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Abstract: The unique electron deficiency and coordination property of boron led to a wide range of
applications in chemistry, energy research, materials science and the life sciences. The use of boron-
containing compounds as pharmaceutical agents has a long history, and recent developments have
produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy.
In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types
of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents
playing essential roles in such treatments and other well-established areas have been discussed
elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through
BNCT technology have also marked an important milestone. Following the clinical introduction
of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been
approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic
organoboron compounds represent potentially promising candidates for anti-infective drugs. This
review highlights the clinical applications and perspectives of organoboron compounds with the
natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the
therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal
activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.

Keywords: organoboron compound; anti-cancer drug; anti-tuberculosis; anti-malaria drug; neglected
tropical disease; crypto and toxoplasmosis treatment

1. Introduction

Many infectious diseases are caused by microorganisms, such as tuberculosis and
malaria, and the current treatments for them are unsatisfactory as there are a few or no
suitable drugs. Four types of such frequently occurring diseases, in which organoboron
compounds have already shown high potential as acceptable drug agents, have been
selected to survey in this review. The four common diseases are tuberculosis, malaria,
neglected tropical diseases, and the parasitic diseases of cryptosporidiosis and toxoplas-
mosis, and they are briefly introduced as follows. (1) Tuberculosis is an infectious disease
caused by Mycobacterium tuberculosis, which has a high level of mortality worldwide and
has already gained resistance to first- and second-line therapy [1]. (2) Malaria is a dis-
ease caused by the Plasmodium parasite and accounts for one of the leading causes of
death worldwide despite decades of strategic interventions aimed at reducing incidence
and mortality [2]. (3) Neglected tropical diseases (NTDs) are a group of twenty highly
parasitic (fungi, protozoa, helminths or metazoan worms), viral and bacterial diseases as
classified by the World Health Organization (WHO) [2–4]. NTDs affect more than one
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billion people, especially children, and prevail in poor populations living in tropical and
subtropical climates, causing a huge toll in terms of morbidity and mortality, as well as
public economies [2–4], and (4) cryptosporidiosis and toxoplasmosis are other dangerous
diseases caused by important protozoan pathogens of humans, while Cryptosporidium is
a common cause of moderate-to-severe diarrhea in children under five years of age [5].

Boron has a wide range of applications in chemistry, energy research, materials science
and the life sciences [6–11]. The use of organoboron compounds as medication agents
has a long history. For example, boron compounds, 4-borono-L-phenylalanine (BPA) and
sodium borocaptate (BSH), have been used as boron carriers in boron neutron capture
therapy (BNCT) for decades to treat various tumors, such as malignant brain tumor and
melanoma [8]. Nevertheless, the updating of BNCT is beyond the scope of this review.
In the beginning of the 20th century, many scientists concentrated their attention on the
development of boron-based organic chemistry [9]. Cluster-based boron compounds are
in the latest class that takes advantage of the properties of many boron atoms in the
cage [10,11], including their unique electronic properties and ability to form covalent bonds
in organoboron compounds, which make them a suitable agent for drug discovery. Boron
compounds are electrophiles (strong Lewis acids) due to their empty p-orbital. When
accepting a pair of electrons from a nucleophile (Lewis base), they easily inter-convert
from the trigonal sp2 to the tetrahedral sp3 hybridization states, as shown in Figure 1A.
The use of organoboron compounds as enzyme inhibitors is mostly based on this easy
conversion (Figure 1B) [12]. After decades of studies, numerous bioactive molecules and
molecular tools containing single boron atoms were developed [13]. Bortezomib, 1 (PS-341),
(Figure 1C) trade name Velcade, from Takeda Pharmaceutical, is a dipeptide boronic acid
(peptidomimetic), and it was approved by the FDA in 2003 for the clinical treatment of
multiple myeloma [14]. Benzoxaboroles acquired reputation in medicinal chemistry only
as of 2006, when 5-fluorobenzoxaborole (Tavaborole, AN2690, 2 in Figure 1C,) showed
antifungal action [15], and its topical solution (Kerydin®) was approved by the FDA in 2014
for the treatment of onychomycosis [16]. Another benzoxaborole approved by the FDA in
December 2016 was Crisaborole 3 (Figure 1C), which is traded in the USA under the name
of EUCRISA® for clinical use in the treatment of mild-to-moderate atopic dermatitis [17].
Currently, it is the first and only non-steroidal in anti-inflammatory monotherapy as the
phosphodiesterase type 4 inhibitor, commonly referred to as a PDE4 inhibitor for the skin.
Benzoxaboroles possess unique chemical properties, such as remarkable chemical stability,
low toxicity, ease in synthesis, and high targeting specificity. These attributes make them
very attractive therapeutic agents [18]. In addition, several organoboron compounds also
demonstrate strong antibacterial activity, specifically against the enteric group of Gram-
negative bacteria. In this context, a promising example of an antibacterial oxaborole-based
species is the chiral benzoxaborole 4 (AN3365/GSK2251052) (Figure 1C) [19]. Compound
SCYX-7158/AN5568 (5, in Figure 1C) is identified as a promising agent for Human African
trypanosomiasis (HAT) and has entered clinical phase II/III evaluation. Earlier obser-
vations of anti-fungal, anti-bacterial, and anti-inflammatory activities of benzoxaboroles
and other organoboron compounds represented the key result that led to the discov-
ery of their potential for the treatment of various infectious diseases [20]. This review
will focus on the particular type of bioactivity of organoboron compounds covering the
medicinal applications in infectious disease caused by protozoa, fungi and helminths, de-
scribing progress in drug development, cytotoxicity and the proposed mechanisms of
action. Other organoboron compound-based antibacterial or antiviral drugs have been re-
viewed elsewhere [21,22]. Thus, the review covers four areas of therapeutic applications of
organoboron compounds: tuberculosis and antifungal activity, malaria, neglected tropical
diseases and cryptosporidiosis and toxoplasmosis.
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2. Tuberculosis and Antifungal Activity

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a highly contagious
chronic bacterial infection and is one of the top 10 causes of death worldwide [23]. In
2019, more than 10 million people fell ill with TB, and around 1.4 million died from the
disease [23]. The Mtb is transmitted by aerosol and infection occurs when a person inhales
droplet nuclei containing tubercle bacilli that reach the alveoli of the lungs. These tubercle
bacilli are ingested by alveolar macrophages and destroyed or inhibited. If the bacilli
remain alive, they may spread by way of lymphatic channels or the bloodstream to other
tissues and organs (brain, larynx, lymph node, lung, spine, bone, or kidney). Within 2
to 8 weeks, special immune cells called macrophages ingest and surround the tubercle
bacilli. The cells form a barrier shell (granuloma) that keeps the bacilli contained and
under control. If the immune system cannot keep the tubercle bacilli under control, the
bacilli begin to multiply rapidly (TB disease) [24]. Worldwide, in 2019, close to half a
million people developed rifampicin-resistant TB (RR-TB), of which 78% had multidrug-
resistant TB (MDR-TB) [23]. MDR-TB is treatable and curable by using second-line drugs.
However, second-line treatment (kanamycin, amikacyn) options are limited, and they
require extensive chemotherapy (up to 2 years of treatment) with medicines that are
expensive and toxic [25]. In this regard, many efforts have been dedicated to the discovery
and development of new anti-TB agents with new mechanisms of action to control drug-
resistant disease [26]. The most active frontiers are surviving as follows.

2.1. Benzoxaboroles

1,3-Dihydro-1-hydroxyl-2,1-benzoxaboroles (or dihydrobenzoxaborole or benzoborox-
oles) were first synthesized and characterized in 1957 by Torssell [27]. After the discovery
that ortho-hydroxyalkyl arylboronic acids can form a complex with glycosides under physio-
logically relevant conditions, they have been investigated as molecular receptors for sugars
and glycoconjugates, in supramolecular chemistry and as building blocks and protecting
groups in organic synthesis [28]. Reviews describing these applications of benzoxaboroles
were recently published [29,30].
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The dihydrobenzoxaboroles bearing aryl, heteroaryl, or vinyl substituents at the 1-position
(6a–i), as shown in Figure 2, were reported [29–33]. These substitutions showed equal or de-
creased activity against fungi. The first lead compound was 1-phenyldihydrobenzoxaborole,
6a, which showed weak activity on a broad spectrum of fungi with minimum inhibitory
concentration (MIC) values of 4–8 µg/mL. The following substitution to 5-fluoro-substituted
benzoxaborole 6b led to a 2- to 8-fold increase in antifungal activity. Starting from com-
pound 6a to determine the effect of hydrophobicity, many derivatives with various substitu-
tions of R′ in the phenyl ring in position 1 (1-phenyldihydrobenzoxaborole 7a-h) (Figure 2A)
were synthesized.
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nism of 2 and 10 (AN3018) on leucyl tRNA synthetase (LeuRS) resulting in spiro-product inhibitor: The sp2 hybridized
boron atom possesses an empty p-orbital that accepts electrons from the hydroxyl groups of the terminal adenosine and
forms an adduct with the tRNA (Adapted from [31,32]).

To enhance hydrophilicity, the 1-phenyl group was replaced with a 1-hydroxy group
to prepare 1-hydroxydihydrobenzoxaboroles (8a), as per the published report. Compound
8a showed an 8-fold increase in activity against C. neoformans, and 2 (AN2690) showed
an 8-fold increase in activity against A. fumigatus, respectively [29–33]. To determine the
structure–activity relationship of this scaffold, the 5-F group was substituted with other
groups (8b–m). The results showed that 2 (R′ −F) and 8b (AN2718, R′ −Cl) are the most
active derivatives. The 5-chloro-substituted benzoxaborole 8b (AN2718) is being developed
now by Anacor pharmaceutical, a company pioneering the field of boron compounds, for
the topical treatment of tinea pedis, dermatophyte fungal infection of the soles of the feet
and the interdigital spaces [29–33]. The ring size increase from a five-membered oxaborole
of 6a, 6b, and 2 to the corresponding six-membered oxaborin 9a, 9b and 9c showed that 1-
phenyl substituted oxaborin 9a and the 5-fluoro-1-phenyloxaborin 9b were approximately
2-fold and 4- to 16-fold less active than the oxaborole 6a and 6b, respectively [29–33].

Compound 2 is the most active against dermatophytes T. rubrum and T. mentagrophytes,
which are the primary fungal pathogens that cause onychomycosis [31]. The FDA approved
the application of 2 (Tavaborole, AN2690) in 2014 as the first oxaborole-based antifungal
new drug for the topical treatment of onychomycosis of the toenails [34]. The mechanism
involves Tavaborole 2 forming a covalent adduct with the 3′-adenosine of tRNA and
inhibiting leucyl-tRNA synthetase (LeuRS) (IC50 2.1 µM) (Figure 2B) [32]. LeuRS belongs
to aminoacyl-tRNA synthetases (aaRS), a class of enzymes which are crucial for gene
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translation. It also plays a critical role in protein synthesis by catalyzing the specific
amino acid attachments to their corresponding tRNA during the translation of the genetic
code. Many aaRS enzymes possess a proofreading (editing) mechanism that hydrolyzes
tRNAs’ aminoacylated functionality with the incorrect amino acid [32]. Thus, LeuRS is a
proofreading aaRS, which possesses distinct synthetic aminoacylation and editing active
sites separated by more than 30Å. The aminoacylation reaction occurs in two steps: the
formation of an enzyme-bound aminoacyl-adenylate (I), followed by the transfer of this
activated amino acid to either the 2′- or 3′-hydroxy group on the 3′-terminal adenosine
of tRNA (II) [32]. The inhibition of either one of these enzymatic stages (I, II) leads to
the accumulation of uncharged tRNA molecules, which bind to ribosomes, causing the
interruption of polypeptide chain elongation [32]. These enzymes have been a focus of
antimicrobial research as potential targets for more than a decade [35]. Seiradake et al.
determined the structure of the C. albicans editing domain complex with compound 10
(AN3018, 6-ethylamino analogue of 2, Figure 2) to provide a structural basis for designing
and enhancing the specificity of these benzoxaborole antifungals [36].

The 6-aminobenzoboroxoles have also been synthesized and found to be non-toxic [37]
in general. The derivatives of 11 and 12 with primary amino groups showed good an-
timycobacterial activity against Mtb H37Rv (11, MIC 1.9 µM, 12 MIC 15.6 µM) [37]. The
study identified two lead compounds of 11 and 12, which urges their further develop-
ment. In the course of an initial drug screening, conducted in Anacor Pharmaceuticals,
benzoxaboroles 13 (AN3016) and 14 (AN3017) were found to provide low MIC against
Mtb H37Rv (13, 1 µg/mL and 14, 1.8 µg/mL) and inhibitory activity towards Mtb LeuRS
(IC50: 13, 3.5 µM; 14, 0.64 µM) [38]. The incorporation of 3-aminomethyl and 7-ethoxy
moieties into one molecular structure to form compound 15 showed an increase in activity
(15, MIC 0.13 µg/mL, Mtb LeuRS IC50 0.13 µM) [38]. To improve the bio-capacity of 15,
structural and biophysical studies were performed through pharmacokinetic investiga-
tion to understand its binding mode to Mtb LeuRS. Crystallization with different editing
domain constructs of Mtb LeuRS was attempted in the presence of compound 15 with
AMP. The boron atom in compound 15 forms a bidentate covalent adduct with AMP
(Figure 3A), which mimics the terminal nucleotide Ade76 of the tRNA acceptor. The amino
acid residues of T336 to T337 of the threonine-rich region provide multiple H-bonding
interactions to the covalent adduct, and L432 and Y435 of the AMP binding loop have
extensive H-bonding and hydrophobic contacts with AMP (Figure 3B) [38]. In addition, the
amino group of compound 15 builds three key interactions with the carboxylic acid side
chains of D447 and D450 and the carbonyl group of M441. The 7-ethoxy substitution not
only enables a new interaction with R449 but also packs with the Ade76 ribose, thus further
stabilizing the boron-tRNA adduct (Figure 3B) [38]. The superposition of the adduct-bound
structure of 15 with that of the E. coli LeuRS editing with the methionine-bound domain
shows that the 3-aminomethyl benzoxaborole moiety occupies the same position as the
non-cognate amino acid (Figure 3C) [39]. A series of 3-aminomethy benzoxaboroles were
evaluated as Mtb LeuRS inhibitors, and most of them were produced and tested as a race
mate first, and later separated into the active (S)-isomer. In general, the (S)-enantiomer is
more potent compared to the race mate or A (R)-isomer [38]. Thus, the most potent analogs
were compounds 16–18 with halogen (Br, F, Cl, (Figure 3)) substitutions at 4-position. These
compounds showed an increase in activity against Mtb H37RV (MIC 0.02–0.05 µM), an
increase in potency towards Mtb LeuRS (IC50 0.06–0.08 µM) and, therefore, they were
selected for in vivo murine pharmacokinetic analysis. All three compounds were very
efficacious, in both the acute and chronic mouse Mtb models, with a potency comparable
to that of the frontline drug isoniazid [38].

One of the major drawbacks of the series was its potential toxicity. In order to improve
the selectivity of the Mtb LeuRS inhibitors, further studies were performed. First, lipophilic-
ity optimization of the sidechain was investigated by incorporating aromatic moieties to
the 7-alkoxyl group, but these derivatives showed a reduction or loss of antitubercular
activity and a decrease in Mtb LeuRS potency. The introduction of one or two fluorine in the
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sidechain resulted in a slight decrease or similar antitubercular activity [40]. Subsequently,
by increasing the hydrophilicity of the sidechain and reducing the linker to two-carbon in
7-position, the increase in activity of compounds 19 and 20 against Mtb LeuRS (19-GSK656,
IC50, 0.20 µM; 20, 0.12 µM) [40] was achieved. Existing equilibrium between an open and a
closed form of 19–21 and 20–22 of the benzoxaborole pharmacophore has a dependency
on solvent and environment [41]. In addition, the ring-fused compounds of 23 and 24
exhibited enhanced anti-tubercular activity against Mtb H37Rv with the MIC of 0.08 µM
and 0.03 µM, respectively, and potent Mtb LeuRS activity of IC50 of 0.046 µM and 0.12 µM
for 23 and 24, respectively [41]. Compounds 19 and 23 exhibited low clearance and excel-
lent exposure in drug metabolism and pharmacokinetics studies. The typical Mtb LeuRS
inhibitor shows low molecular weight, low polar surface area (PSA), and clogD7.4 value
similar to frontline Mtb drugs of isoniazid, pyrazinamide, and ethambutol [40].

To evaluate the ability of these Mtb LeuRS inhibitors for tuberculosis, treatment tests
were conducted in vivo using an animal model. Compound 19 showed the best efficacy
with an ED99 (efficacious dose that gives a two log colony-forming units (CFU) reduction
compared to the untreated control) of 0.4 mg/kg among the evaluated compounds. For
the best profile, with excellent in vivo efficacy at low doses in acute and chronic mouse
TB infection models, compound 19 has been progressed to clinical development for the
treatment of tuberculosis, the first time in Human (FTIH) safety and pharmacokinetics (PK)
study of GSK3036656 in Healthy Subjects [42].

Patel et al. identified a novel 6-benzyl ether benzoxaborole 25 with potent activity
against Mtb in vitro (MIC 2 µM), which was active against intracellular bacteria (50% in-
hibitory concentration IC50 3.6 µM) with no cytotoxicity; thus, the profile of this compound
is also encouraging for future development [43]. Meanwhile, a series of novel 7-phenyl
benzoxaboroles were also investigated, where compounds 26–29 showed reasonable activ-
ity against Mtb in vitro (5.1–80 µM) with lower MIC99 (the concentration required to inhibit
growth by 99%) (5–12.5 µM) [44]. These compounds may target NADH dehydrogenase
(Ndh) rather than LeuRS [44]. Ndh is an essential oxidoreductase, which catalyzes the
electron transfer process from NADH to menoquinone as part of the electron transport
chain [45], and mutations in Ndh, found in clinical isolates, have shown resistance to isoni-
azid [46]. Further studies revealed that these processes correspond to residues involved
in the quinone binding pocket [47]. This series of compounds shows potential for further
development and to target validation work. In addition, dimeric benzoboroxoles were
reported recently, and they were found to possess excellent selectivity and activity for
mycobacteria, including the Mtb pathogen, and were capable of complexing to Mtb glycans
without resistance [48].

2.2. Peptidyl Boronates/Boronic Acids

Boronates may interact with a target protein through covalent bonding with nucle-
ophilic entities (such as hydroxyl and amine groups of enzymes, Figure 1B) to form a
stable bond with the enzymes, thereby leading to their reversible inhibition. The boronic
acid species can be incorporated with a peptide to form the corresponding peptidyl
boronate/boronic acid, which may exhibit various biological activities [49,50]. Borte-
zomib (Takeda Pharmaceutical) (1, Figure 1C), trade name Velcade, is a dipeptide boronic
acid and is the first human proteasome (H. proteasoma) inhibitor approved by the U.S. FDA
for the treatment of multiple myeloma [51]. The X-ray crystal structure of the proteasome
in a complex with bortezomib displayed a covalent bond formation between the boronic
acid moiety of 1 and the hydroxyl group of Thr1 at the chymotrypsin-like active site of
the 20S proteasome, leading to enzyme dysfunction and apoptosis in cancer cells [52,53]
(H. proteasome IC50 0.005 µM). However, bortezomib presented major drawbacks, such as
high costs and poor pharmacokinetics with significant side effects (peripheral neuropathy,
neutropenia, and cytopenia) despite its use to treat many cancers successfully [54].
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Caseinolytic proteases (ClpP) are serine proteases found in a wide range of bacteria,
and they have the ability to remove the aborted translation products [55]. The tmRNA
trans-translation system, a bacterial rescue system that frees ribosomes stuck during pro-
tein synthesis, tags partially synthesized proteins with a caseinolytic-protease-specific
(SsrA) degradation peptide. The SsrA-tagged proteins are recognized by the ClpP and
degraded [56,57]. Mycobacteria, including Mtb and Mycobacterium smegmatis, encode two
ClpP homologs, clpP1 and clpP2, in a single operon which associate together to form a
single proteolytic complex, referred to as ClpP1P2. The caseinolytic protease complex is
composed of catalytic protease subunits (ClpP) and regulatory subunits (ATPases). Both
proteins are required for viability in vitro and during infection, and depletion of either
protein results in the rapid death of the bacteria [58]. Genetic studies also suggest ClpP
may serve as an ideal target for antimycobacterial therapy because of the synergistic nature
of ClpP1P2 protease depletion with mistranslation-inducing aminoglycosides that are im-
portant second-line drugs for Mtb [58]. Compound 1 was identified as a whole-cell-active
ClpP1P2 protease inhibitor in mycobacteria and a new lead compound for TB (M. Bovis
IC50 ClpP1P2, 1.6 ± 0.5 µM, M. Smegmatis MIC50 6 µM) through the mechanism-based
whole-cell screening method from a library of over 500000 compounds (Figure 4A) [59].
To measure the intracellular ClpP1P2 inhibition, Dick et al. engineered an M. smegmatis
through screening that allows the detection of inhibitors of intracellular ClpP1P2 activ-
ity via the accumulation of SsrA-tagged green fluorescent protein (GFP) (Figure 4B). In
normal conditions, the ClpP1P2 complex recognizes the SsrA- (YALAA) tagged with GFP
(GFP-SsrA) and degrades the proteins, resulting in low basal fluorescence. In the presence
of an inhibitor (Bortezomib, 1), ClpP1P2 binds to the catalytic sites of the protease and
prevents the degradation of the GFP-SsrA proteins, resulting in its accumulation and a
gain of fluorescence signal (Figure 4B) [59]. On the other hand, mammalian proteasome
intracellular inhibition was measured using the whole-cell target-based proteasome-Glo
assay, as shown in Figure 4C. This assay is based on a proteasome-specific cleavage tag
(Z-LLVY) that fuses to an aminoluciferin molecule. In normal conditions, the proteasome
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cleaves the LLVY tag, allowing the luciferase to oxidize the aminoluciferin generating
luminescence. In the presence of a proteasome inhibitor, the LLVY cleavage does not occur.
The tagged aminoluciferin cannot be used by the luciferase enzyme, which is preventing
the subsequent emission of luminescence [60].

Chloromethyl ketones (CMKs) comprise a distinct class of covalent irreversible serine
protease inhibitors [61]. The function of this class of peptide is mechanistically similar to
that of boronic acids. Compound 32 (pyrazine-phenylalanine-leucine-chloromethylketone),
an analog of 1 containing a chloromethyl ketone (CMK) instead of the boronic acid, was syn-
thesized and its potencies against the bacteria and human enzymes were determined [61].
Compound 32 retained its activity against mycobacterial ClpP1P2 (IC50: 25 µM), against
bactericidal Mtb (IC50: 25 µM) and was active against the mycobacterial proteasome (MIC50:
25 ± 1.3 µM), but was found to be devoid of activity against the mammalian human pro-
teasome (IC50: >500 µM vs. 1 IC50: 0.005 µM) [61]. The CMK analog was not toxic to
HepG2 cells at a concentration of up to 500 µM, while bortezomib displayed a cytotoxicity
CC50 of 250 µM [61]. These chloromethyl compounds similarly inhibited both ClpP1P2
and the proteasome in the bacteria while leaving the human proteasome untouched. These
results suggest that the selectivity over the human proteasome is achievable [61]. Based
on these results, a series of dipeptidyl boronate derivatives of 1, with variation at the
P1, P2, and X sidechains, were synthesized with a goal to identify compounds which
inhibit bacterial ClpP1P2 in a bacterial cell and have reduced potency against the human
proteasome compared to bortezomib (Figure 4A) [62]. Replacing the iso-butyl group in
P1 of 1 with a less hindered straight-chain n-pentyl (compound 33, Figure 4F) increased
the activity against Mtb twofold, whereas it decreased the potential in the proteasome
assay by 6-fold (IC50: 0.03 µM) [62]. Aromatic derivatives of 35 showed 10–14-fold-lower
potency for the proteasome compared to 1 [62]. Subsequent studies showed that a bulky
group (benzyl and phenyl) in position X could increase the ClpP1P2 inhibitory activity
without a reduction in proteasome activity. Different bulky heterocyclic groups were also
screened, and among them compound 36 with the 3-pyridyl group provided an interesting
result of 6-fold-lower potency for the proteasome compared to 1 with retention of ClpP1P2
inhibitory activity [62]. This series of changes of X offers options for subsequent P1–P2–X
combinations for the future phase of SAR exploration.

Docking studies suggested a larger P1 ligand could be accommodated in the P1 pocket
of the ClpP1P2 but less well tolerated in the P1 pocket of the human proteasome (Figure 4D).
The docking of 37a to the binding site of ClpP1P2 indicates that the hydrophobic S1 residues
Ile71, Met75, Met99, Phe102, and Pro125 interact with P1 (phenethyl group). Hydrogen
bonds are also formed between the P2 amine and the backbone carbonyl of Leu126 and
between the carbonyl of the N-terminal and the backbone amine of Ile71 (Figure 4E) [62].
In medicinal chemistry, the “drug likeness” of this selected compound was commonly in-
vestigated and predicted from its pharmacokinetic properties. Physicochemical properties
such as molecular weight, numbers of hydrogen bond donors and acceptors and lipophilic-
ity (LogP) were examined according to Lipinski’s rule of five [63]. Compound 37a was
selected for further profiling in vitro ADME assays (absorption, distribution, metabolism,
and excretion). It had favorable in vitro ADME properties: plasma protein binding and
human liver microsome stability was moderate, clearance in mouse microsomes was high
(8min), and the inhibition of cytochrome P450 enzymes was not detected at the highest
concentration tested. The Oral/i.v. pharmacokinetics of 37a indicated moderate clearance
and low bioavailability [62,64]. Therefore, ClpP1P2 inhibitors are a possible new strategy
for the management of drug-resistant M. Tubercolosis.
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2.3. Other Small Compounds of Boron (Diazoborines, Antibiotic)

Diazaborines are a family of boron-containing compounds, in which the boron atom
is stabilized in the form of an aromatic boron-based heterocycle. The antibacterial ac-
tivities of 1,2-dihydro-l-hydroxy-2-(organosulfonyl)arenol-[d]-[1–3]-diazaborines are well
documented in the literature [65]. It has been proposed that the mechanism of action
of diazaborines in E. coli is by the complexation of nicotinamide adenine dinucleotide
(NAD+) and the inhibition of enoyl-reductase (ENR) [66]. Similar to the benzoxaboroles
such as 37b (AN2918) and 37c (AN3418), diazaborine inhibitors of ENR were found to
form a covalent B–O bond with the OH group at C (2′) of the NAD cofactors ribose unit
(Figure 5A,B) [67,68]. Mycobacteria have a similar enzyme with enoyl-reductase, InhA
(Enoyl-[acyl-carrier-protein] reductase [NADH]), which is required for mycolic acid biosyn-
thesis [69]. Recently, diazoborine 37d (AN12855), which exhibited in vitro bactericidal
activity against replicating bacteria, was revealed to inhibit the substrate-binding site of
InhA in a novel cofactor-independent manner (IC50: InhA 0.03 µM, Figure 5C) [68].

Martin et al. first reported the synthesis of 2,4,1-benzodiazaborine compounds 38a–
c (R1= -pyrazinyl/R2 -H, -nBu, -pyridyl), showing potent inhibitory activity against M.
tuberculosis (Figure 5D) [70]. Subsequently, a set of 2-acylated 2,3,1-benzodiazaborines 39a–
d was synthesized, characterized, and tested with Mycobacterium smegmatis (Figure 5D) [71].
In addition, 2-formylphenyl boronic acids 40 (R= H, allyl, Ph) and their derivatives of 41
were also reported as potential antifungal agents, and their activity was examined against
four fungi (Aspergillus niger, Aspergillus flavus, Candida albicans, and Saccharomyces cerevisiae)
using Amphotericin B as a control and showed appreciable activity [72,73]. Boromycin 42
is a boron-containing polyether macrolide antibiotic isolated from Streptomyces antibioticus.
It is a potent inhibitor of mycobacterial growth (MIC50: 80 nM) with strong bactericidal
activity and low cytotoxicity vs. HepG2. It acts as an ionophore and causes the collapse of
the potassium gradient across the bacillus’ membrane (Figure 5E) [74].
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3. Malaria

Malaria, a parasitic infection by the Plasmodium genera, is spread through the bites
of infected mosquitoes Anophele. It was responsible for an estimated 229 million clinical
cases and 409,000 deaths worldwide in 2019, mostly among children under the age of
five years [75]. Malaria is transmitted by parasites of the Plasmodium genus with five
species known to infect humans: P. falciparum, P. malariae, P. vivax, P. ovale and P. knowlesi,
with infections by P. falciparum (Pf.) and P. vivax being the most virulent [76]. Human
malaria infection is initiated when a female anopheles mosquito deposits “sporozoites”
during a blood meal. These sporozoites migrate to the liver where they undergo further
development into schizonts, which produce “merozoites” that enter into the systemic
circulation where they infect red blood cells and cause the typical symptoms of malaria.
Some merozoites in these cells may develop into an asexual form called “trophozoites”,
and in some cases into sexual forms of the parasite, called “gametocytes”, that circulate
into the bloodstream. When a mosquito bites an infected human, it ingests the gametocytes,
which develop further into mature sex cells called “gametes”. In the mosquito’s stomach,
the male microgametes penetrate the female macrogametes, generating “zygotes”. The
zygotes invade the midgut wall of the mosquito where they develop into “oocysts”. The
oocysts grow, rupture, and release “sporozoites” which enter mosquito’s salivary glands.
The inoculation of the sporozoites into a new human host will start a new malaria life
cycle [77]. Chloroquine (CQ) was one of the most widely used antimalarial drugs, which
has been now substituted by artemisinin (ART) and its synthetic derivatives [78]. The
successful exploitation of semisynthetic ART derivatives was a major breakthrough in
malaria chemotherapy because of their profound and rapid therapeutic response against
malaria parasites. The WHO recommends that deadly species P. falciparum should be
treated with artemisinin-based combination therapies (ACT), in which the ART-based
component is combined with a second, longer-acting partner drug. However, reports
of decreased efficacy, reduced parasite clearance time in the case of ACT treatment and
widespread resistance by Plasmodium parasites [79,80] suggest the need for a new search
for novel pharmaceutical interventions for malaria [81].



Molecules 2021, 26, 3309 11 of 26

Early observation of antifungal, antibacterial and anti-inflammatory activities of ben-
zoxaboroles led to the discovery of their potential for therapy of protozoan disease such as
malaria, human African trypanosomiasis (HAT) and Chagas disease [81]. After screening in a
whole cell assay against the malaria parasite P. falciparum of a boron-containing compound
collection, Zhang et al. reported some potent hits (Figure 6), including 7-(2-carboxyethyl)-1,3-
dihydro-1-hydroxy-2,1-benzoxaborole (43, AN3661, IC50: 0.026 µM). A series of analogs of
43 were designed to assess the structural features required for potent antimalarial activity,
including the length of the sidechain on the oxaborole nucleus (44, 45), the sidechain func-
tional groups (46–56), the attaching positions of the sidechain (57–59), and modifications to
the benzoxaborole scaffold (60–62) (Figure 6) [82,83]. Further structural modification, such
as the introduction of fluoro, phosphonic and hydroxamic groups, was found to decrease
the activity potency dramatically; it was also that the removal of the boron atom from the
five-membered oxaborole ring reduced the antimalarial activity [84].
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falciparum CQ-sensitive 3D7 strain. (Adapted from [82]).

A new scaffold of 6-(4-carboxyphenoxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaborole, 63
(shown in Figure 7), was identified in 2015 with a potent activity of IC50 of 0.120 µM against
P. falciparum [85]. Further studies of structure–activity relationship (SARs) were performed
by varying the 6-aryloxy group (64–71), substituent modification on the pyrazine ring
(72–88) and exploring the effect of side-chain ester group (89–97) (Figure 7). To examine
the effect of the left-side aromatic moiety on antimalarial activity, compounds 64–71 were
designed. If the nitrogen was in an ortho-position to oxygen as in 65, the incorporation of a
nitrogen atom did not improve the activity, whereas nitrogen located at the meta-position to
oxygen would increase the activity of 66 and 67 [85]. A pyrazine ring-embedded compound
(71) showed extremely high potency both for Pf W2 strain and Pf 3D7 (IC50: 0.0014 µM
for Pf W2; IC50: 0.0019 µM for Pf 3D7) [85]. With the identification of the pyrazine ring,
compounds 72–88 were synthesized to investigate the effects of the substituent group in
the ring. None of the compounds showed antimalarial activity better that 71, and that
would indicate the presence of the carboxylic ester as a crucial functionality. Other ester
compounds (89–97) were designed and synthesized to further explore the effects of different
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esters (Figure 7). Compound 92 containing n-butyl ester showed outstanding potency
with an IC50 value of 0.0002 µM for Pf W2 and 0.0007 µM for Pf 3D7, respectively [85,86].
Compound 71 demonstrated excellent efficacy in vivo against P. berghei in infected mice
(ED90 7.0 mg/kg). Nevertheless, the metabolic instability and less favored PK parameters of
71, such as relatively short half-life and low bioavailability, warrant its further optimization
(Figure 7, panel A) [85,86].
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To optimize the potency, stability and PK profile of such benzoxaborole derivatives,
various carboxamide functional groups were incorporated. Analogues to different 1′-
monoalkyl substituents in the amide sidechain had potencies ranging from 0.031 to 1.99 µM
against Pf CQ-sensitive strain 3D7 and showed that the (R-) enantiomers were generally
little more active than the (S-) isomers [86]. Among the screening compounds, compound
6-(2-((3-hydroxy-3-methylazetidin-1-yl) carbonyl) pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-
7-methyl-2,1-benzoxaborole (98, AN13762) (Figure 8) was chosen as a lead compound,
which showed an ED90 value of 1.9 mg/kg. The result of the P. falciparum-infected mouse
model experiment demonstrated that the in vivo parasite clearance profile of 98 was
rapid and similar to that of artesunate (water-soluble injectable derivative of ART) and
chloroquine, two well-known fast parasite-killing antimalarial medicines [86]. Compound
98 (AN13762) was subjected to potency evaluation against other resistant P. falciparum
strains, in vivo parasite reduction rate evaluation (or number of parasites the compound
could kill in a parasite life cycle, PRR), and for preliminary genotoxicity studies. An in vitro
PRR assay against P. falciparum was used to compare the parasitic killing rates at different
concentrations. The results indicated that the antiparasitic rate of action of 98 was fast
and similar to those for ART and chloroquine. Further, 98 was also examined against an
additional eleven P. falciparum resistant strains which demonstrated high activity with
the IC50 value in the range of 0.036−0.080 µM, indicating no cross-resistance (Figure 8).
Safety studies demonstrated that it was not mutagenic and clastogenic in both the in vitro
and in vivo models [86]. Therefore, 98 was further investigated for the development of
preclinical studies in humans beginning in 2019 (MMV-Supported Projects. https://www.mmv.
org/research-development, accessed on 18 January 2021).
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Compound 98 showed no cross-resistance property and that indicated a possible
novel action mechanism or drug resistance of benzoxaboroles that is different from those
of CQ and pyrimethamine. The highly electrophilic nature of the boron component
of these compounds could lead to interactions with a variety of protein targets via re-
versible covalent bonds (Figure 1B). The benzoxaboroles 2, 10 (AN3018), AN3365 and
AN3664/ZCL039 (Figure 2C) inhibited bacterial LeuRS in an action mechanism [87,88]. In
the course of searching for new antimalarial drugs, a benzoxaborole library of LeuRS
inhibitors was screened for potency against cultured multidrug-resistant W2 P. falci-
parum strains and the antimalarial activity was investigated [89]. The two most active
3-aminomethylbenzoxaboroles, 99 (AN6426) and 100 (AN8432) (Figure 9A), were selected
and extensively examined. The compounds demonstrated the murine malaria ED90 values
of 7.4 mg/kg and 16.2 mg/kg for 99 and 100, respectively, in vivo to P. berghei-infected mice.
Subsequently, 99 and CQ were investigated in different stages of parasites, and inhibition
of parasite development was observed across the life cycle of plasmodium, particularly
against trophozoites (Figure 9B) [89]. This inhibition happened only with exogenous norva-
line (unnatural amino acid analogue of leucine that is charged to tRNA by LeuRS enzymes),
rather than with AN6426-resistant parasites. The results are consistent with a loss of LeuRS
editing (Figure 9C). Biochemical studies showed that 99 and 100 caused a dose-dependent
inhibition with the incorporation of [14C] leucine, indicative of a block in wild-type protein
synthesis (using artemisinin as a negative control and, as a positive control, cycloheximide,
protein synthesis inhibitor) (Figure 9D) [88,89].

During the screening process, 3-(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-7-yl)-propanoic
acid was identified as a potent antimalarial agent against P. falciparum asexual blood stage
parasites known to be resistant to standard antimalarial drugs [90]. The compound was highly
effective when administered orally to treat P. berghei (ED90: 0.34 mg/kg) and P. falciparum
(ED90: 0.57 mg/kg) infections in mice, with minimal cytotoxicity to mammalian cell lines. Its
inhibitory effects were greatest in early to middle trophozoite-stage parasites [90]. Enzyme
CPSF-73 is a metallo-b-lactamase containing two zinc ions essential in the active site [91].
The PfCPSF3 is a Plasmodium homologue of mammalian CPSF-73. Docking calculation of
the compound on the PfCPSF3 active site revealed that its terminal carboxylate group, oc-
cupying an adjacent phosphate-binding site opposite to R290 and Y252, forms a salt bridge
and a hydrogen bond, respectively [90]. The negatively charged tetrahedral oxaborole group
was placed at the phosphate position at the cleavage site and it interacted with the two
catalytic zinc ions. In these models, the identified PfCPSF3 resistance mutations (T406I, Y408S,
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T409A and D470N) were found on the PfCPSF3 active site of amino acids interacting with
AN3661 [90].
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4. Neglected Tropical Diseases (NTD)
4.1. Trypanosomiasis

Human African trypanosomiasis (also known as African sleeping sickness or HAT),
a Neglected Tropical Disease (NTD) that occurs in sub-Saharan Africa, is transmitted to
humans through the bite of different species of tsetse fly (Glossina spp.). It presents a
major threat to the health of more than 57 million people in 36 countries in sub-Saharan
Africa [92]. During a blood meal on the mammalian host, an infected tsetse fly injects
“trypomastigotes” (a parasitic flagellate protozoa) into skin tissue [93]. The parasites enter
the lymphatic system, pass into the bloodstream (stage I, hemolymphatic system) and then
transform into bloodstream trypomastigotes, which are carried to other sites (stage II, CNS,
central nervous system, spinal fluid). The disease is caused by unicellular Trypanosoma
brucei gambiense (T. b. gambiense), which is endemic in western and central Africa, or
Trypanosoma brucei rhodesiense (T. b. rhodesiense), which is found in eastern and southern
Africa [93]. The currently available drugs for the treatments for early-stage infection (stage
I) are pentamidine and suramin, while melarsoprol and eflornithine are for late-stage
infection (stage II or CNS). All these drugs share the same problems of high cost and
toxicity with low efficacy in the late stage and potential development of resistance, and
they are not orally bioavailable. Thus, there is an urgent need to develop bioavailable oral
treatment with improved efficacy and low toxicity at an affordable cost for the treatment
of HAT [92,93].

In 2010, the UCSF Sandler Centre of Drug Discovery, in collaboration with Anacor
Pharmaceuticals, identified several compounds through an antitrypanosomal screening
of 400 compounds, leading to the discovery of drugs with high potency to inhibit T. b.
brucei, as shown in Figure 10. Preliminary results of the structure–activity relationships
(SAR) suggested that benzoxaboroles containing a substituent at C (6) of the heterocyclic
ring system were particularly essential (Figure 10A) [94]. Thus, the oxaborole functionality
was crucial for the observed antitrypanosomal activity, as demonstrated by low activity
(IC50 > 10 µg/mL) or loss of activity upon removal of the oxaborole ring or substitution
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with carbon (101–109) (Figure 10). The length between the hydrogen bond acceptor O
and the benzoxaborole C(6) of the linkage group “L” had a significant effect on the an-
titrypanosomal activity (i.e., in sulfonamide, O-C(6) distance 3.52 Å, IC50 0.02 µg/mL
vs. sulfoxide, O-C(6) distance 2.38 Å, IC50 0.17 µg/mL). Compounds with amide linkers
showed high potency. Accordingly, the most potent compounds among the series were
benzoxaboroles with a sulfonamide linker (106) and amide linker (107) that showed an im-
provement in antitrypanosomal activity with an IC50 of 0.02 and 0.04 µg/mL, respectively,
to inhibit T. b. brucei (Figure 10C) [94]. The in vivo assessments using the murine model of
blood stage (I) T. b. brucei infection showed that the sulfone linker in 105 was more effica-
cious, with complete cure observed at 20 mg/kg. The sulfonamide linker in 106 exhibited
modest in vivo activity with a serious cytotoxicity of 3.48 µg/µL) [95]. By the modifica-
tion of an amide linked compound, new leads, N-(1-hydroxy-1,3dihydrobenzo[c] [1,2]
oxaborol-6-yl)-2-trifluoromethylbenzamide (108, AN3520) and 4-fluoro-N-(1-hydroxy-1,3-
dihydrobenzo[c] [1,2] oxaborol-6-yl)-2-trifluoromethylbenzamide (109, SCYX-6759), were
identified (Figure 10C) [95]. These two compounds exhibited high permeability, in vitro
metabolic stability (Mouse S9 metabolism t1/2 > 350 min), and rapid time-dependent try-
panocidal activity against T. b. brucei. Pharmacokinetic analysis demonstrated that 108 and
109 were orally bioavailable in multiple species and were able to cross the blood–brain bar-
rier (BBB) at sufficient levels to cure stage II of the HAT disease in mice, with no evidence of
interaction with the P-glycoprotein transporter [96]. These oxaborole carboxamides cured
stage I (hemolymphatic) trypanosomiasis infection in mice when administered orally at
2.5 to 10 mg/kg of body weight for 4 consecutive days. Metabolism and pharmacokinetic
studies in several species, including nonhuman primates, demonstrated that both 108 and
109 were low-clearance compounds [94–96].
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Sulfonamide 106 was further modified using various linkers between the heterocyclic
core and pendant aryl group to show reasonable potency in the whole-cell T. b. brucei assay
with low cytotoxicity (IC50 > 10 µg/mL for mouse lung fibroblast cells (L929)) [97]. The
introduction of a methyl group (110a) at C(3) of the benzoxaborole ring had little effect on
the trypanocidal potency but caused a significant increase in cytotoxicity (110a vs. 110b),
while C(3)-dimethyl analogs (110b and 111) retained trypanocidal activity but were not
cytotoxic (Figure 11) [97]. Compound SCYX-7158 (111) exhibited enhanced activity against
representative strains of T. b. brucei, including T. b. rhodesiense and T. b. gambiense strains
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(from 0.07 µg/mL to 0.37 µg/mL), following the incubation of the parasite strains with the
compound for 72 h [98]. The in vivo activity of these oxaboroles was assessed using the
mouse model of acute and chronic HAT. The SCYX-7158 exhibited good permeability across
the blood–brain barrier and achieved in measurable levels after both intravenous and oral
doses. Phase I assessed the safety, tolerability, pharmacokinetics and pharmacodynamics
of SCYX-7158 by applying a single oral ascending dose in 128 healthy human volunteers of
sub-Saharan origin. It allowed the therapeutic dose administered at 960 mg once as three
tablets, with a favorable safety profile. As the drug has a long half-life (>300 min), the study
was extended to 210 days to ensure safety monitoring of the healthy volunteers [99]. Based
on the results of this study, DNDi (Drugs for Neglected Diseases Initiative) and partners
proceeded to Phase II/III—efficacy and safety study of SCYX-7158 as a single dose oral
treatment of patients with HAT [100].
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Chalcones have attracted considerable scientific attention and continue to be a versatile
scaffold in anticancer and antiprotozoal research. Previously, chalcone-type compounds
were found to inhibit the growth of T. b. brucei and Trypanosoma cruzi parasites [101]. A
novel class of chalcone–benzoxaborole hybrid molecules was synthesized and evaluated
as an antitrypanosomal agent. The 4-NH2 derivative 112a and 3-OMe derivative 112b
(Figure 12A) were found to have excellent potency against T. b. brucei (112a, IC50: 0.024
µg/µM; 112b, IC50: 0.022 µg/µM) and good cytotoxicity (L929 cells, IC50 > 10 µg/mL).
The synergistic 4-NH2-3-OMe compound 112c presented a high toxicity (L929 cells, IC50:
1.45 µg/mL) [102]. The 6-pyrrolobenzoxaboroles, 113, represent a new class of potent
antitrypanosomal agents. These compounds showed an antiparasitic activity ranging from
0.03 µg/mL to 4.02 µg/mL [103]. Three of the leading compounds (113a–c) demonstrated
high in vitro activity against T. b. brucei (IC50: 0.09 µg/mL for 113a; 0.03µg/mL for 113b;
0.07 µg/mL for 113c) and good cytotoxicity (L929 cells, IC50 > 10 µg/mL for 113a and
113c). They also showed good possibility to cure the parasitic infection in a murine acute
infection model with complete clearance of the parasites in the blood (Figure 12B) [103].
Meanwhile, a set of cinnamoyl–oxaborole amides were also synthesized and screened
against nagana T. b. brucei for antitrypanosomal activity. Compound 114 emerged as a new
hit with an in vitro IC50 value of 0.086µM against T. b. brucei without inhibitory cytotoxicity
against HeLa cell lines (Figure 12A) [104].
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As discussed before, compound 2 (Figure 1), which is under clinical investigation,
was indicated as an antifungal agent by inactivating fungal LeuRS [32]. Encouraged by
the inhibitory activity of such compounds, C(6)-ester group-functionalized 115a and 115b
were synthesized, while 115b showed a 4-fold improvement in activity (TbbLeuRS IC50:
3.5 µM) compared to 188a (TbbLeuRS IC50: 16.7 µM) (Figure 12B) [105]. Compounds 115c–i
were also screened as an effort to improve the stability of the leading ester compounds
in vivo while retaining their activity. The addition of methyl or ethyl substituents in the
α-position to ketone resulted in a significant enhancement of activity, as demonstrated
by compounds 115f–I (TbbLeuRS IC50 2.5, 2.9 and 3.8 µM, respectively) (Figure 12B). The
docking model of compound 115b showed the formation of a hydrogen bond between
its carbonyl and Arg289. The pocket is rather small and hydrophobic, lined by nonpolar
amino acid residues including Pro398, Ala443, Ile468, and Ala464, and is a good fit with
the terminal ethyl group of the compound 115b. The docking model of compound 115b
also revealed the existence of space near the carbon of the ester (Figure 12C) [105]. These
TbbLeuRS inhibitors showed good potency against the bloodstream form of T. b. brucei
parasites (T. b. brucei IC50: 0.37–12.93 µM). Although these substituted ketones exhibited
similar enzyme inhibitory activity, the dimethyl ketone derivative, 115h, showed higher
potency (T. b. brucei IC50: 0.37 µM) than its methyl analogue [105].

4.2. Leishmaniasis

Leishmaniasis is a vector-borne parasitic disease caused by at least twenty species of
the genus Leishmania, with three main clinical forms of visceral leishmaniasis (VL), cutaneous
leishmaniasis (CL) and mucocutaneous leishmaniasis [106]. This disease is responsible for
700,000 to 1 million new infection cases annually. When an infected female sand fly bites the
skin of a person or animal, the Leishmania parasites promastigotes (protozoan parasites) are
injected into a new host. Once on the skin, promastigotes are ingested by phagocytic cells and
the parasites differentiate into obligate intracellular amastigotes. These parasites replicate
and invade other sites of the body. The cycle continues until a sand fly bites the infected
individual, taking up some of the amastigotes during the process [107]. The absence of
effective vaccines gives way to treatment by chemotherapy using drugs such as pentavalent
antimonials and amphotericin B as primary control of the disease [108]. However, these
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drugs require parenteral administration. They are nephrotoxic and an increasing drug
resistance in visceral leishmaniasis has been identified [109]. The efficacy of the first-line
oral drug, miltefosine, has declined rapidly over the past decades due to treatment failure,
which results in relapses of the disease [110]. The WHO lists leishmaniasis as one of the
NTDs and advocates an urgent need for new, efficient, safe, and affordable drugs for the
treatment [111].

In a new drug screening process, leucyl-tRNA synthetase from L. donovani (LdLRS)
was selected as a potential drug target for Leishmania. This enzyme plays an essential
role in the viability of this pathogenic organism and appears to be indispensable for
its survival in vitro [112]. Compound 2 (Figure 1) exhibited anti-leishmanial activity
against both promastigote and amastigote stages, in vitro, as well as in vivo in BALB/c
mice, as shown in Figure 13A. Moreover, 2 was effective in inhibiting the aminoacylation
activity of the recombinant LdLRS (IC50: 0.83 ± 0.2 µM), with low toxicity to mammalian
cells [112]. Recently, protozoan carbonic anhydrases (CAs) were explored as new targets
for drug development for bacteria, fungi and protozoa [113,114]. A type of 6-substituted
urea/thiourea benzoxaboroles was tested against CAs from the two pathogenic protozoans
(L. donovani and T. cruzi) [115]. Acetazolamide, a clinically used sulfonamide inhibitor, and
Tavaborole 2, a commercial benzoxaborole used as topical antifungal medication, were used
as standard control in the biological assay. The ureido and thioureido benzoxaboroles (116)
exhibited low micromolar inhibitory activities against protozoans, and their derivative,
116a, showed the most activity with an inhibition constant Ki of 0.48 µM. Compound 116b
containing para-nitrophenyl thiourea exhibited an inhibitory selectivity of 110 times higher
towards Leishmania CAs [115]. Compounds 117 and 118, which showed anti-parasitic
activity against P. falciparum, T. brucei, T. cruzi or L. donovani, were tested with five different
species of Leishmania and found to be new leading compounds for its treatment. The
efficacy of these drugs, 117 and 118, was evaluated in vivo against Leishmania major. It was
found that 117 suppressed lesion growth upon topical application and 118 reduced the
lesion size following an oral administration [116].
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4.3. Onchocerciasis (River Blindness) and Lymphatic Filariasis (Elephantiasis)

Onchocerciasis, also known as “river blindness”, is a parasitic disease caused by the
filarial worm Onchocerca volvulus and it is transmitted to humans through exposure to
repeated bites of infected blackflies of the genus Simulium. Symptoms include severe
itching, disfiguring skin conditions, and visual impairment such as permanent blindness.
More than 99% of infected people live in African countries [117]. Lymphatic filariasis
(commonly known as elephantiasis) is caused by infection with parasite nematodes (round-
worms) Wolbachia. bancrofti (which is responsible for 90% of the cases), Brugia. malayi
and Brugia. timori. Lymphatic filariasis impairs the lymphatic system and can lead to the
abnormal enlargement of body parts, causing pain, severe disability and social stigma.
Almost 120 million people in 72 countries worldwide remain threatened by lymphatic
filariasis, and they require preventive chemotherapy to stop the spread of this parasitic
infection [118].

Pleuromutilin and its derivatives are antibacterial drugs through binding to the peptidyl
transfer center (PTC) of the ribosomes and consequently inhibiting protein synthesis of the
bacteria [119,120]. Jacobs et al. prepared benzoxaborole analogs of the antibiotic type, known
as boronpleuromutilins, by modification of the pleuromutilin core [121]. This modification was
focused on linkers of oxygen, nitrogen and sulfur at the 6-position (Figure 13B). A series of
benzoxaborole-incorporated pleuromutilins, 119–122, were tested in in vitro assays in the
strain of Wolbachia, resulting in encouraging antibacterial potency [121]. Some selected active
analogs were analyzed in in vitro absorption, distribution, metabolism, excretion (ADME)
and in vivo PK experiments. Compound 7-fluoro-6-oxybenzoxaborole, 122 (AN11251), was
identified as a leading compound that showed good in vitro anti-Wolbachia activity and
physicochemical and pharmacokinetic properties with high exposure in plasma. This com-
pound was effective in reducing the Wolbachia parasites following oral administration in
mice (Figure 13B). The efficacy of 122 in these models suggests more extensive evaluation
of this compound, both alone and in combination with other known anti-Wolbachia drugs.
Compound 122 may be useful in the treatment of filarial infections or river blindness [121]. In
addition, a set of oxaboroles with general structures of 123 and 124 (Figure 13C) were screened
against adult worms of B. malayi and obtained moderate results [122].

5. Cryptosporidiosis and Toxoplasmosis

Cryptosporidiosis, also informally called crypto, is a parasitic disease caused by Cryp-
tosporidium parvum (C. parvum) species, a genus of protozoan parasites in the phylum
Apicomplexa [123]. Cryptosporidiosis causes high morbidity in developing countries [124].
Toxoplasmosis is a disease caused by infection of the Toxoplasma gondii (T. gondii) para-
site [125]. The parasite has two distinct life cycles, where the sexual cycle occurs only in cats,
and the definitive host and the asexual cycle occur in other mammals and humans. In the
human host, the parasites form tissue cysts, most common in skeletal muscle, myocardium,
brain, and eyes; these cysts may remain throughout the life of the host [125]. Despite the se-
riousness of cryptosporidiosis and toxoplasmosis, interest in the development of new drugs
targeting these pathogens has been limited. As described previously, aminoacyl-tRNA
synthetases (aaRS) play essential roles in protein synthesis and thus they are the suitable
targets for antimicrobial drug design for parasitic diseases [126]. Many benzoxaborole
compounds designed by this strategy were screened against Cryptosporidium to discover
new potential drugs.

Compounds 3-aminomethyl benzoxaborole (99, AN6426) and its 4-bromo analogue
100 (AN8432) were found to be active against C. parvum, with an IC50 value of 2.2 µM for
99 and 6.8 µM for 100, respectively. These activities are comparable to that of nitazoxanide,
which is the current standard of care for the treatment of cryptosporidiosis [127]. It
was claimed that 99 (AN6426)-AMP adduct can bind to the editing site with a higher
affinity than the post-transfer editing substrates (Figure 14). The result was confirmed
by in vitro binding experiments and crystal structures of 99 with Cryptosporidium leucyl
tRNA synthetase (CmLeuRS) [127]. A stable covalent adduct (spiro product) of 99 (AN6426)
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in the LeuRS editing was formed, and it may block the aminoacylation reaction. These
observations were consistent with those of 99 (AN6426) inhibiting protein synthesis in
both Cryptosporidium and Toxoplasma by forming a covalent adduct with tRNALeu [127].
Therefore, benzoxaboroles targeting apicomplexan parasites warrant further development
in this area.
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6. Conclusions

Organoboron compounds have been proven to be attractive candidates as pharmaceu-
tical agents because of their unique physical and chemical properties. Besides being used as
boron agents in the treatment of boron neutron capture therapy, organoboron compounds
are also essential to treat tropical diseases, including tuberculosis and antifungal activity,
malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis. The current
treatments used for tropical diseases are sub-optimal, and in some cases, there are no drugs
available to date. Drug resistance for the clinically used antibiotics and anti-protozoan
agents is one of the world’s most serious public health problems. In the last few decades,
development in the use of boron derivatives as pharmaceutical agents has produced en-
couraging strides. The clinical introduction of bortezomib as an anti-cancer agent was
followed by benzoxaborole drugs, such as tavaborole and crisaborole, for the treatment
of onychomycosis and atopic dermatitis. Anti-infective drugs bearing boron atoms in
heterocyclic rings represent a highly interesting field for the pharmaceutical industry, with
the potential to obtain drugs with a novel mechanism of action which are effective for the
management of infective diseases. It is essential to engage research on anti-tropical diseases
with a distinct schedule of short, medium and long-term strategies. This is particularly
challenging at the present time, since the COVID-19 crisis has significantly shifted both
research attention and governmental resources, and that limited human and financial
resources can be used to address such tropical diseases and other diseases [128,129].
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Abbreviations
Mycobacterium tuberculosis Mtb
H. proteasome Human proteasome
MIC Minimum inhibitory concentration
ACT Artemisinin-based combination therapies
aaRSAmino Acyl tRNA synthetase
CQ Chloroquine
ADME Absorption, distribution, metabolism, and excretion
SsrA-tagged protein Caseinolytic-protease-specific degradation protein
RLU Relative luminescence
WT cell lines Wild-type cell lines
aaRS Aminoacyl-tRNA synthetase
ClpP Caseinolytic proteases
TB Tuberculosis
Chloromethyl ketones CMKs
enoyl- reductase ENR
Enoyl-[acyl-carrier-protein] reductase [NADH] InhA
Nicotinamide adenine dinucleotide oxidized NAD+
Nicotinamide adenine dinucleotide reduced NADH
artemisinin-based combination therapies ACT
Plasmodium Falciparum P. Falciparum
Plasmodium falciparum 3D7 CQ-sensitive 3D7
structure−activity relationship studies SARs
3D7 Chloroquine (CQ) sensitive P. falciparum strain
W2 Chloroquine (CQ) resistant P. falciparum strain
D2d Chloroquine (CQ) resistant P. falciparum strain
half-life t1/2
availability F
WT cells Wild-type cells
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