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Abstract: Background: Dietary intake of multivitamins, zinc, polyphenols, omega fatty acids, and
probiotics have all shown benefits in learning, spatial memory, and cognitive function. It is impor-
tant to determine the most effective combination of antioxidants and/or probiotics because regular
ingestion of all nutraceuticals may not be practical. This study examined various combinations of
nutrients to determine which may best enhance spatial memory and cognitive performance in the
house cricket (Acheta domesticus (L.)). Methods: Based on the 31 possible combinations of multivita-
mins, zinc, polyphenols, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics, 128 house
crickets were divided into one control group and 31 experimental groups with four house crickets in
each group. Over eight weeks, crickets were fed their respective nutrients, and an Alternation Test
and Recognition Memory Test were conducted every week using a Y-maze to test spatial working
memory. Results: The highest-scoring diets shared by both tests were the combination of multivita-
mins, zinc, and omega-3 fatty acids (VitZncPuf; Alternation: slope = 0.07226, Recognition Memory:
slope = 0.07001), the combination of probiotics, polyphenols, multivitamins, zinc, and omega-3
PUFAs (ProPolVitZncPuf; Alternation: slope = 0.07182, Recognition Memory: slope = 0.07001), the
combination of probiotics, multivitamins, zinc, and omega-3 PUFAs (ProVitZncPuf; Alternation:
slope = 0.06999, Recognition Memory: slope = 0.07001), and the combination of polyphenols, multivi-
tamins, zinc, and omega-3 PUFAs (PolVitZncPuf; Alternation: slope = 0.06873, Recognition Memory:
slope = 0.06956). Conclusion: All of the nutrient combinations demonstrated a benefit over the control
diet, but the most significant improvement compared to the control was found in the VitZncPuf,
ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf. Since this study found no significant difference
between the performance and improvement of subjects within these four groups, the combination
of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf) was concluded to be the most effective
option for improving memory and cognitive performance.

Keywords: multivitamins; zinc; polyphenols; omega fatty acids; probiotics; improved memory;
cognitive performance

1. Introduction

The healthcare community increasingly acknowledges the role of social determinants
of health in driving health disparities. Food insecurity is one such factor that contributes
to nutritional deficits, affecting both physical and mental health [1,2]. In 2016, about
11.5% of adults and 17.5% of children in the United States lived in households facing food
insecurity [3]. This food insecurity carries a risk of many health issues common in the
United States [4]. Access to nutritious food is important because evidence suggests that
diet can play a significant role in cognition via the gut–brain axis, which is the bidirectional
communication between the gut and the brain [5]. Moreover, certain foods are known to
contain nutrients that can slow down cognitive decline or improve cognitive performance.
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Individually, multivitamins, zinc, polyphenols, omega-3 fatty acids, and probiotics are
shown to support brain function either through the gut–brain axis or through antioxidant
functions [6–10]. However, the effect of various combinations of these nutrients on cogni-
tion and spatial memory remains unexplored. Knowing the most effective combination
of antioxidants and/or probiotics is important, as regular ingestion of all nutraceuticals
may not be practical. Finding the combination of nutrients that best enhances cognitive
performance is crucial to developing strategies for improved learning and cognition in hu-
mans. This study examined the combinations of multivitamins, zinc, polyphenols, omega-3
fatty acids, and probiotics that best enhanced memory and cognitive performance in the
house cricket.

2. Effect of Nutraceuticals
2.1. Polyphenols

Polyphenol intake has consistently shown benefits in various aspects of memory and
learning [6,11]. Dietary polyphenols have been linked to greater cognitive evolution, as
well as improvements in language and verbal memory [12,13]. These polyphenols are gen-
erally secondary plant metabolites with antioxidative properties. The antioxidant effects
of polyphenols are important because the imbalance between antioxidants and reactive
oxygen species (ROS) leads to oxidative stress [14–16]. The brain is particularly vulner-
able to oxidative stress because of its high metabolic demand [17,18]. Because ROS are
highly reactive, they frequently damage macromolecules, which can lead to mitochondrial
dysfunction and ultimately neurodegeneration [19,20]. However, polyphenols have well-
documented antioxidant and anti-inflammatory effects [21–23]. Polyphenols can protect
against oxidative damage by scavenging free radicals and deactivating metals used in ROS
generation [24–26]. They can also activate antioxidant enzymes, decrease peroxide levels,
and repair membranes that have suffered oxidative damage [27].

2.2. Probiotics

In addition to polyphenols, probiotics can also improve cognitive function and spatial
memory [9,28]. Probiotics refer to bacteria that support health by changing the composition
of the gut microbiome [29]. This, in turn, influences brain health via the gut–brain axis [5,30].
Probiotics and gut microbes can affect brain physiology through their influence on cytokine
levels [31]. Changes in the gut microbiota are communicated to the brain through the vagus
nerve and through levels of dietary tryptophan, a serotonin precursor [32,33]. Dietary
changes are one established method of altering gut microbiota populations [34]. Probiotics
are capable of regulating the hypothalamic–pituitary–adrenal (HPA) axis [35], which is
involved in the stress response, and changing levels of brain-derived neurotrophic factor
(BDNF), which plays an important role in learning and memory [36].

2.3. Multivitamins

Similarly, multivitamins, especially vitamins A, C, and E, have been shown to benefit
cognition and spatial memory as well [37–39]. Vitamins have been linked to better cognitive
health, particularly in free recall memory [40,41]. Vitamins A, C, B group, and E can act as
antioxidants by scavenging free radicals and preventing oxidative stress [42,43]. Vitamin C,
in particular, is highly concentrated in the brain, where it promotes neuronal, vascular, and
neurotransmitter function [44]. Decreased vitamin B12, B6, and folate have also been linked
to cognitive decline associated with aging [45–47]. Moreover, maternal B12 levels have
been linked to the cognitive function of their offspring [48]. Taking B vitamins was shown
to be beneficial for the cognitive function of people without dementia as well [49]. Vitamin
D is a steroid hormone with many functions that take effect after binding a receptor in
the nucleus [50,51]. Vitamin D levels have also been linked to brain functioning [52]. This
may be due to its role in neuroinflammation, which is involved in cognitive decline and
neurodegeneration accompanying aging [53].
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2.4. Omega-3 Polyunsaturated Fatty Acids

In addition, omega-3 PUFAs are important in neural function and they play a crit-
ical role as both energy substrates and cell membrane components [8,54,55]. They also
protect against oxidative stress, inflammation, and apoptosis while mitigating the activity
of neurotrophic factors [8]. Omega-3 PUFAs are essential in cellular function, as well as
the development of cognition, learning, and memory [56,57]. Likewise, omega-3 fatty
acids have been associated with increased relational memory, which is dependent on hip-
pocampal brain activity [58]. Omega-3 fatty acids, including docosahexaenoic acid (DHA),
have also been shown to improve synaptic plasticity, membrane fluidity, and neuronal
metabolism [59–62]. PUFAs are involved in regulating glucose levels, feeding, neurotrans-
mission, emotions, apoptosis, and neuroinflammation [63,64]. They also assist in behavior
and cognitive development [65]. Fatty acids play an additional role in protecting against
neuroinflammation and neuron death [66]. Therefore, neuronal function and integrity
depend on adequate omega-3 PUFA levels. DHA, in particular, has been implied to play a
role in preserving the health of aging neurons [67]. These effects may be through DHA’s
ability to change the expression of genes that regulate neurogenesis and neuron function.

2.5. Zinc

Another nutrient, zinc, is crucial for memory formation and learning [68]. Zinc is nec-
essary in forming synapses and in mediating structural plasticity; this activity potentially
allows zinc to modulate the function of the hippocampus in memory [69]. Zinc is critical
for cognitive development, since it is involved in neuronal migration and it regulates neu-
rogenesis and differentiation [70,71]. In addition to its functions within glia and neurons,
zinc also affects neurotransmission. Zinc levels in the brain are largely protected from zinc
deficiencies in the diet since homeostasis is maintained by the blood–brain barrier and
the blood–cerebrospinal fluid barrier [72]. Zinc deficiencies can affect attention, behavior,
and motor development [73,74]. Animal studies have shown that psychological stress
reduces serum zinc levels, implying that zinc deficiencies and gut inflammation are linked
to stress [75]. Zinc is also essential in the general development and function of the central
nervous system (CNS) [68]. Long-term administration of zinc sulfate in rats enhanced
learning, spatial memory, and exploratory activity [10]. In addition to improving spatial
working memory, zinc supplements in rats were also found to improve recognition mem-
ory [76]. Zinc might also affect memory formation through its ability to regulate glutamate
signaling [76]. Additionally, zinc ions are highly concentrated in the hippocampus and,
thus, play a key role in modulating spatial learning and memory [77,78].

3. Materials and Methods
3.1. Animals

Insects make suitable model organisms because they are less expensive, easier to
maintain in bulk, and possess simpler nervous systems than vertebrates; however, they still
share fundamental neurobiology and behavior with vertebrates [79]. Studies in insects have
previously yielded significant insights about the fundamental processes behind learning
and memory [80]. Moreover, studies using crickets have shown that mushroom bodies
responsible for memory and olfactory learning in their brains continue neurogenesis into
adulthood in response to sensory input [81–83]. This adult neurogenesis may be related
to mechanisms of learning and memory in invertebrates and possibly vertebrates [84].
Crickets are useful as a model organism because they can retain an olfactory memory
throughout their entire lives and modify it readily in response to experience [85]. Crickets
are also a good model for nutritional effects. For example, one study used crickets to
identify how protein and carbohydrate levels influenced weight, muscle mass, and fat
reserves [86]. Crickets have been widely used within behavioral tests [87–89]. For example,
one study used crickets with a plus-shaped maze to examine predator-induced stress and
found that the crickets showed consistent behavioral responses in their tests [90]. Another
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study used the Y-maze with crickets to assess the role of thorax temperature during mate
choice [91].

A total of 128 1-week-old house crickets were used in this study. Crickets were housed
in Y-mazes made with 12” × 2” × 2” (L × H ×W) inexpensive rectangular plastic tubes
from Cleartec Packaging, Inc. (Park Hills, MO, USA) at angles of 120◦ relative to each other
in a Y shape, leaving a triangular space (center zone) between the three tubes (Figure 1).
Y-mazes were used because they are suitable for behavioral tests that do not induce
significant stress to the crickets compared to other memory tests with apparatuses such as
water mazes.
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Figure 1. Y-maze.

Small holes were drilled into the sides of the Y-mazes for aeration. Throughout the
experiment, one house cricket was placed in the bottom arm of each Y-maze under a 6:18
light/dark schedule with a constant temperature of 75 ◦F. Crickets had constant access to
food and water (in a gel form to protect crickets from drowning).

3.2. Nutrient Treatments

Multivitamins, zinc, polyphenols, omega-3 fatty acids, and probiotics were used in
this study. All of these nutrients have been demonstrated to have a positive impact on
memory and cognition when consumed independently.

3.2.1. Multivitamins

Crickets were given one serving every two weeks, each serving including vitamin A
(1200 µg), vitamin B1 (2.5 mg), vitamin B2 (2.5 mg), vitamin B3 (20 mg), vitamin B6 (3 mg),
vitamin C (100 mg), vitamin D3 (10 µg), vitamin E (20 mg), and vitamin K1 (80 µg).

3.2.2. Zinc

Crickets were given one serving every two weeks, each serving including zinc sulphate
(ZnSO4) (220 mg).

3.2.3. Polyphenols

Crickets were given one serving every two weeks, each serving (2.37 g) including
turmeric extract (Curcuma longa), bitter orange, grape extract, organic decaf tea (leaf extract),
olive extract, noni, pomegranate extract, hawthorn berry powder, apple extract, alfalfa,
quercetin dihydrate, Aronia, acai (Euterpe oleracea), blueberry extract, and celery extract.

3.2.4. Omega-3 Fatty Acids

Crickets were given one serving every two weeks, each serving including Omega-3
Phospholipid Peptide Complex (292 mg).

3.2.5. Probiotics

Crickets were given one serving every two weeks, each serving including 50 billion
colony forming units (CFUs) with 11 live bacterial strains: Lactobacillus rhamnosus, Lacto-
bacillus acidophilus, Lactobacillus casei, Lactobacillus salivarius, Lactobacillus plantarum,
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Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium bifidum, Bifidobac-
terium lactis, Bifidobacterium breve, and Streptococcus thermophilus.

3.3. Groups

Based on the 31 possible combinations of multivitamins (Vit), zinc (Znc), polyphenols
(Pol), omega-3 PUFAs (Puf), and probiotics (Pro), the 128 house crickets were divided into
one control group and 31 experimental groups with four house crickets in each group
(Table 1). Of the 128 house crickets, 124 (31 groups) were fed with various combinations
of nutrients demonstrated to have a positive effect on cognitive performance, while the
remaining four house crickets were fed with a normal diet (control group). Sufficient
quantities of food and water were available for all house crickets.

Table 1. Groups.

Group Group Label Diet

Group 1 Control Normal diet
Group 2 Pro Probiotics
Group 3 Pol Polyphenols
Group 4 Vit Multivitamins
Group 5 Znc Zinc
Group 6 Puf Omega-3 PUFAs
Group 7 ProPol Probiotics and Polyphenols
Group 8 PolVit Polyphenols and Multivitamins
Group 9 VitZnc Multivitamins and Zinc
Group 10 ZncPuf Zinc and Omega-3 PUFAs
Group 11 PufPro Omega-3 PUFAs and Probiotics
Group 12 ProVit Probiotics and Multivitamins
Group 13 ProZnc Probiotics and Zinc
Group 14 PolZnc Polyphenols and Zinc
Group 15 PolPuf Polyphenols and Omega-3 PUFAs
Group 16 VitPuf Multivitamins and Omega-3 PUFAs
Group 17 ProPolVit Probiotics, Polyphenols, and Multivitamins
Group 18 PolVitZnc Polyphenols, Multivitamins, and Zinc
Group 19 VitZncPuf Multivitamins, Zinc, and Omega-3 PUFAs
Group 20 ZncPufPro Zinc, Omega-3 PUFAs, Probiotics
Group 21 ProPolZnc Probiotics, Polyphenols, and Zinc
Group 22 ProPolPuf Probiotics, Polyphenols, and Omega-3 PUFAs
Group 23 ProVitZnc Probiotics, Multivitamins, and Zinc
Group 24 ProVitPuf Probiotics, Multivitamins, and Omega-3 PUFAs
Group 25 PolVitPuf Polyphenols, Multivitamins, and Omega-3 PUFAs
Group 26 PolZncPuf Polyphenols, Zinc, and Omega-3 PUFAs
Group 27 ProPolVitZnc Probiotics, Polyphenols, Multivitamins, and Zinc
Group 28 ProPolVitPuf Probiotics, Polyphenols, Multivitamins, and Omega-3 PUFAs
Group 29 ProPolZncPuf Probiotics, Polyphenols, Zinc, and Omega-3 PUFAs
Group 30 ProVitZncPuf Probiotics, Multivitamins, Zinc, and Omega-3 PUFAs
Group 31 PolVitZncPuf Polyphenols, Multivitamins, Zinc, and Omega-3 PUFAs
Group 32 ProPolVitZncPuf Probiotics, Polyphenols, Multivitamins, Zinc, and Omega-3 PUFAs

3.4. Spatial Memory Testing

Spatial memory refers to the ability to memorize and recall locations and spaces,
which is useful during navigation. With its simple, three-armed design, the Y-maze has
traditionally been effective in evaluating spatial memory. In this experiment, Y-mazes were
used to conduct weekly Alternation Tests and Recognition Memory Tests to assess spatial
working memory.

3.4.1. Habituation and Practice Sessions

During the one week of habituation, crickets were kept in the home arm of the Y-maze
with the other arms blocked. This allowed crickets to become more comfortable in their
environments. Within the home arm, crickets had access to water and normal food. At the
end of the habituation period, the food and water were removed from the home arm and
crickets were starved for one day and night in order to motivate them to collect the food
from other arms of the Y-maze during the practice phase. After habituation was completed,
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crickets underwent practice sessions to ensure that they could collect food rewards from
arms of the maze before testing and supplementation. During the week, crickets had
two practice sessions with three trials, in which crickets collected a food reward from
an open goal arm (no entry was provided to the alternate arm). The open goal arm was
pseudo-randomly varied between trials in each practice session to prevent a preference for
either one.

Immediately after completion of the one-week practice period, crickets were kept
in the home arm of the Y-maze with the other arms blocked and fed according to their
prescribed diet. Testing occurred twice a week, alternating between two tests that assess
spatial memory using the Y-maze: the Alternation Test and the Recognition Memory
Test. Testing continued throughout the feeding process to examine differences in the
development of spatial memory over time with the nutrients provided, starting from a
baseline established during the first week. The night before testing, crickets were slightly
food-deprived so that they were motivated to explore the arms of the Y-maze.

3.4.2. Alternation Test

During the Alternation Test, crickets were allowed to explore all three arms of the Y-
maze. Alternations were counted when the cricket explored a different arm each successive
time in a set of three arm visits, such as arm 1→ arm 2→ arm 3. If the cricket explored
an arm twice in the set of three arm visits, such as arm 1 → arm 2 → arm 1, this was
not counted as an alternation (Figure 2). The Alternation Test is dependent on the fact
that crickets habitually explore their least-recently visited location due to natural curiosity,
which relies on their working memory of where they have previously visited. Each test
consisted of six sets of three arm visits (18 arm visits total).
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3.4.3. Recognition Memory Test

During the Recognition Memory Test, crickets were given access to only one of arms 2
or 3 (for example, arm 2) of the Y-maze, where the food was placed (Figure 3). This arm
was alternated among the six trials during each testing to avoid creating a bias for one
arm. After obtaining the food, crickets were returned to arm 1 (the home arm), where they
were sequestered for two minutes. During this time, food was placed in the unvisited arm
(arm 3 in this example). After the two minutes were over, all arms were opened, and the
crickets were able to freely explore the arm they have not visited, in which they would find
the food. Thus, this test evaluated spatial memory by demonstrating whether the crickets
had a recollection of which arm they had previously visited.
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3.5. Potential Bias

During the practice sessions, a possible “path bias” was observed affecting the crickets’
movement through the Y-maze. Crickets tended to travel along one edge of an arm, forming
a path along that edge to one of the other two arms (Figure 4). For example, a cricket
moving along the left side of the home arm would often follow that edge into the left arm
(arm 2). An apparatus was constructed to overcome this “path bias”. Rectangular blocks of
sponge (1.5”× 2”× 0.625” L×H×W) were placed at either side of the arm just before the
center zone, creating a narrow path (1.5” × 2” × 0.75” L × H ×W). Thus, even when the
crickets followed one edge within their arm, they ultimately had to move to the center of
the arm as they neared the center zone. This minimized path bias so that once each cricket
reached the center zone, it had to explicitly choose which arm to explore.
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3.6. Statistical Analysis

All data were analyzed using the Prism 8 data analysis program (GraphPad Software
Inc., San Diego, CA, USA).

4. Results

In both the Recognition Test (Figure 5) and the Alternation Test (Figure 6), all groups
exhibited improvement in performance over time. A two-way repeated measures ANOVA
showed that in the final results there was a significant main effect of diet on performance
in both tests, as measured by the number of correct arm choices or alternations (p < 0.0001).
Tukey tests were run along with the ANOVA to further examine differences among the
means of individual combinations at the final trial. In the Alternation Test, the mean final
performance of the Control varied significantly from the groups VitZncPuf, ProVitZncPuf,
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and ProPolVitZncPuf (p = 0.0194). There was no significant difference among these three
groups. Similarly, in the Recognition Memory Test, the mean final performance of the
Control varied significantly from the groups VitZncPuf, ProVitZncPuf, PolVitZncPuf, and
ProPolVitZncPuf (p = 0.0194). There was no significant difference among these four groups.
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Figure 6. The effect of diet on performance in Alternation Tests over time. Graphed is the mean per-
formance of each group during each testing period with the SEM. All groups experienced significant
improvement in performance over time.

Further, the improvement of each group (final score-baseline score) was computed,
and an ordinary one-way ANOVA was used to evaluate variance among these values
for both the Recognition Test (Figure 7) and the Alternation Test (Figure 8). While the
Control’s improvement differed significantly from many experimental groups in both tests,
the most significant differences in the Alternation Test were between the Control and the
groups VitZncPuf, ProVitZncPuf, and ProPolVitZncPuf (p < 0.0001). The most significant
differences in the Recognition Memory Test were between the Control and the groups
VitZncPuf, ProPolZnc, ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf (p < 0.0001). In
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both tests, there was no significant difference among improvement scores within these
winning groups.
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Figure 8. Improvement in performance in Alternation Tests over time. Graphed is the mean improve-
ment of each group with the SEM, calculated by final #-initial#.

Figure 9 shows the mean number of correct arm choices of each group in the initial
and final Recognition Memory Test since starting their specific diets. Figure 10 similarly
shows the mean number of successful alternations of each group in the initial and final
Alternation Test since starting their specific diets.

Regression analysis was conducted to determine the relative magnitude of improve-
ment over time, represented by the slope produced. Figures 11 and 12 show the lines
generated through regression analysis for each group in the Recognition Memory Test and
the Alternation Test, respectively. In the Recognition Memory Test, the slopes were also
significantly nonzero (p = 0.0005 for control group, p < 0.0001 for experimental groups) and
significantly different from one another (p < 0.0001). In the Alternation Test, the slopes were
significantly nonzero (p = 0.0025 for control group, p < 0.0001 for experimental groups) and
significantly different from one another (p < 0.0001).
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Figure 10. Baseline and final measures of performance in Alternation Tests. Graphed are the mean number of successful
alternations of each group at 0 days and 48 days since starting the specific diets. All groups exhibited improvements
in performance.

Table 2 shows the ranking of diets in order of their slope for both tests. Similar to
the findings of the previous ANOVAs, the highest scoring diets shared by both tables
were VitZncPuf (Alternation: slope = 0.07226, Recognition Memory: slope = 0.07001),
ProPolVitZncPuf (Alternation: slope = 0.07182, Recognition Memory: slope = 0.07001),
ProVitZncPuf (Alternation: slope = 0.06999, Recognition Memory: slope = 0.07001), and
PolVitZncPuf (Alternation: slope = 0.06873, Recognition Memory: slope = 0.06956). The
Control ranked the lowest in both tests (Alternation: slope = 0.02205, Recognition Memory:
slope = 0.02590). Overall, regression analysis showed that the slopes were significantly
nonzero and statistically different.
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Table 2. The ranking of diets in order of their slope for the (a) Alternation Test and (b) Recognition
Memory Test.

(a) (b)
Ranking Combination Ranking Combination

1 VitZncPuf 1 VitZncPuf
ProVitZncPuf

ProPolVitZncPuf
2 ProPolVitZncPuf 2 PolVitZncPuf
3 ProVitZncPuf 3 ProPolZncPuf
4 PolVitZncPuf 4 ProPolZnc
5 PolZncPuf 5 PolZncPuf
6 ProPolZncPuf 6 ProPolVitPuf
7 PolVitZnc 7 ProPolVitZnc
8 ProPolZnc 8 ZncPufPro
9 ProVitZnc 9 PolVitZnc
10 ProPolVitZnc 10 ProVitZnc
11 ZncPufPro 11 ProVitPuf
12 ProPolVitPuf 12 PolVitPuf
13 ProVitPuf 13 ProPolPuf
14 PolVitPuf 14 VitPuf
15 VitPuf 15 ProPolVit
16 ProZnc 16 VitZnc
17 ProPolVit 17 PolZnc
18 PolZnc 18 ZncPuf
19 ProPolPuf 19 PolPuf
20 VitZnc 20 ProZnc
21 PufPro 21 Puf
22 ZncPuf 22 PufPro
23 ProVit 23 PolVit
24 Znc 24 Znc
25 PolVit 25 ProVit
26 PolPuf 26 ProPol
27 Vit 27 Vit
28 Puf 28 Pol
29 Pol 29 Pro
30 ProPol 30 Control
31 Pro
32 Control

5. Discussion

This study tested the hypothesis that the combination of multivitamins, zinc, polyphe-
nols, omega-3 fatty acids, and probiotics would best enhance spatial memory and cognitive
performance. The results revealed that crickets consistently demonstrated more improve-
ment in memory tests when fed nutrient-rich diets compared to crickets fed a normal diet,
suggesting that these nutrients may indeed play a role in improving memory. While all
of the nutrient combinations showed a benefit over the normal diet, the most significant
improvement compared to the control was found in the VitZncPuf group (fed multivi-
tamins, zinc, and omega-3 PUFAs), ProVitZncPuf group (fed probiotics, multivitamins,
zinc, and omega-3 PUFAs), PolVitZncPuf group (fed polyphenols, multivitamins, zinc, and
omega-3 PUFAs), and ProPolVitZncPuf group (fed probiotics, polyphenols, multivitamins,
zinc, and omega-3 PUFAs). These four groups were also ranked highest in improvement
based on linear regression analysis, with VitZncPuf group ranking only slightly higher
than the ProVitZncPuf group, PolVitZncPuf group, and ProPolVitZncPuf group. However,
as the post hoc Tukey test found no significant differences in the performance of subjects
within these four groups (VitZncPuf, ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf),
the combination of multivitamins, zinc, and omega-3 PUFAs may be the most efficient
option for improving memory, producing the greatest results with the least number of
distinct nutrients. These results did not entirely support the experimental hypothesis, be-
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cause although ProPolVitZncPuf was effective, its effects were not significantly higher than
that of VitZncPuf, making multivitamins, zinc, and omega-3 PUFAs a potential winning
combination.

Though previous studies did not focus on how combinations of nutrients interact to
affect cognition, these results are consistent with findings regarding individual nutrients
from this study’s winning combination (multivitamins, zinc, and omega-3 PUFAs). The
current findings are supported by reports that prenatal and postnatal zinc supplementation
in rats enhanced spatial learning, cognition, and locomotion [10]. Zinc deficiency has also
been implicated in cognitive impairment, with improved learning and memory achieved
following zinc supplementation [77,92]. Zinc is known to be concentrated in the CNS,
particularly in the hippocampus, where it is involved in synaptic transmission [10]. These
findings are further supported by another study of rats that developed zinc deficiencies
following 145 days of a low-zinc diet, after which they received zinc-enriched yeast for
55 days. Although the zinc-deficient rats had impaired learning and memory, these
effects were mitigated through administration of zinc-enriched yeast [93]. However, it
remains unknown whether these findings can be observed in humans as well, as a study of
602 children found that administration of 30 mg of zinc for six months had little effect on
improving cognition [94].

This study’s results are also consistent with findings that vitamin intake can benefit
cognition in people without dementia [49]. A previous study also found significantly
improved cognition in aged mice that received vitamin E and C for 60 days [95]. Another
study observed cognitive improvements in 48 adults aged 65 who received multivita-
mins (vitamin B6, B12, and folic acid) for 12 weeks [96]. A study of 114 people with
hyperhomocysteinemia also found that supplements of vitamin B6, B12, and folic acid
improved cognitive function [97]. Another study using 32 house crickets examined the
effects of combinations of polyphenols, probiotics, and multivitamins on spatial memory
and cognitive performance and found that the combination of probiotics and multivitamins
led to the most improvement [98]. Present results are also consistent with evidence that
omega-3 fatty acids improve spatial memory [99–101]. Moreover, omega-3 fatty acids are
known to regulate expression of several genes associated with apoptosis and oxidative
stress [102]. Low dietary omega-3 PUFAs and low plasma DHA have also been found to
lead to behavioral deficits and low omega-3 PUFA levels in the brain [103].

The subjects in this study were limited to house crickets as crickets have been estab-
lished as the best insect model to investigate learning and memory [104]. While data on the
time that crickets took to travel through the Y-maze may be useful in analyzing memory,
this study did not include these measurements, due to the crickets’ inconsistent pauses
during their exploration of the arms of the Y-maze. There were no outstanding risks to the
subjects, as the crickets were adequately fed with necessary nutrients. No physical stress
was applied to the subjects throughout the study. Quencher was used as the water source
to maintain cleanliness and protect the crickets from drowning in water when they were
young. The National Institutes of Health (NIH) Guide for the Care and Use of Laboratory
Animals (8th Edition) was followed during testing.

Future investigations may replicate this experiment with mice using a Morris water
maze. Other nutrients, such as iron or fiber, may also be tested, which could reveal an
even more effective combination of dietary supplements to improve cognitive performance.
Further investigations may also examine combinations of individual vitamins within the
multivitamin cocktail used in this study. In addition, future research may directly study the
effect of nutrition on human cognitive performance, particularly during childhood learning.
This may be examined through natural studies measuring nutrition and performance and
evaluating correlations between these factors and income level. Such studies could illustrate
the effect of socioeconomic disparities on nutrition and learning, ultimately pointing to
changes that can be made in mass nutrition.
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6. Implications

These findings suggest potential ways of efficiently using nutrition in dietary strate-
gies to support learning and cognition in humans. This research has implications for food
insecurity, as many people lack access to nutritious foods that support learning and cogni-
tive performance. This may be crucial in the context of childhood education, during which
barriers to food access could affect learning and thus affect academic outcomes. This study
may direct further research developing more detailed nutritional plans for supporting
cognition, as well as informing larger-scope changes to be made in food access and mass
nutrition to better support childhood learning.

7. Conclusions

Maintaining a nutritious diet necessary for health can be challenging for those fac-
ing poverty or food insecurity due to limited resources, stress, and competing priorities.
Knowing how food can affect cognition informs strategies to protect and improve neuronal
function through modifying diet and mass nutrition. This study investigated the best com-
bination of nutrients for enhanced cognitive performance and memory in the house cricket.
All of the nutrient combinations tested demonstrated a benefit over the control diet, but
the most significant improvement compared to the control was found in the combination
of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf), the combination of probiotics,
multivitamins, zinc, and omega-3 PUFAs (ProVitZncPuf), the combination of polyphenols,
multivitamins, zinc, and omega-3 PUFAs (PolVitZncPuf), and the combination of probiotics,
polyphenols, multivitamins, zinc, and omega-3 PUFAs (ProPolVitZncPuf). Since this study
found no significant difference between the performance and improvement of subjects
within these four groups, the combination of multivitamins, zinc, and omega-3 fatty acids
(VitZncPuf) was concluded to be the most effective option for improving memory and cog-
nitive performance. While the group fed multivitamins, zinc, polyphenols, omega-3 fatty
acids, and probiotics produced improvement, its improvement was not significantly higher
than that of the group fed multivitamins, zinc, and omega-3 fatty acids. To strengthen
or corroborate the findings of this study, future investigations may replicate it with mice
using either a Y-Maze or a Morris water maze apparatus.
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