unique
maturation steps, cargo selection and Rab recruitment and the
involvement of different actin structures in VWF release, remain
to be answered. Future research in this exciting topic of cell
biology has to tell and will likely also benefit pharmacological
interventions of the pathway that could help controlling vascular
VWF (and P-selectin) levels in pathophysiological scenarios
(Karampini et al., 2020; El-Mansi and Nightingale, 2021).
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