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Abstract

More than twenty-five years of research and pre-clinical validation have defined EphA2 receptor 

tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. 

Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively 

tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family 

kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic 

targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches 

harnessing anti-tumor immunity against EphA2-expressing cancer cells have emerged as a 

promising strategy. This review will summarize pre-clinical studies supporting the oncogenic role 

of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the 

differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also 

summarizes completed and ongoing clinical trials, highlighting the promise and challenges of 

targeting EphA2 in cancer.
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Introduction

EphA2 is a member of the Eph family of receptor tyrosine kinases (RTK), the largest RTK 

family in the vertebrate genome. These single transmembrane receptors are characterized by 

structural similarities and are subdivided into two distinct classes based on sequence 
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homology and binding to two distinct classes of membrane-bound ligands, called ephrins. 

Class A Eph receptors generally bind to A class ephrin ligands, which are anchored to the 

cell membrane by a glycosylphosphatidylinositol (GPI) linkage (Figure 1A). Class B Eph 

receptors generally bind to B class ephrin ligands, which contain a transmembrane-spanning 

domain and an intracellular domain that includes a cytoplasmic tail with tyrosine residues 

and a PDZ binding motif [reviewed in [1, 2]].

Structurally, the N-terminal extracellular portion of Eph receptors consists of a ligand 

binding domain (LBD), a Sushi domain, an epidermal growth factor-like motif within a 

cysteine-rich domain (CRD), and two fibronectin-type III repeats (FN III1 and FN III2) 

followed by a single transmembrane domain (TM). The intracellular C-terminus contains a 

juxtamembrane region (JM), followed by a kinase domain (KD), sterile α motif (SAM) and 

a PDZ (postsynaptic density protein 95, discs large 1, and zonula occludens-1) binding motif 

(Figure 1). In the case of EphA10 and EphB6, modifications within their kinase domains 

block kinase activity [3]. Ligands share a conserved extracellular, N-terminal receptor 

binding domain (RBD) [2].

The normal functions of EphA2 include embryonic lens and kidney development, mammary 

epithelial branching morphogenesis, and bone homeostasis [4]. In addition to these roles, 

EphA2 is a key regulator of tumorigenesis and cancer progression (Figure 1C). The role of 

EphA2 in cancer is complex, with differential effects on malignant transformation and 

progression exerted by canonical ligand-dependent signaling versus noncanonical ligand-

independent signaling. This review will focus specifically on the oncogenic functions of 

EphA2 in tumor epithelium of breast and lung cancers, glioblastoma, and melanoma, pre-

clinical studies validating these functions, and ongoing clinical testing of therapeutics that 

target EphA2 in these and other malignancies.

EphA2 Canonical Versus Noncanonical Signaling in Cancer

Canonical Eph receptor and ephrin ligand (Eph/ephrin) signaling is initiated upon binding of 

the ligand on one cell to the receptor on a neighboring cell in trans [5, 6]. Binding induces a 

conformational change in both receptor and ligand that allows for oligomerization with 

neighboring Eph/ephrin complexes and autophosphorylation of conserved tyrosine residues 

in the juxtamembrane region [7, 8]. This then exposes the kinase domain, rendering it active, 

and initiates a phosphorylation cascade along the intracellular region that allows for 

recruitment and docking of downstream effector molecules with SRC homology 2 (SH2) 

domains [8–10]. Because both Eph receptors and ephrin ligands are membrane-bound in this 

canonical pathway, ligand-dependent activation triggers a unique bidirectional signaling 

mechanism, with “forward signaling” in the receptor expressing cell and “reverse signaling” 

in the ephrin expressing cell (Figure 1A).

To make matters even more complicated, Eph receptors can also signal in the absence of 

ligand binding and kinase activation through cross-talk with other surface receptors and 

interactions with intracellular kinases, broadly classified as noncanonical signaling 

mechanisms. For example, EphA2 has been shown to dimerize with E-Cadherin, EGFR, 

HER2, and integrins and alter downstream signaling in a noncanonical, ligand-independent 
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manner [Figure 1B; [10–13]]. EphA2 also undergoes activation through a key 

phosphorylation event at serine 897 mediated by kinases including AKT, RSK, and PKA 

[14–16]. Many of these noncanonical signaling mechanisms have been shown to generate 

markedly different outcomes than ligand-dependent EphA2 activation and contribute to the 

pro-tumor effects of EphA2 across tumor types; these are discussed in more detail in the 

following sections and summarized in Table 1. A more extensive review of noncanonical 

signaling can be found in [17]. Generally, the literature supports an oncogenic role of EphA2 

noncanonical signaling in cancers of the breast and lung, glioblastoma, and melanoma, with 

more variable pro- and anti-tumor effects of canonical signaling by study and cancer type. 

Furthermore, some studies provide insufficient information regarding the immediate 

upstream and downstream events to confidently classify EphA2-mediated phenotypes as 

canonical or noncanonical in nature. Thus, deciphering the many different mechanisms by 

which Eph receptors and ephrin ligands can contribute to physiological and pathological 

processes remains a challenge, but also presents an opportunity to determine which targeting 

strategies are best suited for specific types of cancers in which EphA2 plays a tumor-

promoting role.

EphA2 Expression and Function in Human Malignancies

Breast Cancer

EphA2 overexpression has been reported in several malignancies, including breast cancer. 

Breast cancer is the most frequently diagnosed malignancy in women in the United States, 

and remains the second leading cause of death in women [18]. Breast cancer can be 

classified based on histological and molecular characteristics. Mammary carcinomas can be 

divided into subtypes based on cell of origin [19]. For example, ductal carcinomas arise 

from epithelial cells that line the mammary ducts and make up 60–80% of all mammary 

carcinomas. More recently, immunohistochemistry (IHC), fluorescence in situ hybridization 

(FISH), and gene expression profiling has led to two distinct but parallel molecular 

classification systems. IHC/FISH-based profiling evaluates the protein expression of 

estrogen (ER), progesterone (PR), and HER2 receptors, along with FISH analysis of HER2 
amplification, and identifies categories based on high and low expression of these 

biomarkers. For example, hormone receptor positive cancers are generally ER+ and/or PR+, 

while triple-negative breast cancers (TNBC) have low or negative expression of all three 

biomarkers. In contrast, global gene expression profiling classifies breast cancers into 

luminal A, luminal B, basal-like, HER2-enriched, claudin-low, and normal breast-like 

groups [20]. While certain groups correspond with IHC/FISH-profiled categories, this 

classification system is not exactly aligned with receptor biomarker expression. TNBCs, 

which make up a high percentage of basal-like and claudin-low tumors, is an aggressive 

subtype of breast cancer, conferring a higher chance of metastasis, that lacks effective 

therapeutic options [20]. As discussed below, EphA2 is expressed in breast cancers across 

multiple subtypes, with enriched, high level expression in the HER2+ subtype and the basal-

like, TNBC subtype, presenting opportunities for therapeutic targeting.

EphA2 has emerged as a major regulator of breast tumorigenesis and malignant progression, 

and derangement of its signaling—particularly that which favors a ligand-independent 
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signature—is sufficient to induce transformation in some models [21, 22]. Colocalizing with 

ephrin-A1, EphA2 regulates normal postnatal mammary epithelial branching morphogenesis 

during puberty via its traditional, canonical signaling route [23]. However, an imbalance of 

receptor and ligand favors oncogenic signaling in the breast; we reported a correlation 

between elevated expression of EphA2 and decreased overall and/or recurrence-free survival 

across multiple breast cancer subtypes, as well as protein expression in both tumor 

epithelium and vascular endothelium in human breast cancer tissue microarrays [24]. More 

recently, we found the greatest enrichment of EphA2 overexpression in the basal-like TNBC 

subtype in data curated from TCGA. In addition, EphA2 loss-of-function in transgenic (C3-

TAg) and xenograft (MDA-MB-231, BT549, PDX) mouse models of TNBC consistently 

reduced tumorigenesis and tumor growth [25]. In both studies, EphA2 protein expression 

inversely correlated with expression of its primary ligand, ephrin-A1, in breast tumor cells 

[24, 25]. Furthermore, restoration of ephrin-A1 signaling decreased cancer cell viability and 

tumor growth [26]. These data support the hypothesis that loss of ligand expression 

alleviates tumor suppressive signaling to promote oncogenic ligand-independent activation 

and signaling by EphA2 [14].

In addition to TNBC, EphA2 overexpression in the HER2-positive breast cancer subtype 

[25] is associated with increased tumorigenesis, growth, and metastasis in the MMTV-Neu 

transgenic mouse model of HER2+ disease and in human HER2+ xenografts via ligand-

independent effects [10]. Mechanistically, EphA2 is able to physically and functionally 

interact with ErbB2/HER2, activating ligand-independent, tumor-promoting signaling 

pathways like those driven by MAPK and Rho [10]. These pathways are also activated under 

ephrin-A1 host deficiency in a spontaneous murine breast tumor model overexpressing 

activated Neu, the rat homologue of the human HER2 oncogene. Deficiency of ephrin-A1 in 

this model elevated ligand-independent EphA2 activity, which resulted in loss of ligand-

mediated tumor suppressive signaling [27]. Alleviation of ligand-mediated tumor 

suppression is supported by a correlation between high levels of EphA2 phosphorylation at 

Ser897, a target of Akt and marker for ligand-independent signaling [14], and low levels of 

expression of ephrin-A1 ligand in human breast tumor cells in tissue microarrays [27]. These 

data strongly support a ligand-independent, pro-oncogenic role of EphA2 in HER2+ cancer.

EphA2 has also been recently implicated as a key mediator of breast cancer EMT and 

metastasis in response to high extracellular matrix stiffness; this involves recruitment of 

LYN kinase to S897-phosphorylated EphA2 and is ligand-independent [28]. Recently, we 

also uncovered a role for EphA2 in promoting breast-to-bone metastasis and osteolytic 

disease by inducing osteoclast differentiation. This correlated with enrichment of EphA2 in 

breast-to-bone metastasis relative to levels in breast-to-brain and breast-to-lung metastasis in 

human metastatic cancer samples (Vaught et al., submitted). Though the role of ligand-

dependent versus independent signaling in this process remains unclear, no correlation 

between A-class ephrin ligands and breast-to-bone metastasis were detected. We are 

currently investigating the role of canonical versus noncanonical signaling in our models. 

Thus, EphA2 regulates tumorigenesis and progression in multiple models of breast cancer, 

which is also reflected in EphA2 expression profiles and survival trends in breast cancer 

patients.
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In addition to its primary roles in malignant transformation and growth, preclinical studies 

have linked elevated EphA2 expression with resistance to trastuzumab in human HER2-

dependent cell lines through activation of Src and subsequent amplification of the PI3K/Akt 

and MAPK signaling pathways [29], which provides rationale to investigate EphA2 

targeting agents in trastuzumab-resistant human breast cancer. In pre-clinical models of 

tamoxifen-resistant ER+ breast cancer, dual targeting of EphA2 and estrogen receptor 

through tamoxifen restored tamoxifen sensitivity [30].

In summary, EphA2 is overexpressed in several breast cancer subtypes, where it functions to 

regulate tumor growth, invasion, metastatic progression, and drug resistance.

Lung Cancer

Lung cancer is the second most frequently diagnosed malignancy in American men and 

women, and remains the leading cause of death for both sexes [18]. Lung cancer is 

histologically divided into small cell lung cancer (SCLC), which comprise 15% of lung 

cancers, and non-small cell lung cancer (NSCLC), which make up the majority of cases 

[31]. SCLC is neuroendocrine in origin and typically responds well to chemotherapy 

regimens. NSCLC can be further categorized based on cell of origin, for example, squamous 

cell carcinoma, adenocarcinoma, and large cell carcinoma, which are identified by 

morphological features and immunohistochemistry (IHC) staining. With advances in 

genome sequencing and the advent of the precision medicine era, NSCLC is now more 

practically categorized into molecular subtypes [32]. For example, over half of all metastatic 

lung adenocarcinomas are driven by either EGFR or KRAS aberrations [32, 33]. 

Monoclonal antibodies and small molecule inhibitors against epidermal growth factor 

receptor (EGFR), the protein encoded by EGFR, have shown superior therapeutic benefit in 

patients with mutations in this gene, compared to chemotherapy agents [34]. KRAS mutant 

lung cancer has been notably more difficult to target. Despite the development of a specific 

inhibitor against the KRAS K12C mutation [35], there is still no effective targeted therapy 

for a majority of KRAS mutant cancers.

EphA2 regulates tumor growth and survival in lung cancer, both in KRAS and EGFR-

dependent disease models. While one study did not find a prognostic role for EphA2 in 

overall survival of human lung cancer [36] and another found that higher levels of EphA2 

correlated with better overall survival in early stage NSCLC [37], others reported a 

significant correlation between EphA2 overexpression and poor survival in NSCLC [38]. 

These discrepancies could be due to differences in patient stratification, since Brannan et al. 

also found a positive association between EphA2 and a history of smoking, activated but not 

mutated EGFR, and KRAS mutational status. This is consistent with the reported predictive 

value of high EphA2 levels when determining survival, overall recurrence, and site of 

recurrence, particularly brain metastases [39]. High co-positivity for RNA-dependent protein 

kinase (PKR) and EphA2 was significantly associated with poorer overall survival relative to 

low co-positivity in NSCLC [40]. While EphA2 mutations are rare, a form mutated in the 

extracellular FN III domain (G391R) has been found in squamous cell lung carcinoma 

patients [41], and others have been found in both squamous cell lung carcinoma and 

malignant pleural mesothelioma [42]. Although functional studies demonstrate that these 
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mutations can increase cell proliferation or invasion, the structural changes induced by these 

mutations are less well-studied. The fact that these mutations are not clustered in “hotspot” 

regions nor induce constitutively active kinase activity suggests that structural changes in 

various different domains can lead to ligand-independent oncogenic signaling. Additionally, 

most pre-clinical models support tumor-promoting roles for EphA2 in lung cancer. Genetic 

and pharmacologic inhibition of EphA2 promotes apoptosis in a genetically-engineered 

mouse model of KRAS-dependent NSCLC in vivo [43]. Moreover, EphA2 expression levels 

are elevated in EGFR tyrosine kinase inhibitor (TKI) resistant human lung cancers post-

treatment, as determined by IHC staining of tumor samples pre- and post-treatment [44]. In 

a genetically-engineered mouse model of erlotinib-resistant NSCLC, inducible loss of 

EphA2 increased tumor cell apoptosis and decreased tumor cell proliferation in vivo, 

supporting the putative role of EphA2 in EGFR TKI drug resistance [44]. This is also 

supported by proteomic analysis showing a ten-fold increase in EphA2 levels in gefitinib-

resistant HCC827, as well as the ability of dasatinib, for which EphA2 is one of the targets, 

to restore sensitivity to gefitinib [45].

Ligand-independent signaling appears to mediate many pro-tumor effects of EphA2 in lung 

cancer. This has been supported by studies demonstrating that either stimulation with ephrin-

A1-Fc or knockdown of EphA2 in NSCLC cells decreases cell proliferation and migration in 
vitro primarily via decreased phosphorylation of S897 and downregulation of ERK1/2 

activity [38, 44, 46]. Similarly, in KRAS-mutant lung adenocarcinoma ligand-dependent 

EphA2 stimulation is tumor suppressive, while its loss promotes cancer cell proliferation 

[47]. Activation of P-EphA2 S897 by RSK has been reported in metastatic cancers, and co-

localization of P-EphA2 S897 and the phosphorylated, active form of RSK was detected in 

human cancer tissue microarrays that included cancers from colon, stomach, liver, thyroid, 

ovary, uterine corpus, and lung squamous and adenocarcinoma [15, 48]. For lung cancer, 

double positivity staining correlated with poor survival, especially in those with a smoking 

history [15]. However, some literature conversely supports a ligand-dependent role for 

EphA2 in lung cancer. Furthermore, downstream signaling through Jnk/c-Jun and PLCγ link 

EphA2 to lung tumor growth and motility, but through mechanisms not yet fully elucidated 

[49, 50]. In summary, EphA2 is overexpressed in several lung cancer subtypes, where it 

functions to regulate growth, survival, invasion, metastatic progression, and drug resistance, 

often, but not always, through confirmed ligand-independent interactions.

Glioblastoma

Representatives of both A- and B-type Eph receptors and ephrins play essential roles in 

central nervous system developmental processes including neurogenesis, neuronal migration 

and organization, and synapse formation [reviewed in [51]]. Eph RTKs and their ligands 

continue to be expressed in areas of the mammalian brain retaining stem-like properties into 

maturity, i.e. the subventricular zone [52], where ligand-receptor interaction negatively 

regulates further neural outgrowth [53] and directs cell migration [54]. In primary CNS 

malignancies, however, this role of Eph RTKs/ephrins becomes dysregulated, and EphA2 

emerges as a negative prognostic indicator and major driver of the cancer stem cell (CSC) 

phenotype.
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EphA2 has repeatedly been shown to be highly overexpressed in primary and recurrent 

samples of glioblastoma multiforme (GBM), the most common and aggressive primary CNS 

malignancy of adults, as compared to its relatively low levels in normal brain tissue [55–58]. 

This overexpression is correlated with greater tumor vascularity and reduced survival [55, 

57]. One study demonstrated an association of ephrin-A1 stimulation of EphA2-

overexpressing GBMs with decreased anchorage-independent growth and invasiveness in 

GBM [56], while another conversely demonstrated ligand-dependent EphA2 activation 

increased GBM cell proliferation through activation of the MAPK pathway [57]. These 

conflicting studies differed in duration of stimulation and observed baseline levels of ephrin-

A1, revealing that restoration of canonical signaling in a relatively ephrin-deficient system 

suppresses tumorigenic properties [56], while addition of ephrin-A1-Fc to a system with 

preexisting overexpression does not produce the same benefit and may indeed even be 

detrimental [57]. This once again highlights the diverse and context-dependent roles of Eph 

RTK signaling, which must be carefully considered when selecting agonistic or antagonistic 

targeting strategies.

Reflecting their physiologic roles in early neural development and tissue organization, one 

explanation for how EphA2 drives malignant behavior in GBM is its role in the maintenance 

of cancer stem cells (CSCs) [59]. In glioblastoma, as in other malignancies, cancer stem 

cells promote tumor heterogeneity, recurrence, and resistance to therapy [60, 61]. 

Enrichment of EphA2 is a common feature of GBM stem-like tumor-propagating cells and 

is associated with increased self-renewal and tumorigenicity compared to cells with low 

EphA2 expression [62]. As suggested above, this imbalance of ligand to receptor may favor 

ligand-independent signaling. Indeed, restoring the balance by treating these cells with either 

EphA2-targeting siRNA or ephrin-A1-Fc induced astroglial differentiation and suppressed 

xenograft tumor growth, suggesting EphA2 is not merely a passenger but rather a key driver 

of the stem cell phenotype. More recent studies have supported this conclusion, as RNA 

aptamers targeting EphA2 were shown to localize specifically to the GBM stem cell 

subpopulation [63], where they reduced cell viability and migration, downregulated 

transcription of stem cell markers, and increased expression of differentiation markers [64]. 

Reported decreases in cancer cell stemness and/or phenotypic aggressiveness subsequent to 

EphA2 silencing has been associated with ERK and AKT activation [62], suggesting that 

suppression of these signaling pathways by aberrant EphA2 expression promotes the stem-

like phenotype. However, additional investigation supports a more complicated cross-talk, 

with AKT-mediated EphA2 S897 phosphorylation required to facilitate the increased 

invasiveness of EphA2-overexpressing glioblastoma stem cells, as well as opposing pro- and 

anti-oncogenic roles of ligand-independent and -dependent signaling, respectively [14, 65]. 

Another recent study has demonstrated phosphorylation of EphA2 S897 by ERK/RSK 

downstream of EGF in GBM, which was not suppressed by PI3K or AKT inhibition [66], 

suggesting ligand-independent, pro-oncogenic signaling may be promoted by multiple 

upstream mediators in GBM. Expression of EGFR vIII, a constitutively active EGFR mutant 

found commonly in GBM, also increases EphA2 transcript in vitro and is associated with 

higher EPHA2 protein levels in human GBM samples [67]. Although the involved proteins 

vary, these data imply a complex feedback loop amongst Eph surface receptors and 

intracellular kinases which function as both effectors and regulators of the former, 
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emphasizing the need for further investigation into these intricate relationships and how they 

may be leveraged to mitigate disease.

Whether downstream signaling is ligand-dependent or -independent, the frequently elevated 

expression of EphA2 in GBM cells coupled with its low to undetectable levels in normal 

brain tissue mark it as a tumor-associated antigen and strong candidate for 

immunotherapeutic targeting in both adult and pediatric malignant gliomas [56, 58, 68]. 

Indeed, peripheral blood mononuclear cells stimulated with an EphA2 peptide resulted in 

specific cytotoxic T-lymphocyte (CTL) responses against EphA2-presenting GBM cells in 
vitro, and mice immunized with the peptide similarly demonstrated specific anti-EphA2 

CTL activity in splenocytes [58]. This same peptide was administered along with peptide 

epitopes of two other glioma-associated antigens as a course of intramuscular injections to 

12 pediatric patients with recurrent malignant gliomas; 9 of 10 participants assayed showed 

evidence of T-cell response against at least one of the three antigens, with all 9 responding to 

EphA2, and minimal toxicity was noted [69]. EphA2-specific CAR-T cell therapies have 

also shown promise, with strong induction of IFN-γ upon exposure of CAR-T cells to 

EphA2, specific tumor cell killing in vitro, and inhibition or regression of GBM xenografts 

in vivo [70, 71]. EphA2, alongside other Eph receptors, has also proven an effective target 

for delivery of cytotoxins [72]. From a mechanistically driven standpoint, small-molecule 

inhibition of EphA2 blocking both key serine and tyrosine phosphorylation events has also 

shown promise, although further research is needed to shed light on the relative benefit of 

agonistic versus antagonistic or nonselective targeting strategies [73]. Overall, these data 

suggest EphA2 as a highly relevant target for GBM, both as a tumor-associated antigen and 

an important functional driver of GBM in its own right.

Melanoma

EphA2 has long been implicated in the progression of melanoma, the deadliest cancer of the 

skin and one of the most commonly diagnosed malignancies for US adults overall. Early 

data by Easty et. al provided evidence of ectopic or enhanced EphA2 expression in a subset 

of melanomas and its positive correlation with advanced and metastatic tumor status [74, 

75].These data have been borne out by more recent studies demonstrating similarly high 

levels of expression across multiple melanoma cell lines, particularly those deriving from 

metastatic disease or tumors with more aggressive behavior [76, 77]. Although it is unclear 

whether canonical or noncanonical signaling is at play in these studies, they support EphA2 

as a key driver of oncogenic behavior in melanoma, as its depletion decreases cancer cell 

proliferation and migration and induces apoptosis, while overexpression in cell lines with 

low endogenous levels enhances their proliferation. For example, downregulation of EphA2 

in one highly-expressing metastatic melanoma-derived cell line promoted phosphorylation 

of several growth-inhibiting and pro-apoptotic kinases including P53, CHK2, and AMPKα
−1 [77].

Other studies have demonstrated that EphA2 expression is induced by ultraviolet radiation in 

melanocytes via a p53-independent, MAPK-dependent mechanism [78]. However, in 

contrast to the anti-apoptotic role of EphA2 in melanoma cells described above, 

overexpression of EphA2 in normal melanocytes promotes apoptosis via a caspase-8 
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dependent mechanism, once again implying a complicated balance of pro- and anti-

oncogenic signaling. It is possible that the pro-apoptotic effects of EphA2 may be 

neutralized by other mutations in melanoma, thus tipping the balance in favor of its 

oncogenic signaling properties, or that precancerous melanocytes which are able to survive 

despite escalating levels of pro-apoptotic stimuli may select for a more aggressive tumor 

phenotype dependent on that oncogenic signal, as described in the “oncogene overdose-

addiction” model [76].

Noncanonical EphA2 RTK signaling is associated with diverse components of melanoma 

progression, including motility and invasion, metastasis, and treatment resistance. EphA2 

upregulation and S897 phosphorylation occur in BRAF(V600E) inhibitor (BRAFi) 

vemurafenib-resistant cells, while restoration of canonical signaling via ephrin-A1-Fc or 

inhibition of noncanonical signaling can restore vemurafenib sensitivity [79, 80]. 

Noncanonical EphA2 signaling can also promote metastasis in response to BRAFi-driven 

selective pressure [81]. Independent of BRAFi exposure, induction of ectopic EphA2 

expression favors its ligand-independent activation and triggers transition from an MMP-

dependent mesenchymal to a nonproteolytic ameboid motility phenotype, which is 

associated with increased cell migration in vitro and metastasis in vivo [82]. It is important 

to note that the pro-oncogenic behavior of EphA2 RTK signaling in melanoma is likely 

modulated by intrinsic tumor ephrin-A1 levels, with higher ephrin-A1 expression negatively 

correlated with metastasis [83], suggesting a favorable effect of ligand-dependent signaling. 

Although the literature generally favors pro-oncogenic effects of noncanonical EphA2 

signaling in melanoma, some evidence fails to support this assumption. For example, early 

reports support a role for ephrin-A1 as a promoter of cancer cell growth and melanoma 

progression [84, 85] while several other studies provide insufficient data to conclusively 

classify their demonstrated phenotypes as either canonical or noncanonical in nature. These 

data, summarized in Table 1, emphasize the importance of continued investigation of the 

events surrounding EphA2 activation in melanoma in order to determine how to most 

effectively target it in tumors.

Favorable effects of inhibiting EphA2 in melanoma have been borne out in pre-clinical 

investigation. For example, small-molecule inhibitors of EphA2 suppress proliferation and 

induces apoptosis of melanoma cells [79]. A monoclonal antibody to EphA2 reduces 

melanoma cell migration similarly to stimulation with ephrin-A1, consistent with pro-

oncogenic ligand-independent signaling and anti-oncogenic ligand-dependent signaling in 

this system. Pairing this primary antibody with a cytotoxin-conjugated secondary antibody 

dramatically induced melanoma cell toxicity [86]. Inhibiting EphA2 directly or indirectly 

stimulating its dephosphorylation at S897 by targeting transcription factor FLI1 or 

aminopeptidase CD13/ANEP at least partially restores vemurafenib sensitivity in resistant 

lines [80]. These data mark EphA2 as a promising target candidate for decreasing aggressive 

characteristics of melanomas including invasiveness and plasticity, as well as restoring 

BRAF inhibitor sensitivity.
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EphA2 Therapeutics in Clinical Trials: Outcomes

EphA2-targeting compounds have appeared in clinical trials for multiple types and stages of 

malignancy, wherein EphA2 has functioned as a cell surface marker for specific delivery of 

cytotoxins, an epitope for immune targeting, and the primary mechanistic target of interest 

(Figure 2). With respect to the former, binding of an anti-EphA2 monoclonal antibody, IC1, 

to the receptor’s extracellular domain resulted in its phosphorylation, internalization, and 

degradation. IC1 alone did not impact in vitro cancer cell growth; however, when linked to 

cytotoxic agent monomethyl auristatin phenylalanine (MMAP), the antibody-drug conjugate 

demonstrated promising antitumor efficacy in in vitro and in vivo preclinical studies [87]. 

This conjugate, MEDI-547, progressed to a phase 1 dose-escalation trial in patients with 

relapsed and refractory solid tumors of types known to overexpress EphA2 [88]. The study 

was discontinued after the initial cohort of six patients demonstrated high rates of severe 

coagulopathy, with adverse events including hemorrhage (conjunctival, mouth, and other 

sites), clotting/bleeding-related liver disorder, and epistaxis. Five of six patients showed 

disease progression while on study. These results suggest substantial off-target cross-

reactivity of IC1 antibody with other antigens or undesirable on-target effects of EphA2 

inhibition on EphA2-bearing vascular endothelium, as IC1-MMAP conjugate reduced 

HUVEC cell viability with IC50 comparable to other cell lines and was noted to induce cell 

death in activated endothelial cells in preclinical analysis [87].

Subsequently, an afucosylated anti-EphA2 antibody against the juxtamembrane domain of 

EphA2 was developed, which binds both wild type (intact) EphA2 and pro-oncogenic 

truncated EphA2 generated by proteolytic cleavage in some tumors [89]. In contrast to the 

agonistic effects of IC1, this antibody, DS-8895a, antagonizes EphA2 tyrosine 

phosphorylation upon stimulation with Ephrin-A1 and induces antibody-dependent cellular 

cytotoxicity. DS-8895a demonstrated anticancer activity across in vitro and in vivo models 

of gastric and breast adenocarcinomas and improved tumor response to cisplatin [90]. In 

subsequent clinical trials, tumor uptake of the compound was confirmed in 100% of imaged 

patients [91]. Fourteen of thirty-seven patients treated with DS8895a in a phase 1 trial 

achieved stable disease or partial response with five reports of grade ≥ 3 cytopenia but no 

thrombotic or hemorrhagic events described, an improvement compared to results with 

MEDI-547 [92]. Bicycle Therapeutics has recently described a high-affinity EphA2 

targeting peptide-cytotoxin conjugate with low affinity for other Eph proteins which 

dramatically reduces in vivo tumor volume in an EphA2 expression-dependent manner 

without hematologic adverse effects [93]. This compound, BT5528, is currently recruiting 

participants in a phase 1/2 trial [94].

While the trials above aim to exploit EphA2 as a tumor-associated protein for drug delivery 

purposes, several completed and ongoing trials employ compounds targeting EphA2 protein 

function as their primary mechanism of interest using small-molecule inhibitors. The most 

common of these is dasatinib, a TKI with activity against BCR-ABL and SRC family 

kinases that is FDA approved for use in myeloid leukemias. Dasatinib is one of more than 20 

small molecule inhibitors currently approved or in clinical trials with sub-micromolar 

binding affinity for EphA2; others include ponatinib and bosutinib [95]. As such, in clinical 

trials, dasatinib has shown benefit against EphA2-associated cancer types such as breast 
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cancer and non-small cell lung cancer [96, 97]. One recently completed phase 2 trial 

combined dasatinib with intradermal injection of dendritic cells presenting tumor-associated 

peptides including EphA2 with promising results; patients initiating both treatments in cycle 

1 showed an objective response rate (ORR) of 67% [98]. However, other studies have been 

less favorable, with limited single-agent efficacy of dasatinib in phase 2 trials of locally 

advanced/metastatic breast carcinoma [99], TNBC [100], advanced melanoma [101], and 

pancreatic adenocarcinoma [102]. Careful selection of patients whose tumors are most likely 

to respond to EphA2 inhibition may yield better results, as many of these trials featured 

relatively unselective patient populations. However, as an ATP-competitive kinase inhibitor 

[103], dasatinib may be intrinsically limited in its ability to antagonize the ligand-

independent oncogenic effects of EphA2, which can occur via alternate mechanisms not 

dependent on EphA2’s catalytic activity [14]. Trials of dasatinib and other EphA2-inhibiting 

compounds are ongoing in triple-negative breast cancer and other advanced or relapsed/

refractory solid tumors, including some with a precision medicine element to allocate 

patients to treatment arms through genetic and molecular profiling of tumor samples [104–

106]. Selected clinical trials of EphA2-inhibiting or -targeting therapeutics are listed in 

Table 2.

Conclusions and Future Directions

This review has summarized the evidence that EphA2 is a key regulator of tumorigenesis 

and progression in multiple malignancies, including breast cancer, lung cancer, 

glioblastoma, and melanoma. In addition to promoting tumor cell proliferation and invasion, 

EphA2 regulates host-tumor interactions including tumor cell-endothelial cell and tumor 

cell-immune cell communication that facilitate malignant progression. This has made 

EphA2 a molecule of great interest for targeting with novel experimental therapeutics, many 

of which have been or are currently being tested in clinical trials.

In spite of extensive data to support its relevance, promising pre-clinical validation studies, 

and ongoing clinical trials testing novel and repurposed agents targeting EphA2, several 

challenges persist. EphA2’s broad expression in multiple cell and tissue types represents 

both a challenge and an opportunity. For example, targeting EphA2 in malignancies with a 

high microvascular density in which both tumor cells and tumor associated endothelium 

overexpress EphA2 has the potential to disrupt tumor growth and neovascularization 

simultaneously with a single agent, but may also lead to unintended, toxic side effects due to 

disruption of EphA2 function in normal host tissue. The multiple signaling modes of the 

EphA2 receptor also complicate targeting strategies, as there is no consensus on the relative 

efficacy of agonistic versus antagonistic agents, and indeed the most appropriate approach is 

likely to vary by context. In addition, traditional RTK small-molecule inhibitors blocking the 

kinase activity of the receptor may fail to inhibit the oncogenic, ligand-independent effects 

of EphA2 which may be kinase-independent. In spite of these challenges, efforts to target 

EphA2 with repurposed drugs like dasatinib as well as next-generation targeting peptide-

toxin conjugates under development [107] are ongoing. It will also be of great interest to see 

if EphA2 can be exploited as a tumor antigen for anti-tumor immunity successfully in 

broader clinical trials.
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Success of one or more EphA2 targeted therapies in the clinic could also provide more 

options for drug resistant disease (e.g. trastuzumab-resistant HER2+ breast cancer). 

Moreover, this would open the door for combination therapies using agents that might 

synergize with anti-EphA2 therapies. For example, co-targeting TNBC with a combination 

of EphA2 and an agent inducing apoptosis could improve patient responses over those 

achieved by either agent alone. Finally, given the role of EphA2 in tumor invasion and 

metastasis, targeting EphA2 in metastatic malignancies may provide additional therapeutic 

options for advanced cancers, including breast cancer-to-bone metastatic disease (Vaught et 

al., submitted). Overall, the body of evidence shows EphA2 to be a promising molecular 

target for many different human malignancies, and ongoing efforts to target EphA2 in the 

clinic may provide a valuable new weapon in the arsenal for fighting cancer.
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Figure 1. Eph Receptor Tyrosine Kinase Structure and Function.
A) Eph receptors bind to membrane bound ligands. Ephrin-A ligands, tethered to the 

membrane of adjacent cells by a GPI linkage, generally bind to Eph A class receptors, while 

Ephrin-B ligands, tethered by a transmembrane spanning domain, generally bind Eph B 

class receptors. This enables signaling through the receptor (forward signaling) and the 

ligand (reverse signaling). Upon activation by ligand, Eph receptors oligomerize and are 

autophosphorylated at juxtamembrane tyrosine residues. B) Noncanonical EphA2 signaling 

differs from canonical signaling in several ways. These mechanisms include signaling in the 

absence of ephrin ligand, heterodimerization of the EphA2 receptor with other RTKs such as 

ERBB2/HER2 or EGFR, and phosphorylation of serine 897 by AKT, RSK, or PKA. C) Key 

effects of oncogenic EphA2 signaling.
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Figure 2. EphA2 therapeutic targeting strategies.
Strategies to inhibit EphA2 in the clinic include EphA2-targeting antibody-cytotoxic drug 

conjugates (ADC) or peptide-drug conjugates (PDC), tyrosine kinase inhibitors (TKI) like 

dasatinib, CAR-T cells engineered to recognize and target EphA2 antigen, and nanocarriers 

designed to deliver siRNAs targeting EPHA2 to tumor cells. Potential future strategies for 

suppression of noncanonical signaling might also include canonical EphA2 agonists such as 

soluble ephrin-A1 (A1-Fc), or other small-molecule inhibitors to block EphA2 

phosphorylation at S897 (AKTi/RSKi/PKAi).
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Table 1.

Varying Functions of EphA2 Canonical and Noncanonical Signaling Across Malignancies

Cancer 
Type

Canonical Canonical (Loss 
Of)

Noncanonical Unknown

Breast

↑ Cancer growth, motility, 
& metastasis [108]
↓ Cancer cell growth & 
invasiveness, tumor 
formation [26]

LMW PTP-
mediated 
transformation [21]

Transforms mammary epithelial 
cells [22]
Association with poor clinical 
outcome [24]
↑ Proliferation, migration, and 
metastasis [10]
↑ EMT in rigid ECM [28]
↑ Cell motility [15]

EphA2 cleavage by MT1-MMP 
↑ single-cell dissemination & 
invasion [109]

Lung

↓ Cell survival, invasion 
[41]
↓ Cell migration [45]
↑ Anchorage-independent 
growth [110]

↑ Cell proliferation 
& tumor formation 
in vivo [47]

↑ Cell proliferation, migration [38]
↑ Anchorage-independent growth, 
survival, & invasion [41, 42]
↑ Invasion, metastasis in vivo [48]

↑ Cell viability, tumor growth 
in vivo [43, 44]
↑ Cell proliferation, motility, & 
stem cell-like properties [49]

GBM

↑ Cancer cell proliferation 
[57]
↓ Anchorage-independent 
growth, migration & 
invasion [14, 56]
↓ Stem-like cells [62]

↑ Cancer cell 
invasiveness [65]

Maintenance of stem-like properties 
[62, 65]
↑ Cancer cell proliferation [66]
↑ Migration & invasion [14, 65]

Targeting EphA2 ↓ CSC growth 
& stemness [64]

Melanoma

↑ Melanoma cell number in 
vitro [85]
↓ Vemurafenib resistance 
[79]
↓ Cancer cell invasiveness 
[81]

↑ Metastasis [83] Mediates invasive phenotype in 
BRAFi/MEKi resistance [81]
↑ Ameboid motility, invasion, 
metastasis [82]
↑ Colony formation [83]
Inhibition ↑ apoptosis, restores 
vemurafenib sensitivity [80]

EphA2 knockdown ↑ cancer 
cell apoptosis [76] & ↓ vascular 
mimicry [111], invasion, tumor 
proliferation [77]
EphA2 overexpression ↑ 
apoptosis in non-transformed 
cells [78] but ↑ proliferation in 
melanoma cells [76]

*
Likely represents consequences of simultaneously stimulating reverse (canonical) signaling in tumor cells and reducing forward signaling in 

vascular endothelial cells, as EphA2 was predominantly expressed on vascular endothelial cells while tumor cells bore ephrin-A1 +/− EphA2.

BRAFi/MERKi, BRAF and MEK inhibitors; ECM, extracellular matrix; CSC, cancer stem cell; EMT, epithelial-mesenchymal transition; LMW 
PTP, low molecular weight tyrosine phosphatase; MT1-MMP, membrane-anchored membrane type-1 matrix metalloproteinase

Oncogene. Author manuscript; available in PMC 2021 September 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wilson et al. Page 22

Table 2.

Selected Clinical Trials of EphA2-Targeting Compounds

Trial Identifier Phase Study Compound Agent Type Disease Type/Stage Status Refs.

NCT00796055 1 MEDI-547 mAb, ADC Select solid tumors, relapsed/

refractory*
Terminated [87, 88]

NCT02252211 1 DS-8895a mAb, Imm EphA2+ tumor, advanced/

metastatic*
Completed, results 

available
[90, 91]

NCT02004717 1 DS-8895a mAb, Imm Solid tumor, advanced/refractory 
(dose escalation); EphA2+ gastric 
or esophageal Ca, refractory 
(dose expansion)

Completed, results 
available

[90, 112]

NCT03423992 1 Tumor-Associated 
Antigen (TAA) CAR-T 
cells

CAR-T, Imm Malignant glioma, TAA+, 
recurrent

Recruiting [113]

NCT01591356 1 DOPC-liposomal 
EphA2 siRNA

Si, NT Solid tumor, advanced* Recruiting [114]

NCT02954523 1/2 Dasatinib + 
Osimertinib

SM NSCLC, advanced Completed, results 
available

[97]

NCT00566618 1/2 Dasatinib + Zoledronic 
Acid

SM Breast Ca, metastatic to bone Completed, results 
available

[96]

CA180059 2 Dasatinib SM TNBC, advanced/metastatic* Completed, results 
available

[100]

NCT02720185 2 Dasatinib SM TNBC, Stage I-III, nEGFR+, no 
prior therapy

Recruiting [104]

NCT03878524 1b Various Agents 
including Dasatinib & 
Ponatinib

Various, PM Select cancer types†, advanced/
refractory

Recruiting [105]

NCT02465060 2 Various Agents 
including Dasatinib

Various, PM Advanced/Refractory solid 
tumors, myeloma

Recruiting [106]

NCT04180371 ½ BT5528 SM Solid tumor, advanced Recruiting [93, 94]

*
excludes pts with active primary or metastatic CNS involvement

†
Advanced breast, prostate, or pancreatic cancer; refractory AML

mAb, monoclonal antibody; ADC, antibody-drug conjugate; Si, silencing RNA/RNAi; NT, nanotechnology; Imm, immunotherapy; CAR-T,

chimeric antigen receptor T cell; SM, small-molecule inhibitor; DC, dendritic cell; TNBC, triple-negative breast cancer; nEGFR, nuclear epidermal 
growth factor receptor; NSCLC, advanced; PM, personalized/precision medicine
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