
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports

A novel scaled‑gamma‑tanh (SGT)
activation function in 3D CNN
applied for MRI classification
Bijen Khagi1 & Goo‑Rak Kwon1,2*

Activation functions in the neural network are responsible for ‘firing’ the nodes in it. In a deep neural
network they ‘activate’ the features to reduce feature redundancy and learn the complex pattern by
adding non-linearity in the network to learn task-specific goals. In this paper, we propose a simple and
interesting activation function based on the combination of scaled gamma correction and hyperbolic
tangent function, which we call Scaled Gamma Tanh (SGT) activation. The proposed activation
function is applied in two steps, first is the calculation of gamma version as y = f(x) = axα for x < 0 and
y = f(x) = bxβ for x ≥ 0, second is obtaining the squashed value as z = tanh(y). The variables a and b are
user-defined constant values whereas α and β are channel-based learnable parameters. We analyzed
the behavior of the proposed SGT activation function against other popular activation functions like
ReLU, Leaky-ReLU, and tanh along with their role to confront vanishing/exploding gradient problems.
For this, we implemented the SGT activation functions in a 3D Convolutional neural network (CNN) for
the classification of magnetic resonance imaging (MRIs). More importantly to support our proposed
idea we have presented a thorough analysis via histogram of inputs and outputs in activation layers
along with weights/bias plot and t-SNE (t-Distributed Stochastic Neighbor Embedding) projection
of fully connected layer for the trained CNN models. Our results in MRI classification show SGT
outperforms standard ReLU and tanh activation in all cases i.e., final validation accuracy, final
validation loss, test accuracy, Cohen’s kappa score, and Precision.

An activation function is primarily used in DNN for two purposes, first to add non-linearity in the whole system
to learn complex patterns and second to normalize or threshold the output of each layer to reduce the computa-
tional burden1,2. Here, for a CNN, if only linear activation f(x) = wx + b is used, then stacking multiple functions
of f(x) produces only a single degree output noting that the convolution layer itself is also a linear operation
layer3. Aside output values can monotonically explode to a maximal or minimal level causing difficulty in train-
ing to reach convergence. Hence, the learned polynomial expression should be in order greater than 1 to learn
complex patterns due to multi-dimension features4,5 i.e., the decision boundary needs to be non-linear. For this,
the activation functions need to be chosen properly in deep networks as it has significant effects on the training
dynamics and required task performance4,6,7.

Traditionally neural networks implementing Multilayer Perceptron (MLP) used sigmoid function or tanh
as a non-linear operator in its neuron or node8–11. Later with emerging complexity in DNN, many other activa-
tion functions based on the non-linear operation were proposed. However, most of them were highly complex
and designed for a very deep network for their high-level abstract representation in natural image datasets like
ImageNet12–14. It made the network more complex to understand its working mechanism and feature extrac-
tion process15. Thus, still simpler non-linear rectifiers like ReLU16 and its variants Leaky-ReLU17 are the most
popular ones along with other Parametric ReLU (P-ReLU)18, GELU19, ELU20, SELU15 being occasionally used in
DNN like CNN8,21–23. Zhang et al.3 in their work for CNN improvement have supported the use of non-linear
transformation for convolution layer and FCL. The addition of asymmetric kernel approximation has improved
the classification task and generalization ability. Likewise, Hayou et al.1 studied the impact of activation func-
tions on DNN and concluded that inappropriate selection can lead to the loss of information of the input during
forward-propagation and the exponential vanishing/exploding of gradients during back-propagation. Recently,
Dubey et al.2 performed a comprehensive survey on performance analysis in deep learning, to understand the
behavior of non-linear transformation of activation function. ReLU defined as f(x) = max (0, x) completely blocks
the negative input for positive gradient flow whereas its other variants allow a computed flow of negative input for

OPEN

1Information and Communication Engineering, Chosun University, Gwangju 61452, South Korea. 2Gwangju
Alzheimer’s Disease and Related Dementia Cohort Research Center, Gwangju, South Korea. *email: grkwon@
chosun.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19020-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

small negative gradients loss. Although the vanishing gradient problem was solved with positive gradients loss in
ReLU, it gave rise to another similar problem called ‘dying ReLU’, which is encountered if higher negative input
keeps on prevailing at the cost of sparsity. Later these problems were solved using Leaky-ReLU and P-ReLU16,18
with non-zero activation for negative inputs as f(x) = αx, where α is a constant scalar or a learnable parameter.
However, in the case of medical image classification like MRI and Positron Emission Tomography (PET), ReLU
and Leaky-ReLU are still the dominant ones due to their simplicity and training images being in greyscale for-
mat. Recent works in MRI classification using DNN include designing robust and better architecture, ensemble
models along with clinical features, and experiments to apply new learning and optimization algorithms24–28.
While very few works have been done in designing novel activation functions specifically to MRI, as most
researchers use the existing activation methods29–31. Hosseini-Asl et al.24 used Sigmoid and ReLU function to
design deeply supervised and adaptable 3D CNN (DSA-3D-CNN) trained on structural MRI (sMRI) images,
for the prediction of Alzheimer’s disease (AD) vs. mild cognitive impairment (MCI) vs. controlled normal (CN)
task. Payan et al.25 proposed sparse auto-encoder (SAE) patch-based 3D CNN using sigmoid activation func-
tion to classify MRI scans. Similarly, Oh et al.26 performed fivefold cross-validations (CV) using convolutional
auto-encoder (CAE) based volumetric CNN with ReLU as the activation function for AD vs. NC classification
along with supervised transfer learning for sMCI vs. pMCI classification. Gupta et al.32 used CNN with sigmoid
activation function to classify MRI into 3 classes with transferred features learned from natural images using
autoencoder. E.Goceri28 proposed Sobolev gradient-based optimization for 3D-CNN, results for MRI classifi-
cation accuracy were reported higher with Leaky-ReLU in comparison to sigmoid and ReLU. Recently Huang
et al.29 implemented a combination of GELU and ReLU in their DNN model for brain tumor image classification
and achieved a 95.49% success rate.

Generally, Gamma correction (f(x) = xγ)33 is about contrast enhancement and non-monotonically intensity
mapping to new values, depending on the exponent γ for the input x. In deep learning scenarios, Gamma cor-
rection is mostly used to produce augmented images (with defined γ values like γ = 0.5,1.5,2, etc.) for increasing
training material34–36. This idea seems helpful to increase the training result by producing multiple versions of
gamma-corrected images using different values of γ in f(x) = xγ. However, it should also be noted that several
image’s quality might deteriorate due to the unmatched version of gamma. With the higher value of γ, we can
wash out the image whereas with the lower value of γ we might lose the important pixel information. Hence ‘γ’
should be a ‘versatile’ constant or technically a learnable parameter as per channels rather than a ‘fixed’ constant.
Hence our idea is to select an appropriate gamma value for each image, or more specifically for all the images (or
their features) obtained from all the channels output after Batch normalization (BN). Hence our method is not
to increase the number of augmented images rather to find appropriate values of gamma for each filter output
and bring non-linearity in the model at the same time, without increasing the number of training samples which
works as an activation function (please see Fig. 1).

In this work we contributed as follows:

•	 A novel activation function is proposed with the stepwise combination of gamma correction technique and
hyperbolic tangent function. Although zero-centered symmetric functions like Sigmoid, and tanh is desirable
for activation function for un-skewed gradients however, those functions proved to be not worthy due to
the vanishing gradient problem2,37. The best proven recent activation functions are mostly non-symmetrical
around zero, hence we are also developing a non-symmetric function. For the application of our proposed
idea, we have implemented the proposed SGT activation technique for MRI classification using our previ-
ously used architecture38 with a reduced number of fully connected layers.

•	 Various experimental analyses are introduced to support our findings. Since each activation layer is preceded
by BN layer, the idea is to distribute histogram with saturation at low and high intensities of input data, which
was originally mean centered at zero with unit variance. In other words, the intensity profile is dispersed from

Figure 1.   Comparison of activation using different functions for a sample MRI observed in 2nd activation layer
(22nd of 64 channels) corresponding to 63 × 63 × 63 image as a montage from (a) Input (b) Output using SGT
(c) Output using ReLU (d) Output using Leaky-ReLU. It can be observed that the output from the SGT, Fig. 1b),
has well preserved the feature attribute present in the first three and last few slices in comparison to ReLU (c)
and Leaky ReLU (d) where (a) is the input feature matrix.

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

the central region to the edges. This brings higher variance in weight distribution with significant discrimina-
tion in features to support the classification (please see histogram distribution Fig. 7).

Proposed SGT activation and training process
The proposed SGT activation is performed in two steps:

Here the first step is finding the gamma corrected version of input x as in Eq. (1). x is an input defined by a 4D
matrix/Tensor as Xl with each pixel/feature value Xb

n for ‘bth’ batch and ‘nth’ filter in layer ′l′ . a and b are constant
scaling factors that were set manually. For n filters, we have n values of learnable parameters (i.e., α or β ) which
implies that for all the different (or same)-class images belonging to the same mini-batch, the value of exponent
remains the same, whereas the value of the exponents is different for the same-class images in different channels,
hence are activated differently in each channel as shown in matrix representation in Eq. (2), ^ signifies operation
performed in column to column element wise exponential operation.

where Xl =







X1
1 · · · Xb

1
...

. . .
...

X1
n · · · Xb

n






 is the input to the layer l .

Here a and b are scaling constants selected manually, for our case we have selected to 0.1 and 1.1 respectively.
It is done to behave slightly as a monotonic function when the exponents are equal to 1 and resemble the Leaky-
ReLU function in the first step (please see Fig. 2a). Later in the second step, when passed through the hyperbolic
tangent (both exponents as 1) function, the output for the positive part will resemble tanh, and for the negative
part will partly resemble the Leaky-ReLU function (please see Fig. 2b). However, on changing the exponent value
and sign, different activation plots can be generated as shown in Fig. 2c and d. Here it should be noted that only
using step 1 for activation might explode the activated value in the positive region and can lead to vanishing
gradient in the negative region (please see ‘only-gamma’ plot in Fig. 2b) which causes computational difficulty
in convergence during training. Therefore, a thresholding function with non-linear and symmetric property in
positive and negative axis is required, for which we have selected the tanh function. The learnable parameters α
and β values work as a positive gamma corrector, hence the weight updates of value α and β are calculated from
the partial derivative of Eq. (1) during backward propagation as in Eqs. (3) and (4):

Please note when Xn
b = X is negative and α is a rational decimal number, the resulting Xα becomes a complex

number, in that case, we will only use the real part of the complex number. The same is the case with log10 X and
Xβ . Also, the absolute values of α or β are used in Eqs. (2), (3) and (4) for getting positive exponents.

Step 2: z = tanh(y) or in matrix form as:

Here since all the operations are an element-wise matrix operation, the matrix calculated using (2) is passed
to matrix calculation as in (5), then the output matrix Zl of layer l is passed into the pooling layer. For the layer
loss dldX , first the derivative of Yl with respect to (w.r.t) Xl is calculated using Eq. (6), so that the output Y ′ dimen-
sion matches exactly the dimension of the layer input i.e., Xl.

(1)Step 1 : y = f (x) = axα for x < 0 and bxβ for x > 0

(2)

Yl =a ·







X1
1 · · · Xb

1
...

. . .
...

X1
n · · · Xb

n






∧







α1
...
αn






= a ·







X1α1
1 · · · Xbα1

1
...

. . .
...

X1αn
n · · · Xbαn

n






=







Y1
1 · · · Yb

1
...

. . .
...

Y1
n · · · Yb

n






(for Xb

n < 0)

=b ·







X1
1 · · · Xb

1
...

. . .
...

X1
n · · · Xb

n






∧







β1
...
βn






= b ·









X
1β1
1 · · · X

bβ1
1

...
. . .

...

X
1βn
n · · · X

bβn
n









=







Y1
1 · · · Yb

1
...

. . .
...

Y1
n · · · Yb

n






(for Xb

n > 0)

(3)
dl

dα
=

∑

b

∑

n

0.1× real
(

log10 X
n
b

)

· real
(

Xnα
b

)

·
dl

dz
for Xb

n < 0

(4)
dl

dβ
=

∑

b

∑

n

1.1× real
(

log10 X
n
b

)

· real
(

X
nβ
b

)

·
dl

dz
for Xb

n > 0

(5)Zl = real







tanh (Y1
1) · · · tanh (Yb

1)

...
. . .

...

tanh (Y1
n) · · · tanh (Yb

n)






=







Z1
1 · · · Zb

1
...

. . .
...

Z1
n · · · Zb

n







(6)
Y ′ =

dYl

dXl
= 0.1× α · real

(

Xα−1
)

for X < 0

= 1.1× β · real
(

Xβ−1
)

for X ≥ 0

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

Then, the overall gradient loss dldX is calculated through the output of this layer as the derivative of Zl w.r.t Y ′ ,
which is backpropagated to the former layers using Eq. (7).

Here, dldZ is the loss back-propagated from the deeper layers. Since z = tanh(y) is used as a squashing function,
the final output value of the layer is non-uniformly scaled before passing out to the next layer resulting in z being
a non-symmetric function centered at zero. This is shown in Fig. 2c and d, where d(proposed-SGT) shows the
plot for the final output of the first-order derivative of the proposed function. For condition with exponents α
and β both being 1, the activation layer behaves like tanh in the positive part and leaky ReLU in the negative part,
whereas for the case of derivative, the first-order derivative is a constant so behaves exactly like Leaky ReLU with
output constant 0.3592 and 0.99006 for positive and negative part respectively. Such behavior was observed in
few filters with β(positive) > α(negative) as in the 18th filter which seems to be constant output as in two different
filters non-lineared at 0. However, since both α and β are channel-wise learnable parameters, the value is not the
same for all the channels (please see Fig. 8). The final value of α and β were examined to be between − 0.2 and 1.3,

(7)dl

dX
=

dZl

dY ′ ·
dl

dZ
=

d tanh
(

Y ′)

dY ′ ·
dl

dZ
= sech2

(

Y ′) ·
dl

dZ

(a) (b)

(c) (d)

Figure 2.   (a) Activation function plot for input x and f(x) along with other popular activation functions
near x = 0. Please see "Appendix" for all the related equations. Please see Fig. 2_app in "Appendix" for all the
related equations. (b) Activation (proposed-SGT) and first-order derivative (d(proposed-SGT)) plot with both
exponents equal to 1 using a combination of gamma correction (‘only-gamma’) and hyperbolic tangent (‘tanh’)
to illustrate the need for thresholding and squashing function. (c) Actual activation plot for the trained network
in 18th filter (out of 64) in layer 4. Here blue curve represents the SGT activation function whereas the red curve
represents its first-order derivative. (d) Actual activation plot for the trained network in 31st filter (out of 64) in
layer 4. Here blue curve represents the SGT activation function whereas the red curve represents its first-order
derivative.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

and rarely the identical value. Regarding our experiment, in most of the filters, the values of both α and β were a
positive rational number with decimals, and β being greater than α in the majority case. More discussion on this
is done in the discussion section. In the case with both β(positive) > α(positive), follows the graph as in 31st filter
(please see graph Fig. 2d) where the gradients value for positive x gradually keeps on decreasing with the value
of x, however, the rate of decrease is lower than the tanh derivate. This helps to prevent gradients values from
becoming infinitely small, whereas in the negative derivative part the value is almost constant and fairly equals to
become 1, for all cases. So, the network becomes less prone to the vanishing gradient or exploding gradient. It is
to note that when the input X, α, β becomes 0, it causes an indeterminate form as Sech (0) = ∞ also log (0) = ∞ in
this case, we simply replace the value of the parameters as 0.001 to continue training. Few values were recorded
undefined still after the convergence (please see Fig. 9), however, they can be ignored.

For training the network and optimizing the parameters we used the Adam39 optimization technique. It
is a first-order gradient-based optimization algorithm to update parameters until it reaches convergence. The
learnable parameter ( wt ) (weights/bias/defined terms like α and β) during tth iteration is updated using Adam
optimization as follow:

where a is the learning rate constant-value kept at 0.001 in our case, ε is a very small regularization constant value
(10−8) used as offset to keep a non-zero denominator. An element-wise moving average of parameters gradients
( mt ) and its squared value ( vt ) keeps on being updated as in Eqs. (9) and (10), where b1 and b2 are decay rates for
mt and vt kept at 0.9 and 0.990 respectively.

Here ∇E(wt) represents the first-order derivative of loss ( E ) for the parameter wt , which is the cross-entropy
loss i.e.

where for N is the total numbers of training samples with K mutually exclusive labels and tni is targeted output,
and yni is the predicted value with its natural log ( ln ) calculated for n th sample belonging to i th class.

CNN model and methodology
The performance evaluation of the proposed function was done with the classification of three cohorts of MRIs
clinically categorized as AD, CN, and MCI obtained from the ADNI website40. The demographic detail of the
used MRIs is shown in Table 1. Multiple scans from the same patients with different gradient wrapping and scale
correction techniques were used to add heterogeneity and increase the number of experiment samples41. The
detailed architecture used in the analysis is shown in Table 2. The total dataset was divided into three parts viz
train, validation, and test set in the ratio of 5:2:3 so that 495 MRIs were used in training, 197 MRIs for validation,
and 296 MRIs were separated for testing the trained models.

The used CNN architecture is shown in pictorial representation as in Fig. 3, whereas the details of all the lay-
ers and number of parameter is shown in Table 2. The used CNN model is based on our previous work38, with
reduced Fully connected layer to overcome overfitting. As shown in Fig. 3, we can see the size of convolutional
kernel keeps on increasing from 3 × 3 × 3 to 9 × 9 × 9 until reaching the final activation size of 3 × 3 × 3. Hence
it is called a diverging network ‘divNet’. The proposed SGT layer (green cubes) replaces the ReLU activation
originally used in the CNN model. Similarly Fig. 4 represents the whole classification process. The MRI scan in
NIfTI (Neuroimaging Informatics Technology Initiative) format is inputted to the CNN after a minimal image
preprocessing step to resize into 64 × 64 × 64. Then follows the convolution, normalization, activation, and pool-
ing process in a sequential manner to obtained down sampled feature vector. This encoding process repeats up
to the FCL followed by a dropout layer. Finally, a SoftMax layer to output probabilities score, which is used for
the loss calculation. The used loss function is cross-entropy, for multiclass classification. Here the major focus in
done in the activation layers, its input and output analysis (via histogram) and the behavior of activation function
with different learnt value of the learnable parameters.

(8)wt+1 = wt −
amt√
vt + ε

(9)mt = b1mt−1 + (1− b1)∇E(wt)

(10)vt = b2vt−1 + (1− b2)[∇E(wt)]
2

(11)loss(E) = −
1

N

N
∑

n=1

K
∑

i=1

tni ln
(

yni
)

Table 1.   Participants’ demographics and MRI counts.

Dataset properties AD participants CN participants MCI participants

Male/female 29/36 22/38 54/33

Mean age 73.55/75.43 75.57/74.43 77.06/72.41

Total number of Participant 65 60 87

Number of MRI scans 209 305 474

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

All experiments were conducted using MATLAB R2022a academic software on Windows 10 OS. Network
models were trained on NVIDIA GeForce RTX 3090 GPU with 24 GB dedicated memory and tested in Intel®
Core™ i9-10900 K CPU @ 3.70 GHz with 32 GB of memory. The trained mat file will be provided to researchers
upon request to the authors.

Table 2.   CNN baseline architecture used to train and classify the MRI 3D scans. Here, while analyzing the
performances of different activation functions, layers containing SGT functions i.e., layer_gamma3d are
replaced with other existing standard activation functions. Weights and bias values for convolution and FCL
were initialized using the ‘Glorot’ initialization technique and for the proposed SGT layer, α and β values were
randomly initialized between 0 and 1. The initial learning rate was set at 0.001 with learn drop factor of 0.95
after every 10 epochs and fully trained up to 80 epochs.

Layer number Layer name Layer description Output size Number of learnable parameters

1 Image input 64 × 64 × 64 × 1 images with ’zero-center’ normalization 64 × 64 × 64 × 1 0

2 Convolution 64 3 × 3 × 3 × 1 convolutions with stride [1 1 1] and pad-
ding ’same’ 64 × 64 × 64 × 64 Weights = 1728

Bias = 64

3 Batch Normalization Batch normalization with 64 channels 64 × 64 × 64 × 64 Offset = 64, Scale = 64

4 layer_gamma3d
or ReLU/Leaky-ReLU/tanh

Proposed SGT function with 2 learnable parameters for
64 channels 64 × 64 × 64 × 64 α = 64, β = 64 or 0

5 3-D Max Pooling 2 × 2 × 2 max pooling with stride [1 1 1] and padding [0
0 0; 0 0 0] 63 × 63 × 63 × 64 0

6 Convolution 64 5 × 5 × 5 × 64 convolutions with stride [1 1 1] and pad-
ding ’same’ 63 × 63 × 63 × 64 Weights = 512 K

Bias = 64

7 Batch Normalization Batch normalization with 64 channels 63 × 63 × 63 × 64 Offset = 64, Scale = 64

8 layer_gamma3d or ReLU/Leaky-ReLU/tanh Proposed SGT function with 2 learnable parameters for
64 channels 63 × 63 × 63 × 64 α = 64, β = 64 or 0

9 3-D Max Pooling 2 × 2 × 2 max pooling with stride [2 2 2] and padding [0
0 0; 0 0 0] 31 × 31 × 31 × 64 0

10 Convolution 64 7 × 7 × 7 × 64 convolutions with stride [1 1 1] and pad-
ding ’same’ 31 × 31 × 31 × 64 Weights = 1.404 M

Bias = 64

11 Batch Normalization Batch normalization with 64 channels 31 × 31 × 31 × 64 Offset = 64, Scale = 64

12 layer_gamma3d or ReLU/Leaky-ReLU/tanh Proposed SGT function with 2 learnable parameters for
64 channels 31 × 31 × 31 × 64 α = 64, β = 64 or 0

13 3-D Max Pooling 2 × 2 × 2 max pooling with stride [3 3 3] and padding [0
0 0; 0 0 0] 10 × 10 × 10 × 64 0

14 Convolution 64 9 × 9 × 9 × 64 convolutions with stride [1 1 1] and pad-
ding ’same’ 10 × 10 × 10 × 64 Weights = 2.985 M

Bias = 64

15 Batch Normalization Batch normalization with 64 channels 10 × 10 × 10 × 64 Offset = 64, Scale = 64

16 layer_gamma3d or ReLU/Leaky-ReLU/tanh Proposed SGT function with 2 learnable parameters for
64 channels 10 × 10 × 10 × 64 α = 64, β = 64 or 0

17 3-D Max Pooling 2 × 2 × 2 max pooling with stride [4 4 4] and padding [0
0 0; 0 0 0] 3 × 3 × 3 × 64 0

18 Fully Connected 1728 fully connected layer 1 × 1 × 1 × 1728 Weights = 2.98 M
Bias = 1728

19 Dropout 50% dropout 1 × 1 × 1 × 1728 0

20 Fully Connected 3 fully connected layer 1 × 1 × 1 × 3 Weights = 5.18 K
Bias = 3

21 SoftMax SoftMax function 1 × 1 × 1 × 3 0

22 Classification Output Cross-entropy with ’AD’, ’CN’ and ’MCI’ labels 1 × 1 × 1 × 3 0

Figure 3.   CNN architecture applied for MRI classification using SGT activation.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

Classification performance
From Table 3 and Fig. 5, it is observed that all the version of the network using SGT activation (i.e., gamma2,
gamma2_alt, gamma4_adam, gamma4_sgdm) has higher validation accuracy than the other activation schemes.
These classification performance parameters measure the reliability and correctness of the work, e.g., accuracy
measures the number of correct prediction against the true predictions whereas precision measures how close the
measured valued are to the true values. Similarly, Cohen’s kappa score is like accuracy except that it is more robust
and measures how much better the model is performing over the performance of a model that randomly predicts
according to the frequency of each class, best suited for multiclass imbalanced dataset (please see "Appendix" for
all formulas). Additionally, to investigate the effect of SGT function precisely, few controlled experiments were
performed with gradual replacement of standard activation layer with proposed one. The result of this ablation
experiment is shown in Fig. 5, where final test accuracy, final validation loss and Cohen’s kappa score are reported.
Here gamma2 means the first two activations are SGT and other ReLU, gamma2_alt means first and third is SGT
and other ReLU, gamma4_adam uses all four activation layers as SGT with Adam optimizer while gamma4_sgdm
also uses four SGT activation layers but the optimizer is Stochastic Gradient Descent with Momentum (SGDM).
The validation set is the test set used during training to calculate the accuracy of prediction at different epochs,
hence it helps to know how well the network is learning. Figure 6b shows the validation accuracy calculated at
different epochs along with its training accuracy in Fig. 6a. It can be clearly noticed that the SGT activated net-
work (gamma4_sgdm, gamma4_adam) reaches higher validation accuracy than other activation schemes in the
final stages of training. The final validation accuracy reported in Table 3 is the accuracy on the validation set at
the 80th epoch or the final epoch. Similarly, the test set is the set that is completely unseen for the trained model
and the higher performance in the test set means the network is well generalized and has good performance for
unseen data. To get an unbiased result, the experimental environment along with all the hyperparameters and
participating MRIs were always kept identical for all networks irrespective of the choice of activation functions.
During test set classification, Leaky-ReLU performed the best with around 0.5% higher test accuracy than that
of gamm4_sgdm. Still, the test accuracy of all SGT activated networks was higher than the ReLU and tanh by
2% and 1% respectively, which indicates that the proposed SGT activation scheme outperforms the traditional
ReLU activation by a clear margin. Table 4 shows a comparison of our result with some recent works.

Figure 4.   Block diagram for proposed method.

Table 3.   Results for multi-class MRI classification using CNN architecture as in Table 2. Bold result in the
table content represents the best case.

Type Name
Final validation
accuracy (%) Test accuracy (%)

Final validation
Loss Cohen’s kappa

Precision (class-
wise [AD CN
MCI])

Predicted
confusion matrix

True confusion
matrix

Standard Activa-
tion Functions

tanh 90.86 92.57 0.5338 0.897 [0.8889 0.9120
0.9507]

56 1 6
0 83 8
1 6 135

63 0 0
0 91 0
0 0 142

ReLU 87.81 91.22 1.0425 0.860 [0.9048 0.9011
0.9225]

57 3 3
1 82 8
1 10 131

Leaky-ReLU 90.35 93.92 0.8201 0.902 [0.9206 0.9121
0.9648]

58 2 3
1 83 7
1 4 137

Swish 90.35 92.57 0.6022 0.881 [0.9048 0.8901
0.9577]

57 2 4
2 81 8
0 6 136

SGT Function

gamma4_adam 92.89 92.57 0.5638 0.881 [0.8730 0.9451
0.9366]

55 6 2
0 86 5
1 8 133

gamma4_sgdm 92.89 93.24 0.3086 0.892 [0.9048 0.9121
0.9577]

57 2 4
1 83 7
1 5 136

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

Discussion and analysis
Histogram analysis and asymmetric distribution.  Weights of each layer’s input ( Xl ) or output ( Zl )
as in Eqs. (2) or (5) is plotted against its frequency in the histograms. The normalized output values from BN
are zero-mean with almost normal distribution, so it is not a good idea to throw away all the negative valued
parameters/weights using activation functions like ReLU or sigmoid19. Though the flow of gradient is positive in

Figure 5.   Controlled experiment result with proposed SGT layer gradually replacing Leaky-ReLU layer. Here
gamma_X represents the SGT layer where X is the number of SGT layer. In total, we had 4 activation layer
replaced in the final experiment. The result keeps on improving with increasing number of SGT layers.

Figure 6.   (a) Training accuracy plot for MRI classification using baseline CNN models with different activation
functions. (b) Validation accuracy plot for MRI classification using baseline CNN models with different
activation functions.

Table 4.   Comparison with other works in MRI classification. Please note the difference in number of MRI
scans.

Authors Methods Number of MRI scans Activation function Testing accuracy (%)

Gupta et al.32 Sparse Auto encoder (SAE) based
CNN CN:1278 AD: 755 MCI: 2282 Sigmoid 94.74

Payan et al.25 SAE patch-based 3D CNN CN:755 AD:755 MCI:755 Sigmoid 89.47

Hosseini-Asl et al.24 DSA-3D-CNN CN:70, AD: 70 Sigmoid and ReLU 97.60

Oh et al.26 Inception auto encoder-based 3D
CNN NC:230 AD:198 sMCI: 101 ReLU 84.5

Proposed method Diverging CNN CN:305 AD:209 MCI:474 SGT 93.24

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

ReLU, if a bunch of the weights is negative it causes dead ReLU with ‘zero’ derivative for negative weights, hence
not every time ReLU is a wise choice. In cases like MRI, mostly with black background (low pixel value), it is
better to use alternative activation function like Leaky-ReLU, GELU, SELU that provides non-zero gradients for
negative weights ensuring the flow of gradient loss.

Figure 7 shows the input and output histogram plots through the SGT layer in comparison to ReLU ver-
sions. Here, please note that the input to the activation layer is the output from the batch normalization and the
output of the activation layer is the input to the pooling layer. In Fig. 7a, the input histogram of all activation
layers has an almost symmetrical distribution which means most of the image pixel lies in the grey region after
BN. Our goal of gamma correction is to reduce this grey zone and make the distinction between white (bright)
and black (dark) regions. If we look at Fig. 7b, the mid-grey region is very few in the case of output from the
proposed SGT layer, whereas the output with ReLU Fig. 7c, has very high zeros and leaky-ReLU Fig. 7d output
still seems centered at zero, hence the clear skewness is seen in positive part. While the SGT layers’ output data
are decentralized in opposite edge regions unlike BN, and it seems like the combination of the output of tanh
and Leaky-ReLU histogram. Additionally, this asymmetric feature distribution in the SGT layer supports the
classification task due to the higher variance between the edge regions (Fig. 8).

Figure 7.   Histogram of the input features against output using various activation functions for a single MRI
input plotted for different layers i.e., 4, 8, 12, and 16 (please see Table 2 for layers). Here, the histograms are
combinedly produced using all the data values from 64 filters/channels. Generally, the combined histogram
of all channels is similar to the single histogram of each channel (please see Fig. 7_app for comparing the
histogram plot of 19th filter out of 64 filters for same input MRI in "Appendix" section).

Figure 8.   Conventional activation functions work in a constant way to all inputs whereas the proposed SGT
function works differently for the different channels because of altering values of parameters αn , βn within the
layers channel in respect to Eq. (2).

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

Channel wise activation.  We were particularly interested to see what value the SGT (layer_gamma3d in
Table 2) parameters would learn at different activation layers. The stem plot for α and β values from all activation
layers as in Fig. 9 shows that for the first SGT activation layer (i.e., Layer 4) the values for α and β were mostly
positive and only a few remained negative, also there were more β with value > 1 than α. The range for the value
of α and β lied between − 0.4 and 1.4. Interestingly in the intermediate activation layers (i.e., Layer 8, 12) and the
final activation layer (i.e., Layer 16) none of the values for β remained negative while the values for α in most
channels remained negative. This might imply that for feature value x > 0, required positive gamma correction,
and for negative feature value x < 0, required negative gamma correction in the intermediate layer. In a more
general statement, the gamma activation made brighter pixels look brighter and darker pixels look darker, which
resulted in a more distinct intensity profile.

Analyzing weights and bias in the final fully connected layer.  FCL represents an MLP Feedforward
network with learnable weights and bias but mostly without activation function when used in CNN13,14. In FCL
all inputs are mapped to output unlike the convolutional layers which are used as a patch-based feature extractor,
therefore weights and bias in FCL are highly responsible for predicting the result, and the weights themselves
suggest which input has more effect (or gain) on output. Thus, the weight distribution pattern of FCL might
indicate how a network behaves during the test phase. To interpret this, we plotted all trained weights of the final
FCL (Input nodes = 1728, output nodes = 3, connection = 5184) for all 3 classes as shown in Fig. 10. Later the
correlation matrix is calculated as in Table 5, which shows a sample MRI’s features (or weights) calculated from
the FC layer is closely correlated with its parent class. For instance, the test sample CN MRI’s FC weights i.e.,
act1_CN has correlation value [0.143417277 0.24265146 − 0.009627914] with the trained network correspond-
ing layer weights [FC_AD_row FC_CN_row FC_MCI_row]. So, the highest correlation value is 0.24265146
for FC_CN_row implies, the MRI test sample has a higher affinity for ‘CN’ class weights during classification
besides, it supports the logic behind why the network predicts the test sample label as ‘CN’.

After weights analysis, we were also interested to analyze the bias value. So, the idea is to check how much
network is biased to each class via calculated bias in the final FCL layer. The obtained bias value is from the last
FCL, which goes into SoftMax for probability calculation. We know weights in the network directly influence
the output value for input, whereas bias works as a regularization constant to make non-zero output when input/

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Layer 4: Gamma4 adam CNN

0 10 20 30 40 50 60 70

α (for x<0)
β (for x>0)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Layer 8: Gamma4 adam CNN

0 10 20 30 40 50 60 70

α (for x<0)
β (for x>0)

-0.5

0

0.5

1

1.5
Layer 12: Gamma4 adam CNN

0 10 20 30 40 50 60 70

α (for x<0)
β (for x>0)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Layer 16: Gamma4 adam CNN

0 10 20 30 40 50 60 70

α (for x<0)
β (for x>0)

Figure 9.   Pictorial representation of α and β values for a trained model at different layers for gamma4_adam
network using Adam optimization. Here α and β are channel-wise learnable parameters in SGT layers, each
corresponding to 64 channels.

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

weights are zero and don’t have a successive layer-wise influence on the output. Although it is difficult to exactly
interpret the bias value theoretically, we assume the bias values close to each other cohort, can correlate how each
other is numerically related. E.g., for tanh trained CNN the obtained bias value is [AD CN MCI] = [− 0.006021075
0.000316184 0.004943716], which means that AD (with negative value) is closely related to CN (small positive),
being the difference of value between AD and CN greater than AD and MCI, which is against the general assump-
tion that AD is closely related to MCI, both being a dementia condition. This might also indicate that the tanh
network can easily differentiate between AD and MCI rather than AD and CN, which is not what it should be,
the same is the case with Leaky ReLU. Surprisingly, this might be supportive for the classification task, as higher
difference in bias would make the network easier to calculate the class-wise probabilities scores. On the contrary,
the proposed SGT networks (gamma4_adam and gamma4_sgdm) have a larger difference between AD and CN
bias values, one being positive and the other being negative. While MCI is nearly 0 indicating a moderate status
between AD and CN. The lower difference in MCI and CN bias values in the gamma4_adam network might sug-
gest a higher difficulty in classification and generalization between CN and MCI, which supports the real scenario.

Figure 10.   Final FCL 1728 weights plots of trained gamma4_adam network corresponding to each class label.
Here FC_AD_row represents the final weights of the layer from the fully trained gamma4_adam network
belonging to the AD class, similarly, FC_CN_row and FC_MCI_row represent for CN and MCI categories
respectively. While the plots of act1_AD are the weights calculated for a typical AD categorized MRI, obtained
using the trained model during the testing phase. So, are the weights calculated as act1_CN and act_MCI for a
CN and MCI categorized MRI during testing respectively. This plot is to show how closely the test sample (act1_
xx) follows its parent class characteristics (FC_xx_row). Furthermore, to evaluate this characteristic a correlation
table is calculated as in Table 5, where it is very clear that the test sample weights (act1_xx) have the highest
correlation with its parent class (FC_xx_row) where xx represents the same class for both sample and parent.
The same class high correlation between FC_xx_row and act_xx shows that the network is learning class-wise
property precisely.

Table 5.   Correlation matrix for weights as shown in Fig. 10. The colored ones are the highest measured value
for the sample-parent pair, higher being better.

FC_AD_row act1_AD FC_CN_row act1_CN FC_MCI_row act1_MCI

FC_AD_row 1 0.215182 0.39671942 – 0.14342 0.341976354 – 0.19525

act1_AD 0.215182223 1 0.04948163 0.786964 – 0.187160957 0.630355

FC_CN_row 0.396719425 0.049482 1 0.242651 0.309621325 – 0.00694

act1_CN – 0.143417277 0.786964 0.24265146 1 – 0.009627914 0.85748

FC_MCI_row 0.341976354 – 0.18716 0.30962132 – 0.00963 1 0.275327

act1_MCI – 0.195245895 0.630355 – 0.00693744 0.85748 0.275326654 1

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

Moreover, to analyze the performance of our model we have evaluated our model classification performance
using t-SNE 3D projection. Figure 12 represents the 3D t-SNE projection for visualization of reduced features
from the final FCL. The features into the FCL are originally from multiple channels later reduced into a single
channel, so are considered flattened features. However, each MRI’s flatten feature needs to be reduced to a 2D
or 3D dimension for proper visualization. The distinctive clustered distribution in the projection means the
network is learning class discriminant properties with good fitness. This can be seen in Fig. 12c, SGT produces
better dense class clustering (seen via color) than other ReLU and Leaky-ReLU.

Conclusion
DNN design and hyperparameter selection are task-specific with no single model or function that can work
universally for all, however, after all the experiments and analysis we can conclude:

•	 A novel channel-wise dynamic activation function is introduced with superior performance than standard
ReLU and tanh function in 3D CNN for MRI classification.

•	 We showed that the proposed activation function can diminish the negative gradient loss arising with the
negative weights with less likelihood for vanishing or exploding gradient problem and also zero gradient
problem unlike dead ReLU (please see derivative plots in Fig. 2c and d) for shallower networks.

•	 The analysis performed in histograms (Fig. 7), showed negative weights are produced in a quite large measure
during convolution and batch normalization operation so, the idea of utilizing negative weights to relatively
contribute to the gradient loss proved meaningful with the proposed activation function.

•	 We tried to explore the pattern of weights and bias in the final FCL and how numerically they might be related
(Figs. 11, 12, and Table 5) in regard to the classification task. This might be one of the few attempts in this
field as weights can be optimized in numerous approaches but difficult to analyze.

•	 Since DNN are very prone to overfitting so we cannot be very sure about this. However, under identical
training environment (i.e., hyperparameter, model and training material) if there is overfitting, it would
affect in both cases (i) using standard activation and (ii) using SGT. Hence, in both case the result will be
biased, so that our final goal to compare the SGT characteristic against other activation functions is equally

Figure 11.   Bias value plot of final FCL layer from the baseline CNN model using different activation functions.

Figure 12.   3D projection viewed at the same angle for the test set features reduced from 1728 dimension to 3
using the t-SNE algorithm. Here each color dot represents an MRI scan, hence a total of 296 dots for 296 test
MRI. The non-linear feature distribution shows the requirement of complex boundaries for classifications. Here
the figure from left to right is obtained as the result of t-SNE distribution using ReLU, Leaky-ReLU, and SGT
activation separately in the same baseline 3D CNN model. Please see Fig. 12_app in the "Appendix" section for
the 3D t-SNE projection of all individual layers in the gamm4_adam network.

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

affected by overfitting (if any). And if the use of parametric layer brings some overfitting, we have reported
the validation and test accuracy for all cases so, still the result is convincing for SGT.

Our idea is quite simple as well as interesting so we hope, our work could be helpful and meaningful for other
researchers working in deep learning. In the future, more modifications are required for superior performance
than all other activation functions and to work universally in all kinds of the image dataset.

Data availability
Data used in this article are publicly available on Alzheimer’s disease Neuroimaging Initiative (ADNI) database:
https://​ida.​loni.​usc.​edu accessed on 10 February 2021. All methods were carried out in accordance with relevant
guidelines and regulations as stated in the official website http://​adni.​loni.​usc.​edu/​metho​ds/​docum​ents/ accessed
on 30 January 2022.

Received: 25 January 2022; Accepted: 23 August 2022

References
	 1.	 Hayou, S., Doucet, A. & Rousseau, J. On the impact of the activation function on deep neural networks training. in International

Conference on Machine Learning, pp. 2672–2680 (2019).
	 2.	 Dubey, S. R., Singh, S. K. & Chaudhuri, B. B. A comprehensive survey and performance analysis of activation functions in deep

learning. arXiv Prepr. arXiv:​2109.​14545 (2021).
	 3.	 Zhang, C.-L. & Wu, J. Improving CNN linear layers with power mean non-linearity. Pattern Recognit. 89, 12–21 (2019).
	 4.	 Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	 5.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. in Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010).
	 6.	 Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. arXiv Prepr. arXiv:​1710.​05941 (2017).
	 7.	 Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach.

Intell. 35(8), 1915–1929 (2012).
	 8.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
	 9.	 Golilarz, N. A. & Demirel, H. Thresholding neural network (TNN) with smooth sigmoid based shrinkage (SSBS) function for

image de-noising. in 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), pp.
67–71 (2017).

	10.	 Gregor, K., Danihelka, I., Graves, A., Rezende, D. & Wierstra, D. Draw: A recurrent neural network for image generation. in
International Conference on Machine Learning, pp. 1462–1471 (2015).

	11.	 Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).
	12.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 25, 1097–1105 (2012).
	13.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 770–778 (2016).
	14.	 Szegedy, C. et al. Going deeper with convolutions. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 1–9 (2015).
	15.	 Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. in Proceedings of the 31st International

Conference on Neural Information Processing Systems, pp. 972–981 (2017).
	16.	 Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. (2010).
	17.	 Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models. in Proc. icml, vol. 30, no.

1, p. 3 (2013).
	18.	 He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

in Proceedings of the IEEE international conference on computer vision, vol. 2015 Inter, pp. 1026–1034, https://​doi.​org/​10.​1109/​
ICCV.​2015.​123 (2015).

	19.	 Hendrycks, D. & Gimpel, K. Gaussian error linear units (gelus). arXiv Prepr. arXiv:​1606.​08415 (2016).
	20.	 Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv

Prepr. arXiv:​1511.​07289 (2015).
	21.	 Anwar, S. M. et al. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 42(11), 1–13 (2018).
	22.	 Yamanakkanavar, N., Choi, J. Y. & Lee, B. MRI segmentation and classification of human brain using deep learning for diagnosis

of alzheimer’s disease: A survey. Sensors (Switzerland) 20(11), 1–31. https://​doi.​org/​10.​3390/​s2011​3243 (2020).
	23.	 LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 2, 396–404 (1989).
	24.	 Hosseini-Asl, E., Gimel’farb, G. & El-Baz, A. Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional

network. arXiv Prepr. arXiv:​1607.​00556 (2016).
	25.	 Payan, A. & Montana, G. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv

Prepr. arXiv:​1502.​02506 (2015).
	26.	 Oh, K., Chung, Y.-C., Kim, K. W., Kim, W.-S. & Oh, I.-S. Classification and visualization of Alzheimer’s disease using volumetric

convolutional neural network and transfer learning. Sci. Rep. 9(1), 1–16 (2019).
	27.	 Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H. & Adeli, H. Deep convolutional neural network for the automated detection and

diagnosis of seizure using EEG signals. Comput. Biol. Med. 100(August 2017), 270–278. https://​doi.​org/​10.​1016/j.​compb​iomed.​
2017.​09.​017 (2018).

	28.	 Goceri, E. Diagnosis of Alzheimer’s disease with Sobolev gradient-based optimization and 3D convolutional neural network. Int.
J. Numer. Method. Biomed. Eng. 35(7), e3225 (2019).

	29.	 Huang, Z. et al. Convolutional neural network based on complex networks for brain tumor image classification with a modified
activation function. IEEE Access 8, 89281–89290 (2020).

	30.	 Virtue, P., Yu, S. X. & Lustig, M. Better than real: Complex-valued neural nets for MRI fingerprinting. in 2017 IEEE international
conference on image processing (ICIP), pp. 3953–3957 (IEEE, 2017).

	31.	 Sharma, R., Goel, T., Tanveer, M., Dwivedi, S. & Murugan, R. FAF-DRVFL: Fuzzy activation function based deep random vector
functional links network for early diagnosis of Alzheimer disease. Appl. Soft Comput. 106, 107371 (2021).

	32.	 Gupta, A., Ayhan, M. & Maida, A. Natural image bases to represent neuroimaging data. in International Conference on Machine
Learning, pp. 987–994 (2013).

	33.	 McKesson, J. L. Learning modern 3D graphics programming. Arcsynthesis. Org 17, 264–274 (2012).

https://ida.loni.usc.edu
http://adni.loni.usc.edu/methods/documents/
http://arxiv.org/abs/2109.14545
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1710.05941
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1511.07289
https://doi.org/10.3390/s20113243
http://arxiv.org/abs/1607.00556
http://arxiv.org/abs/1502.02506
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.compbiomed.2017.09.017

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:14978 | https://doi.org/10.1038/s41598-022-19020-y

www.nature.com/scientificreports/

	34.	 Chen, C., Bai, W. & Rueckert, D. Multi-task learning for left atrial segmentation on GE-MRI. in International Workshop on Statisti-
cal Atlases and Computational Models of the Heart, pp. 292–301 (2018).

	35.	 Hong, J. et al. Brain age prediction of children using routine brain MR images via deep learning. Front. Neurol. https://​doi.​org/​10.​
3389/​fneur.​2020.​584682 (2020).

	36.	 Zhang, Y.-D. et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation.
Multimed. Tools Appl. 78(3), 3613–3632 (2019).

	37.	 Ven, L. & Lederer, J. Regularization and reparameterization avoid vanishing gradients in sigmoid-type networks. arXiv Prepr.
arXiv:​2106.​02260 (2021).

	38.	 Khagi, B. & Kwon, G. R. 3D CNN design for the classification of Alzheimer’s disease using brain MRI and PET. IEEE Access 8(3),
217830–217847. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30404​86 (2020).

	39.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv Prepr. arXiv:​1412.​6980 (2014).
	40.	 Cuingnet, R. et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods

using the ADNI database. Neuroimage 56(2), 766–781. https://​doi.​org/​10.​1016/j.​neuro​image.​2010.​06.​013 (2011).
	41.	 Khagi, B. & Kwon, G. R. Convolutional neural network-based natural image and MRI classification using Gaussian activated

parametric (GAP) layer. IEEE Access 9, 96930–96947. https://​doi.​org/​10.​1109/​ACCESS.​2021.​30934​55 (2021).

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Gov-
ernment (MSIT) under Grant NRF-2021R1I1A3050703. Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). A complete listing of
ADNI investigators can be found at: https://​adni.​loni.​usc.​edu/​wp-​conte​nt/​uploa​ds/​how_​to_​apply/​ADNI_​Ackno​
wledg​ement_​List.​pdf. As such, the investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but did not participate in the analysis or writing of this report.

Author contributions
B.K. conceptualized the idea, performed theoretical interpretation, conceived the experiments, and prepared
the manuscript. G.-R.K. worked in the editing and the reviewing, the funding acquisition and supervised the
research.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​19020-y.

Correspondence and requests for materials should be addressed to G.-R.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.3389/fneur.2020.584682
https://doi.org/10.3389/fneur.2020.584682
http://arxiv.org/abs/2106.02260
https://doi.org/10.1109/ACCESS.2020.3040486
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.neuroimage.2010.06.013
https://doi.org/10.1109/ACCESS.2021.3093455
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1038/s41598-022-19020-y
https://doi.org/10.1038/s41598-022-19020-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel scaled-gamma-tanh (SGT) activation function in 3D CNN applied for MRI classification
	Proposed SGT activation and training process
	CNN model and methodology
	Classification performance
	Discussion and analysis
	Histogram analysis and asymmetric distribution.
	Channel wise activation.
	Analyzing weights and bias in the final fully connected layer.

	Conclusion
	References
	Acknowledgements

