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A B S T R A C T

Chest X-ray (CXR) images are considered useful to monitor and investigate a variety of pulmonary disorders
such as COVID-19, Pneumonia, and Tuberculosis (TB). With recent technological advancements, such diseases
may now be recognized more precisely using computer-assisted diagnostics. Without compromising the
classification accuracy and better feature extraction, deep learning (DL) model to predict four different
categories is proposed in this study. The proposed model is validated with publicly available datasets of 7132
chest x-ray (CXR) images. Furthermore, results are interpreted and explained using Gradient-weighted Class
Activation Mapping (Grad-CAM), Local Interpretable Modelagnostic Explanation (LIME), and SHapley Additive
exPlanation (SHAP) for better understandably. Initially, convolution features are extracted to collect high-level
object-based information. Next, shapely values from SHAP, predictability results from LIME, and heatmap from
Grad-CAM are used to explore the black-box approach of the DL model, achieving average test accuracy of
94.31 ± 1.01% and validation accuracy of 94.54 ± 1.33 for 10-fold cross validation. Finally, in order to
validate the model and qualify medical risk, medical sensations of classification are taken to consolidate the
explanations generated from the eXplainable Artificial Intelligence (XAI) framework. The results suggest that
XAI and DL models give clinicians/medical professionals persuasive and coherent conclusions related to the
detection and categorization of COVID-19, Pneumonia, and TB.
1. Introduction

Millions of people are being infected and dying each year with pul-
monary diseases such as COVID-19, Pneumonia, and Tuberculosis (TB).
The ratio is supposed to increase every year [1,2]. COVID-19 has been
a severe pandemic and the exponential growth of COVID-19 cases has
made tremendous pressure on the healthcare system around the globe.
Similarly, Pneumonia and TB are also life-threatening diseases [3,4].
As a result, accurate and timely detection of such diseases is critical for
appropriate treatment and saving lives [5,6].

In recent years, due to incredible strides of deep learning (DL) in
various domains such as computer vision [7], image classification [8],
satellite image analysis [9], neural network optimization [10,11], nat-
ural language processing [12], their applications in biomedical analysis
such as brain tumor [13], alzheimer’s disease [14], pulmonary dis-
ease [15] detection and many more have been investigated. Though
early systems were restricted due to low sensitivity of large false posi-
tive rate [16], DL-based neural networks have made significant progress
in feature learning and representations [17]. They have created an
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opportunity for developing an intelligent and automated framework
for image-based health care solutions [18]. For instance, multiple DL
models in medical image analysis [15,19–21] have been proposed to
learn powerful image features for the diagnosis of diseases thereby pre-
venting severe sickness. Despite magnetic resonance imaging (MRI) and
computerized tomography (CT) scan being more efficient in producing
clear pictures, they are very expensive and contain radiation exposure.
Consequently, the CXR images are the preferred option for the detection
of pulmonary diseases [22–24]. On the other side, for connecting the
orthopedic dots better as a future paradigm, translational medicine
based on three-dimensional simulation and bio-markers are also in
practice to improve the accuracy and precisions [25,26].

DL-based methods have achieved high accuracy in CXR image clas-
sification [19]. However, these methods have three major limitations.
Firstly, the DL-based methods that use the pre-trained model have
many parameters which take more resources for model training and
validation. Secondly, the light weight DL models which are trained
from scratch lack result interpretation ability. Finally, the existing DL
vailable online 3 October 2022
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models for CXR image classification are primarily focused on increasing
accuracy, ignoring the aided interpretation of the model’s output.
Thereby, there is always a medical risk in utilizing such a model by
medical professionals [27]. To address these limitations, we propose an
XAI-based DL architecture to detect and classify COVID-19, Pneumonia
and TB with CXR images. Our proposed model is light weight and has
fewer parameters (in millions) which can be deployed in low resource
computing platforms. Next, the proposed model is explained with three
widely used XAI algorithms: Shapley additive explanation (SHAP),
local interpretable model-agnostic explanation (LIME), and Gradient-
weighted Class Activation Mapping (Grad-CAM), to detect the infected
region of CXR image. Furthermore, model explanations were validated
along with the medical expert’s opinion. The main contributions of
he proposed work are summarized in what follows:

(i) We propose a light weight convolution neural network (CNN) for
lung diseases (COVID-19, Pneumonia, and TB) detection on chest
X-ray (CXR) images.

(ii) We achieve a highly noticeable interpretation of the model’s
output on CXR images using XAI algorithms when validated with
medical radiology experts without compromising the accuracy of
the model.

(ii) We also compare the performance of our proposed CNN model
with recent methods and show that our model has outperformed
the existing methods while classifying the CXR images into
COVID-19, Pneumonia, TB and Normal.

Continuing further, the section ‘‘Related Works’’ details the existing
orks on CXR image classification using DL and XAI. Section ‘‘Material
nd methods’’ describes the data collection and proposed methods. Ex-
eriments are discussed in the section ‘‘Result and discussion’’. Section

‘Medical sensation’’ provides the medical professional advice on the
odel’s output and explainability. The paper is concluded with future

ecommendations in ‘‘Conclusion and future Works’’.

. Related work

Several recent works on medical image analysis show that machine
earning (ML) and deep learning (DL) models boost the computer-
ided medical diagnosis for CXR images and CT image-based disease
etection such as COVID-19, Pneumonia and TB. Here, we summarize
he recent works on the diagnosis of COVID-19, Pneumonia, and TB
sing medical image analysis, focusing on CXR images.

According to Sitaula et al. [28], the resolution of CXR images
aries in real applications and the single-scale bag of deep visual
ords (BoDVW)-based features are insufficient to capture the detailed

emantic information of the infected regions in the lungs. They use
hree distinct kernels 1 × 1, 2 × 2, and 3 × 3 to conduct the convolution
ith max pooling operation over the fourth pooling layer for multi-

cale bags of deep visual words-based features. Their strategy achieved
noteworthy classification accuracy of 84.37%, 88.88%, 90.29%, and
3.65% for four public CXR datasets after assessing the suggested fea-
ures with the Support Vector Machine (SVM) classification algorithm.
n [29], authors predicted the number of COVID-19 infections over
he next seven days. They created a cloud-based machine learning
hort-term forecasting model for Bangladesh. The model used a variety
f regression-based machine learning models to analyze infected case
ata. By using sample data from the previous 25 days that were
ecorded on the web application, the method was able to predict the
umber of infected cases with accuracy. The results can be used to
reate and evaluate preventative methods and pinpoint the elements
hat influence the spread of the COVID-19 virus in Bangladesh the most.

DL model with nine hidden layers was proposed by Mahbub et al.
19] for CXR image classification. With the DL model trained from
cratch, six different datasets derived from publicly available CXR
mages were employed for the binary classification of three disease
lasses: COVID-19, TB and Pneumonia. The model yielded 99.87%
2

m

ccuracy on COVID-19, 99.55% on Pneumonia, 99.76% on TB, 98.89%
n COVID-19 vs Pneumonia, 98.99% on COVID-19 vs TB, and 100%
n Pneumonia vs TB. Although the model can categorize the disease
lasses with high accuracy, it was evaluated separately on six datasets,
ach of which had only two classes. In addition, the study did not
mplement any XAI, which makes their model more of a black-box.
imilarly, Qaqos et al. [30], used stochastic gradient descent to train
he DL model with 6587 CXR images. Proceeding with 128 × 128 im-

ages and 100 epochs, the model was able to achieve 94.53% accuracy
while classifying CXR images into four classes (COVID-19, Pneumonia
and TB). However, No XAI algorithms were implemented.

Transfer learning with VGG16 was implemented for TB identifica-
tion on CXR images by Mostofa et al. [31]. They used 1324 CXR images
to fine-tune the model which yielded an accuracy of 80.0% while clas-
sifying CXR images into TB and healthy categories. Shastri et al. [32]
employed a pre-trained DCNN-based Inception-V3 model with transfer
learning. A total of 3532 CXR images in the collected dataset were
enhanced, and each image was resized to 299 × 299 × 3. The model
had a 93% accuracy rate. The study, however, did not classify TB
in CXR images. Likewise, Rahimzadeh et al. [33] proposed a parallel
deep feature extraction implementing Xception and ResNet50V2. The
concatenated feature vector of both Xception and ResNet50V2 aided
the network to learn classification. With five folds for training and each
fold for 8 phases, the study showed an accuracy of 91.4%. Despite
its performance, the study holds no evidence of TB classification or
XAI’s existence. Colombo et al. [34], observed the performance of
three different pre-trained CNN models: Alexnet, GoogleNet and ResNet
on pulmonary TB detection. Combining images from Montgomery,
Shenzhen and PadChest datasets of 1092 total samples, GoogleNet
achieved maximum accuracy of 75%. Similarly, Shelke et al. [35]
linked three pre-trained DL-based CNN models, each of which was in
charge of a different classification. Taking 64 × 64 × 1 CXR datasets
s input, VGG-16 was used to classify, Pneumonia, and TB. DenseNet-
61 was used to further classify Pneumonia and COVID-19 using the
reviously classified Pneumonia images. Finally, the COVID-19 images
ere fed into ResNet-18, which classifies them into mild, medium and

evere. The accuracy of the VGG-16, DenseNet-161, and ResNet-18
odels was 95.9%, 98.9%, and 76%, respectively. No XAI imple-
entation was found in the study. Al-Timemy et al. [36] used 14
re-trained CNN models for the feature extraction followed by 5-
old cross-validation. Trained over a dataset of 2186 CXR images the
tudy claimed 91.6% detection accuracy. To increase the effectiveness
nd precision of computer-aided diagnostic systems’ (CADs) diagnostic
erformance, authors in [37] developed a deep learning method em-
loying a transfer learning methodology to categorize lung illnesses on
XR pictures. A deep learning network (EfficientNet v2-M) was used to
irectly input CXR pictures and extract the characteristics that would
e useful for classifying diseases. They tested on three classes of the
.S. National Institutes of Health (NIH) dataset: normal, pneumonia,
nd pneumothorax, and obtained validation performances of loss =
.6933, accuracy = 82.15%, sensitivity = 81.40%, and specificity =
1.65%. The capsule neural network model was used to categorize
XR pictures that demonstrated a COVID-19 infection by authors [38].
he model was trained using 6310 chest X-ray images divided into
hree categories: normal, pneumonia, and COVID-19. Comparing Cap-
Net to traditional convolutional neural network (CNN) models, some
dvantages include viewpoint invariance, fewer parameters, and better
eneralization. During the model’s training, the suggested model had
n accuracy of more than 95%.

Along with transfer learning, Sitaula et al. [15], used an atten-
ion mechanism with VGG16 to classify CXR images. Methods were
valuated for three CXR image datasets with the highest accuracy
eported as 87.49% while classifying CXR images into five classes:
OVID-19, Normal, no_findings, Pneumonia bacteria, and Pneumonia
iral. The extracted region on CXR images by VGG16 and attention

odel were visualized with Grad-CAM [39]. Ashan et al. [21] study
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Table 1
CXR images collection statistics from three publicly available datasets.

Ref COVID-19 Pneumonia TB Normal

[44] – 4273 – 1583
[45] – – 700 –
[46] 576 – – –

Total 576 4273 700 1583

was conducted to detect COVID 19 patients from CXR and CT im-
ages and implement six deep CNN learning models, including VGG16,
MobileNetV2, InceptionResNetV2, ResNet50, ResNet101, and VGG19
using 400 CXR and 400 CT images. Achieving an average accuracy
of 82.94% on a dataset with CT images and 93.94% on a dataset
with CXR images, MobileNetV2 outweigh NasNetMobile. The overall
prediction was explained by applying the heatmap of class activation
and analyzing the feature extraction implementing LIME. Manjurul
et al. [40] achieved high performance on VGG16 model (98.5 ± 1.19%)
among six different Deep CNN models: VGG16, MobileNetV2, Incep-
tionResNetV2, ResNet50, ResNet101 and VGG19 with mixed dataset of
CT and X-ray images to classify COVID-19 patients. Results were further
explained with LIME. Chetoui et al. [41] fine-tuned the EfficientNet-
B5 pre-trained with Imagenet [42] for both multi-class and binary
CXR classification. The DeepCCXR-Multi for multi-class classification
(COVID-19, Pneumonia and Normal) and DeepCCXR-Bin for binary
classification (COVID-19 and Normal). Employed with a total of nine
datasets with more than 3200 COVID-19 CXR images, the classifica-
tion accuracy of DeepCCXR-Multi and DeepCCXR-Bin was 95.62% and
92.99%, respectively. Furthermore, individual testing of nine datasets
was conducted, yielding DeepCCXR-Bin classification accuracy from
91% to 98% and DeepCCXR-Multi classification accuracy ranges from
70% to 93%. To explain the gradient output of the CNN models for the
target class, Grad-CAM [39] based visualization for both true positive
and true negative cases was performed.

Besides CXR image analysis, CT image-based identification of TB,
COVID, and Pneumonia has been investigated in the recent past using
DL models. For instance, Li et al. [43], used ResNet50 pre-trained
model to distinguish COVID-19 and Pneumonia in CT images. They
trained the DL model with 4356 CT samples and obtain 95% accu-
racy and visualized significant regions in the CT images using Grad-
CAM towards explainability of the model. However, the heat-maps are
not abundant to identify the unique features used by the model for
prediction.

3. Material and methods

3.1. Data collection and pre-processing

CXR images of four categories: COVID-19, Pneumonia, TB, and
normal were collected from three publicly available datasets [44–46],
with a total of 7132 CXR images belonging to four classes. Table 1
shows the total statistics of CXR images used to build an explanatory DL
model from chest radiographs. Since the images from various datasets
were not uniform in size, images were resized into 180 × 180 × 3.
A horizontal flip operation was performed to augment the samples on
the fly. Finally, each image pixel was rescaled into the range [0,1] to
normalize the images. Sample CXR images for individual categories,
extracted from the CXR dataset are shown in Fig. 2. Though the dataset
is class imbalanced with small COVID-19 and TB data, no larger penal-
ties were associated with the misclassification. Stratified data sampling
was used to obtain an equal number of samples for each class in every
3

training batch.
3.2. Proposed method

The proposed DL-XAI method for CXR image classification consists
of two main components : CNN model for CXR classification and XAI-
based explanation generations framework. The overall architecture of
the proposed method is represented in Fig. 1.

3.2.1. CNN model
CNN, a well-known approach for computer vision applications, is

typically used to evaluate visual imagery. From visual image and video
recognition, the DL architectures like Fig. 3, dominates in recognizing
objects, patterns, and textures. Therefore, in this work, a light weight
CNN model for CXR classification using 2D-convolution, max-pooling,
dropout, flatten and dense layers is designed. It consists of five convolu-
tions layers, each followed by a dropout and max-pooling layer, except
the convolution layer next to the input layer. Flatten layer converts
2D-features into 1D-features and feeds into a dense layer followed by
a dropout layer. Finally, soft-max activation is used for classification.
Each convolution layer is supplemented with the rectified linear unit
(ReLU) as an activation function. CNN parameters such as kernel size,
stride and filters for convolutions layers, dropout value for dropout
layers and pool-size for max-pooling layers are supplied explicitly. A
kernel size of 3 × 3 is selected as a small kernel size can capture the
deteriorated region on CXR image more efficiently [15,28]. Authors
in [28] suggested keeping stride as 1, because a higher stride could miss
the discriminating semantic regions. Similarly, dropouts are applied
throughout the neural network levels (from input to convolution layers
to fully connected layers) to preserve the network from over-fitting.
Furthermore, the learnable parameters of our proposed CNN model are
reported in Table 2 which illustrates the light weight nature of our
model.

3.2.2. Explainable AI
The demand for explainability of deep learning-based approaches

develops as the number of such methods grows, especially in high-
stakes decision-making fields like medical image analysis [47]. The
results from the DL model are further interpreted and explained for
better readability to medical professionals which can help them in fast
and accurate diagnosis of COVID-19, TB, and pneumonia diseases [27].
For this, widely used XAI algorithms: SHAP, LIME and Grad-CAM are
imposed in this work.

SHAP uses the concept of Shapley values to score model feature
influence by averaging the marginal contributions of feature values.
For each pixel on a predicted image, the scores show its contribution
and can be used to explain classification. All conceivable combinations
of features from pulmonary illnesses are used to calculate the Shapley
value. After pixelating the Shapley values, red pixels enhance the
likelihood of predicting a class, whereas blue pixels lower the likelihood
of predicting a class [48]. Shapley values are calculated using Eq. (1).

𝜙𝑖 =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|!(𝑀 − |𝑆| − 1)!
𝑀!

[𝑓𝑥(𝑆 ∪ 𝑖) − 𝑓𝑥(𝑆)] (1)

Where for particular feature i, fx is the change of output incorporated
by shapely values. With the exception of feature i, S is the subset of all
features from feature N. The weighting factor |𝑆|!(𝑀−|𝑆|−1)!

𝑀! counts the
number of ways the subset S can be permuted. Given the features subset
S, the predicted result is denoted by fx(S) is calculated from Eq. (2).

𝑓𝑥(𝑆) = 𝐸[𝑓 (𝑥)|𝑥𝑆 ] (2)

In place of each original characteristic (xi), SHAP substitutes a binary
variable (zi ’) that denotes whether xi is present or not as shown
n Eq. (3)

(𝑧′) = 𝜙0 +
𝑀
∑

𝜙𝑖𝑧
′
𝑖 = 𝑏𝑖𝑎𝑠 +

∑

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (3)

𝑖=1
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Fig. 1. The proposed explanatory DL-XAI model to classify CXR images into COVID-19, Pneumonia and TB.
Fig. 2. Sample images abstracted from the CXR images dataset. Note that (a), (b), (c) and (d) denote ‘‘COVID-19’’, ‘‘Normal’’, ‘‘Pneumonia’’ and ‘‘TB’’, classes respectively.
In Eq. (3), g(z ’ ) is the local surrogate model of original model f(x). The
amount that the existence of feature i contributes to the final result, and
𝜙i aids in our understanding of the original model.

For explainable interpretation of the original representation of an
instance being explained (x ∈ Rd) using LIME, a binary vector (x’ ∈
{0,1}d’ ) denoting the ‘‘presence’’ or ‘‘absence’’ of a continuous patch
of super-pixel was used. For our model g ∈ G having domain {0,1}d’

to present the visual artifacts, g acted over absence/presence of the
interpretable components. It was observed that every component of g
∈ G was not enough to interpret the explanation, as a result, 𝛺(g) was
used to measure of complexity of the explanation.

For our model f : Rd → R, f(x) being the probability of 𝑥 to belong in
any of four classes, 𝜋x(z) was used as a proximity measure between an
instance z to x, to define locality around x. The fidelity function, ℑ(f,g,
𝜋x) was used as measure of how unfaithful g was in approximating
f in the locality defined by 𝜋x. Making 𝛺(g) as lowest as possible to
increase the interpretations, fidelity function was also minimized. The
4

explanation generated by LIME can be summarized as Eq. (4).

𝜉(𝑥) = argmax
𝑔∈𝐺

ℑ(𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔) (4)

Grad-CAM calculates the gradient of a differentiable output, such as
class score, in relation to the convolutional features of a selected layer.
Grad-CAM is most commonly employed for image classification tasks,
but may also be utilized for semantic segmentation. The softmax layer
of the proposed model outputs a score for each class for each pixel to
aid in semantic segmentation. For a particular class C with N number
of pixels and AK as a feature map, Grad-CAM mapping is explained
in Eq. (5) [39].

𝑀𝑐 = 𝑅𝑒𝐿𝑈 (
∑

𝐾
𝛼𝐾𝑐 𝐴𝐾 ) (5)

𝛼𝐾𝑐 = 1
𝑁

∑ 𝑑𝑦𝑐
𝐾 (6)
𝑖,𝑗 𝑑𝐴𝑖,𝑗
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Fig. 3. Detail architecture of proposed CNN model for CXR classification.
Table 2
Learnable parameters of the proposed DL model. Note that (F,K,S) denotes the number of filters, kernel size
and stride used in the respective convolution layer.
S.N. Layer type (F,K,S) output shape parameters

1 Input – (180,180,3) 0
2 Conv2D + relu (3,3,1) (178, 178, 3) 84
3 Conv2D + relu (32,3,1) (176, 176, 32) 896
4 MaxPool2D (2) – (88, 88, 32) 0
5 dropout (0.05) – (88, 88, 32) 0
6 Conv2D + relu (96,3,1) (86, 86, 96) 27744
7 MaxPool2D (3) – (28, 28, 96) 0
8 dropout (0.2) – (28, 28, 96) 0
8 Conv2D + relu (128,3,1) (26, 26, 128) 110720
9 MaxPool2D (2) – (13,13,128) 0
10 dropout(0.1) – (13, 13, 128) 0
11 Conv2D + relu (256,3,1) (11, 11, 256) 295168
12 MaxPool2D (2) – (5,5,256) 0
13 dropout(0.1) (5, 5, 256) 0
14 Flatten – 6400
15 Dense + relu – 512 3277312
16 dropout(0.45) – 512 0
17 Dense + softmax – 4 2052

Total parameters 3,713,976
3.3. Implementation

The proposed DL model and XAI algorithms were implemented
using Keras [49] in python [50]. Experiments were executed on Google
Colab [51] with NVIDIA K80 graphical processing unit of 12 GB RAM
provided by Google. The run time platform of Google Colab consists of
Python (version 3.7) as a programming language, Keras (version 2.5.0)
which works with TensorFlow (version 2.5.0) framework.

We split the CXR images dataset into the train and test sets with a
ratio 90:10 per category. Ten different random train/test splits of the
CXR dataset were used to report the final averaged performance. To
prevent the model from over-fitting during training, we set 10% of the
training data for validation and early stopping callbacks were used with
the patience of 3 epochs.
5

4. Evaluation metrics

Conventional statistical measures such as precision (7), recall (8),
f-score (9) and accuracy (10) were used to measure the classification
performance of model.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃 ) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8)

𝐹 − 𝑠𝑐𝑜𝑟𝑒(𝐹 ) = 2 × 𝑃 × 𝑅
𝑃 + 𝑅

(9)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴) =
𝑇𝑃 + 𝑇𝑁 (10)
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Table 3
10-Fold Training and validation performance (after 50 epochs, in %): Training Accuracy (TA), Validation Accuracy (VA), Training Loss (TL), Validation Loss (VL),
Test Accuracy (TsA) and Test Loss (TsL).

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Avg 𝜇 ± 𝜎

TA 96.46 96.15 95.41 97.44 96.69 94.17 93.89 94.74 95.62 97.09 95.76 ± 1.15
TL 0.099 0.1089 0.1258 0.0712 0.0923 0.1630 0.1726 0.1931 0.1257 0.0858 0.12 ± 0.04
VA 95.66 94.54 95.24 94.54 95.10 91.74 93.00 93.98 94.82 96.78 94.54 ± 1.33
VL 0.1078 0.1499 0.1293 0.1682 0.1399 0.2114 0.1813 0.1606 0.1437 0.1222 0.15 ± 0.03
TsA 95.23 94.67 94.81 95.23 94.39 92.43 92.43 94.11 94.39 95.37 94.31 ± 1.01
TsL 0.9618 0.1621 0.1625 0.9153 0.1089 0.2153 0.2041 0.1778 0.1784 0.1490 0.32 ± 0.31
Fig. 4. Training and validation tenth fold’s result of CNN. (a) shows 97.09% training accuracy and 96.78% validation accuracy. (b) shows 0.0858 of training loss and 0.122 of
validation loss.
where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 represent true positive, true negative, false
positive, and false negative, respectively. Furthermore, the sensitivity
and specificity of the model are measured along with Receiver operat-
ing curve-area under the curve (ROC-AUC) curve. The confusion matrix
is used for class-wise performance evaluations.

5. Results and discussion

5.1. Model explanation with CNN

The traditional statistical result validation parameters like model
loss and accuracy for training, validation and test set, precision, F1-
score and recall are considered.

We set the epoch of 50 for model training along with early stopping
criteria. Fig. 4 shows the model loss and accuracy of the 10th fold
with good-fit curve. The proposed CNN achieved an average per-
centage of training accuracy (95.76 ± 1.15), and validation accuracy
(94.54 ± 1.33) over the 10-fold of CXR dataset (refer to Table 3).

The model is further evaluated on test sets which were not shown
to the model while training. The proposed CNN model achieved an av-
erage test accuracy of (94.31 ± 1.01%) and test loss of (0.32 ± 0.31%)
within 10 fold of CXR datasets (refer to Table 3). Receiver Operating
Curve-Area Under Curve (ROC-AUC) of the tenth fold is shown in Fig. 5.
As AUC for COVID-19, pneumonia and TB is 1.00, the model is able
to distinguish between all positive and negative class points flawlessly
whereas for Normal class, AUC values is 0.99. This shows that the
proposed model is more consistent and robust for all classes even if
they have non-uniform sample distribution.

5.2. Model explanation with XAI

5.2.1. SHAP
Direct interpretation of the CNN model’s mathematical behavior is

difficult, XAI algorithms are imposed on the model. For all individual
categories, the SHAP result explains four outputs (COVID-19, Normal,
pneumonia, and TB). On the left, input images are displayed, with
virtually translucent gray backings behind each explanation. In Fig. 6,
red pixels are seen in the first explanation image to increase probability
of predicting as COVID-19. Normal and pneumonia explanations hold
6

Fig. 5. AUC-ROC result of CNN shows AUC score of 0.99 for normal and pneumonia
where as 1.00 for COVID-19 and TB.

no red or blue pixels whereas the last image holds the blue pixels,
decreasing the probability of the input image being TB. In Fig. 7, the
absence of red pixels in COVID-19 and TB explanations; and a large
number of blue pixels in pneumonia and red pixel concentration in Nor-
mal explanation explain the image as Normal. Likewise, Fig. 8 shows
the pneumonia’s features and Fig. 9 shows the tubercular infection.

5.2.2. LIME
Random ones and zeros are created and put into a matrix with a split

ratio of 0.2, 150 perturbations serving as rows, and superpixels acting
as columns, with a kernel size of 3 × 3 and a maximum distance of 100
units. According to the averages and standard deviation in the training
data, the matrix was perturbed for the top 20 numerical characteristics
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Fig. 6. Based on the high SHAP value displayed in first explanation image (second column), we can say the CXR image is diagnosed with COVID-19.

Fig. 7. Based on the high SHAP value displayed in second explanation image (third column), we can say that the CXR image is Normal.

Fig. 8. Based on the high SHAP value displayed in third explanation images (fourth column) we can say that the CXR image is diagnosed with pneumonia.

Fig. 9. Based on the high SHAP value displayed in fourth explanation image (fifth column), we can say that the CXR image is diagnosed with TB.
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Table 4
Explainable AI Result Interpretation by LIME and Grad-CAM.

Category CXR Image Mask LIME(Segmented) Grad-CAM

COVID-19

Normal

Pneumonia

TB
by sampling from a normal(0,1) and performing the inverse operations
of mean-centering and scaling. When creating categorical features,
perturb used training distribution-based sampling to create a binary
feature that is 1 when the value matches the case being described.
Original test images for individual categories in the second column of
Table 4 are are resulted with a mask as defined in the third column of
Table 4. The segmented image portion defined from the mask, shows
LIME results as shown in the fourth column of Table 4.

5.2.3. Grad-CAM
Grad-CAM was utilized to identify the sections of CXR images which

were significant for classification decisions by utilizing the spatial
information saved by convolutional layers. Individual CXR samples
from all categories were considered from the set-aside data for visual
explanation analysis and presented the heatmap to visually assess
the quality of heatmaps created by the introduced visual explanation
methods.

For COVID-19, heatmap results more infection in the left lobes
however right lobe is also infected on the upper right part (first-row
fifth column in Table 4). Result for Normal shows no any patches of
color codes with the chest region(second-row fifth column in Table 4).
Likewise, scattered interstitial opacities noted scattered in the bilateral
peripheral lungs for pneumonia and result show that right lung is
infected by TB.

5.3. Class-wise study of proposed CNN model

Class-wise study was performed to understand our proposed model’s
performance for each disease class and measured each class’s pre-
cision, recall, f-score, specificity and sensitivity from 10 fold results
8

(refer to Table 5). While looking at Table 5, we notice that the pro-
posed DL model achieved precision within the range (89.51 ± 4.89–
97.26 ± 1.23), recall (91.19 ± 4.65–96.56 ± 3.58), f-score (91.65 ±
1.89–96.56 ± 0.95), specificity (90.37 ± 4.84–96.15 ± 3.70) and sensi-
tivity (95.50 ± 1.72–99.53 ± 0.36). The proposed model achieved the
highest f-score (96.53 ± 0.95) for class Pneumonia which shows that
the model is highly effective in detecting and identifying the Pneu-
monia diseases from CXR images. Furthermore, the confusion matrix,
showing the correct and incorrect classification produced by our model
for 10th fold is shown in Fig. 10.

5.4. Statistical test

For the statistical test, we employed the Adjusted R2 test on the
confusion matrix of every fold using Eq. (11) and the results are
shown in Table 6. The adjusted R-squared increases when the new term
improves the model more than would be expected by chance. It falls
off when a predictor makes a less than anticipated difference in the
model. This suggests that even with a variable of 94.54%, the model
can generally categorize the four separate groups.

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑅2 = 1 −
(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
(11)

where, 𝑁 = number of records in the dataset, p = number of indepen-
dent variables and R2 is computed by dividing the entire sum of the
squared errors from the actual results by the total sum of the squared
residuals from the prediction of the model, and then subtracting the
result from 1.The model’s adjusted R-squared comes out to be 0.992,
indicating that the model is stable.
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Table 5
10-Fold Performance (after 50 epochs, in %): Specificity (Spec), Sensitivity (Sen), Precision (Pre), F1 score (Fsc), and Recall (Rec).

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Avg (𝜇 ± 𝜎)

Spec

COVID-19 95.00 97.10 94.20 98.55 100.0 86.95 98.55 94.20 97.10 100.0 96.15 ± 3.70
Normal 92.72 94.83 92.25 96.77 87.74 93.54 83.22 94.83 91.61 94.19 92.17 ± 3.76
Pneumonia 96.47 95.03 96.92 94.32 96.92 93.14 97.16 93.85 96.45 97.63 95.71 ± 1.55
TB 98.41 88.05 92.53 86.56 95.52 83.58 83.00 92.53 89.55 94.02 90.37 ± 4.84

Sen

COVID-19 99.38 98.75 99.53 98.29 99.22 98.29 97.05 99.06 98.91 98.91 98.74 ± 0.68
Normal 97.99 96.42 98.03 96.42 98.21 94.63 98.56 96.24 97.85 98.56 97.29 ± 1.23
Pneumonia 95.83 96.96 94.84 97.93 93.47 93.81 92.78 96.90 94.84 97.59 95.50 ± 1.72
TB 99.38 99.84 99.22 99.69 99.84 100.00 99.00 98.91 99.53 99.84 99.53 ± 0.36

Pre

COVID-19 93.23 89.03 96.01 86.20 93.00 85.21 78.14 92.19 91.04 91.11 89.51 ± 4.89
Normal 93.32 88.30 93.10 88.20 93.22 83.09 94.45 88.50 92.31 95.13 90.96 ± 3.59
Pneumonia 97.00 98.13 96.18 99.24 96.22 96.35 95.33 98.27 96.72 98.81 97.26 ± 1.23
TB 94.67 98.43 93.34 97.12 98.73 100.00 97.67 90.48 95.19 98.91 96.45 ± 2.82

Fsc

COVID-19 94.03 93.01 95.42 92.56 97.53 86.52 87.29 93.78 94.34 95.21 92.97 ± 3.30
Normal 93.70 91.77 93.07 92.98 90.61 88.32 88.50 91.29 92.23 94.00 91.65 ± 1.89
Pneumonia 97.25 96.91 97.14 96.96 96.07 94.25 96.26 96.42 96.05 98.01 96.53 ± 0.95
TB 96.01 93.93 93.52 91.59 97.34 91.34 90.04 91.57 92.98 96.88 93.52 ± 2.38

Rec

COVID-19 95.59 97.21 94.92 99.68 100.00 87.68 99.09 94.20 97.22 100.00 96.56 ± 3.58
Normal 93.48 95.82 92.70 97.11 88.09 94.47 83.78 95.94 92.52 94.84 92.87 ± 3.85
Pneumonia 96.26 95.00 97.70 94.88 97.14 93.09 97.76 94.75 96.74 98.59 96.19 ± 1.62
TB 98.85 88.86 93.14 87.88 96.18 84.19 84.21 93.10 90.94 94.59 91.19 ± 4.65
Table 6
Adjusted R2 test on the results of 10-fold CXR dataset. Note: k1, k2, k3... k10 etc. represent the ten folds of CXR dataset respectively.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Avg (𝜇 ± 𝜎)

Adjusted R2 0.997 0.992 0.995 0.991 0.992 0.984 0.988 0.990 0.994 0.997 0.992 ± 0.003
Fig. 10. Confusion matrix for test split of 10th fold.

5.5. Comparison with the state-of-the-art methods

We compared the classification performance of our CNN model
with other state-of-the-art methods as shown in Table 7. To make
the performance more coherent and relevant, we selected the existing
models based on CXR image classification for detecting Tuberculosis
and/or pneumonia and/or COVID-19 using deep learning methods.
Altogether, we choose seven existing DL methods as a comparison
cohort. This comparison cohort also includes both kinds of DL methods:
Custom-CNN implemented and trained from scratch and DL model
implemented with transfer learning. Among these seven existing meth-
ods, five models ([15,20,32,33,36] are based on transfer learning and
two models ([30,52] are based on custom-designed CNN. For instance,
Liu et al. [20] method is based on transfer learning with AlexNet
9

and GoogLeNet for CXR classification into TB and Normal. Likewise,
Rahimzadesh et al. [33] is based on ResNet50 and Xception to classify
CXR images into Normal, COVID-19, and pneumonia. Whereas, Qaqos
et al. [30] and Khan et al. [52] trained custom CNN for CXR image
classification.

Referring to Table 7, the least performing method proposed by [15]
has an accuracy of 85.43% which is 8.88% lower than the classification
accuracy of proposed model (94.31%). Similarly, the best perform-
ing method among the existing methods has a classification accuracy
of 94.53% by Qaqos et al. [30] which is not significantly higher
(0.22%) compared to the accuracy of the proposed model. Even though,
the proposed model has competitive performance with the model by
Qaqos [30], it is complemented with the XAI framework, which will
help the model’s output more trust-able and understandable to the end-
user, which is not available with Qaqos et al. [30] model. Furthermore,
the Qaqos et al. [30] model has 34.73 millions of learnable parameters
whereas the proposed model has only 3.7 million parameter which
shows that our model is significantly lighter than its counterparts.
Among the compared methods, only the model by Shastri et al. [32]
has attempted to include the XAI for CXR image classification, which
has achieved only 93% accuracy, which is 1.31% less than the accuracy
of our model.

The transfer learning based methods such as Sitaula et al. [15]
and Rahimzadeh et al. [33] are more profound and heavy-weight
(learnable parameters in the range of millions) compared to other
methods. However, it is interesting to notice that our CNN, having the
fewer parameters, has achieved significantly better performance than
those deeper models (VGG, and Resnet50).

6. Medical sensation

To validate and verify the model medically, information was gath-
ered from the medical experts for all four categories and tabulated in
Table 8. Impression generated by the XAI-DL model and details from
the medical experts shows that the proposed framework can effectively
be utilized to identify patients’ pulmonary status. As a result, our model
can assist medical teams in making more informed judgments.
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Table 7
Comparison of our model with the state-of-the-art methods. Note that ‘‘PneumoniaV’’ and ‘‘PneumoniaB’’ denote the disease ‘‘Viral Pneumonia’’ and ‘‘Bacterial Pneumonia’’
respectively.

Ref Cases Classes Method Accuracy (%) XAI Params. (in Millions)

[20] TB = 4248
Normal = 453 2 Transfer learning with

AlexNet and GoogLeNet 85.68 No AlexNet = 61
GoogleNet = 7

[33]
Normal = 8851
Covid19 = 180
Pneumonia =
6054

3 Ensemble of Xception and
ResNet50 91.40 No Xception Net = 22

ResNet = 11

[52]

Normal = 310
PneumoniaB =
330
PneumoniaV =
327
COVID-19 = 284

4 CNN-based CoroNet 89.60 No CNN = 33.97

[30]

Normal = 1583
COVID-19 = 576
Pneumonia =
4273
TB = 155

4 Custom CNN 94.53 No CNN = 34.73

[15]

Normal = 310
PneumoniaB =
330
PneumoniaV =
327
COVID-19 = 284

4 Attention based VGG 85.43 No VGG-16 = 18
VGG-19 = 21.2

[32]
Normal = 1341
COVID-19 = 864
Pneumonia =
1345

3 Inception V3 with Transfer
learning 93.00 Yes Binary Class = 23.8

Multiclass = 23.8

[36]

Normal = 439
COVID-19 = 435
PneumoniaB =
439
PneumoniaV =
439
TB = 434

5 Transfer learning with
Resnet18 91.60 No Resnet18 = 11

Ours

Normal = 1583
Covid19 = 576
Pneumonia =
4273
TB = 700

4 Custom CNN 95.94 Yes CNN = 3.7
Table 8
Medical sensation: Findings and impressions.
CXR image Medical findings Sensational impressions

Fig. 2(a) Bilateral air space opacities observed in
periphery; Osseous structures are normal.
Normal costophrenic angles

Projected to COVID-19

Fig. 2(b) Normal bilateral lung fields; Mediastinum
and hilar shadow appears normal; Normal
costophrenic angles; Normal osseous
structures

Normal CXR findings

Fig. 2(c) Scattered interstitial opacities noted
scattered in the bilateral peripheral lungs;
Mediastinum and hilar shadow appears
normal; Normal costophrenic angles;
Normal osseous structures.

Features are suggestive of
interstitial pneumonitis in the
bilateral lungs

Fig. 2(d) Multiple thin to intermediate walled
cavitary lesions along with adjacent air
space opacities noted in the right upper and
middle zone left lower and peripheral zone;
Mediastinum and hilar shadow appears
normal; Normal costophrenic angles;
Normal osseous structures.

Features are suggestive of active
tubercular infection in the right
lung.
7. Conclusion and future work

In this paper, we proposed a novel lightweight single CNN model for
CXR image classification into COVID-19, pneumonia, and Tuberculosis,
complemented with an explanation generation (XAI) framework. Using
10
such XAI-based single CNN model for detecting COVID-19, Pneumonia,
and Tuberculosis diseases resulted in 95.76 ± 1.15% training accuracy,
94.31 ± 1.01% test accuracy and 94.54 ± 1.33% validation accuracy.
The explanation generated with widely used XAI algorithms: SHAP,

LIME and GradCam were further validated by medical experts. With
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such high classification accuracy of the model and validated by medical
experts, the proposed model indicates that XAI and CNN models can
provide convincing and coherent results for lung disease identification
and categorization. Compared with the state-of-the-art methods, our
proposed model has lightweight architecture and has a better accu-
racy while classifying the CXR images along with XAI. Given such
unique features of our model, it has great potential to be adopted by
clinicians/medical professionals as an aided tool for making a more
informed decision in the future.

The model was only trained on a small number of datasets. Hence
its performance on more extensive datasets is not tested. Other sophisti-
cated offline data augmentation approaches, such as the Generative Ad-
versarial Network, might help improve the model’s performance. A mix
of characteristics derived from multiple deep learning models can be
investigated for better classification performance complemented with
XAI frameworks. On the other side, the model ignores patients’ medical
history, experiential gaps, and other bodily symptoms in population
data, some human oversight is still necessary.
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