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ABSTRACT Genotyping by sequencing allows for large-scale genetic analyses in plant species with no
reference genome, but sets the challenge of sound inference in presence of uncertain genotypes. We report
an imputation-based genome-wide association study (GWAS) in reed canarygrass (Phalaris arundinacea L.,
Phalaris caesia Nees), a cool-season grass species with potential as a biofuel crop. Our study involved two
linkage populations and an association panel of 590 reed canarygrass genotypes. Plants were assayed for up
to 5228 single nucleotide polymorphism markers and 35 traits. The genotypic markers were derived from low-
depth sequencing with 78% missing data on average. To soundly infer marker-trait associations, multiple
imputation (M) was used: several imputes of the marker data were generated to reflect imputation uncertainty
and association tests were performed on marker effects across imputes. A total of nine significant markers
were identified, three of which showed significant homology with the Brachypodium dystachion genome.
Because no physical map of the reed canarygrass genome was available, imputation was conducted using
classification trees. In general, Ml showed good consistency with the complete-case analysis and adequate
control over imputation uncertainty. A gain in significance of marker effects was achieved through MI, but only
for rare cases when missing data were <45%. In addition to providing insight into the genetic basis of
important traits in reed canarygrass, this study presents one of the first applications of Ml to genome-wide
analyses and provides useful guidelines for conducting GWAS based on genotyping-by-sequencing data.
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Perennial crops, which include herbaceous energy crops (HEC), are
increasingly studied as potential significant sources of energy because
of their environmental benefits and the increase in prices of petroleum.
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In its 2005 billion-ton supply report, the US Department of Agriculture
(USDA) and the US Department of Energy (USDOE) set the goal of
a 30% replacement of US petroleum consumption with biofuels by
2030. This goal implies a production of approximately 1 billion dry
matter tons of biomass per year from forest and agricultural lands.
According to the report’s projections and assumptions, achieving that
objective will require the following: (i) the conversion of active crop-
lands, pasture land, and lands under the conservation reserve program
(CRP) into perennial crop lands and (ii) achieving biomass yields
ranging between 5.5 and 8 dry tons per acre from perennial crops
(between 12.4 and 19.8 Mg ha'!) (US Department of Agriculture and
US Department of Energy, 2005). Plant breeding has an important
part to play in achieving such yields. To efficiently select for higher
biomass yield, selection may act on secondary traits such as plant
height and flowering time (Price and Casler 2014), resistance to biotic
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stress, tiller density (Boe and Beck 2008), leaf area, and plant archi-
tecture. Biomass quality considerations, for conversion into bioenergy,
bring another suite of traits to bear in HEC breeding (e.g., Vogel et al.
2011). Common methods for transforming biomass feedstock into
energy include direct combustion, pyrolysis, and fermentation of sug-
ars (soluble sugars, starch, cellulose, and hemicellulose) into ethanol
(Wrobel et al. 2009).

Reed canarygrass (Phalaris arundinacea L., Phalaris caesia Nees) is
a promising HEC in North America. It belongs to the tribe Avenae
(sub-family Pooideae, family Poaceae), which includes the oat genus
Avena (Quintanar et al. 2007). Of the grass model species, such as
Brachypodium distachyon (Brachypodium), Oryza sativa (Rice), Zea
mays (maize), and Sorghum bicolor (Sorghum), Brachypodium is the
most closely related to reed canarygrass (Bouchenak-Khelladi et al.
2008). Reed canarygrass is a species complex that comprises two
chromosomal races: the tetraploid race, Phalaris arundinacea L.
(2n = 4x = 28), which is thought to be native to Europe, Asia, and
North America (Jakubowski et al. 2012), and the hexaploid race,
Phalaris caesia Nees (2n = 6x = 42) (McWilliam and Neal-Smith
1962; Baldini 1995). Most cultivars and wild accessions of P. arundi-
nacea found in North America are of European ancestry (Casler et al.
2009a; Jakubowski ef al. 2011). Reports of breeding efforts in P. arun-
dinacea trace back to the early 20 century in North America (Casler
2010), but this species was already cultivated in the 18" century in
Europe (Alway 1931). Some noncrop uses for reed canarygrass have
been reported, such as phytoremediation (Picard et al. 2005), erosion
control (Rice and Pinkerton 1993), and paper production (Pahkala
and Pihala 2000). However, reed canarygrass has mostly been used as
a forage crop. Consistently, most recent breeding efforts have focused
on low alkaloid content for palatability to livestock, not on biomass
yield (Wrobel et al. 2009).

Most of the research on HEC in the US has been focused on
switchgrass (Panicum virgatum L.) (Sanderson et al. 1996), but
reed canarygrass presents characteristics that may complement
those of switchgrass; it is particularly tolerant to northern cli-
mates (Casler et al. 2009a), as well as to soil acidity, alkalinity,
and moisture content (Bittman et al. 1980) and high levels of
metals and minerals (Cureton et al. 1991). However, biomass
yields in reed canarygrass are not very high. Based on trials in
the US Midwest involving wild accessions and cultivars, geno-
type means for dry matter yield have been estimated to range
from 7.6 to 10 Mg.ha! (Casler et al. 2009b). Also, quality tends
to be lower in reed canarygrass than it is in switchgrass (Cherney
et al. 1988). Nonetheless, judging from the significant genotypic
variation observed in both biomass yield (Asay et al. 1968; Casler
et al. 2009b) and quality (Carlson et al. 1996; Olmstead et al.
2013), improvement by selection of these primary biofuel traits is
feasible.

Because no linkage map and no genome sequence are available in
reed canarygrass, association studies have not been conducted in this
species complex. However, genotyping by sequencing (GBS) provides
the opportunity to call polymorphisms without prior marker de-
velopment. With this technology, a genome-wide association study
(GWAS) can be performed on reed canarygrass, but because no
reference sequence is available, one limitation of such study is the
inability to assign single nucleotide polymorphisms (SNP) to specific
physical positions in the reed canarygrass genome. This has two
important implications: (i) SNP-trait associations cannot be mapped
to a particular region of the genome and (ii) no imputation method
based on marker sequences, e.g., hidden Markov models (HMM) or
sliding-window algorithms, may be used. However, other methods are
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available for imputing unordered marker data (Poland et al. 2012;
Rutkoski et al. 2013). Another limitation of using SNPs derived from
GBS is the high amount of missing values in marker data and, there-
fore, the importance of accounting for uncertainty in the imputation
of marker genotypes.

The purpose of this study was to make statistically sound
inferences about associations between GBS markers with a high
frequency of missing values and biofuel traits (related to biomass yield
and quality) in reed canarygrass. GWAS was performed under the
assumption of disomic inheritance in reed canarygrass, which is
suggested by the alloploidy of a closely related species, Phalaris aqua-
tica (Carlson et al. 1996). To perform statistically valid association
tests, it was necessary to avoid false positives, not only by controlling
for population structure and familial relatedness (Yu et al. 2006) but
also by accounting for imputation uncertainty. Our study exemplifies
the use of multiple imputation, initially proposed by Rubin (1987), to
account for this source of variability when making inferences. Classi-
fication tree models, shown by Poland et al. (2012) and Rutkoski et al.
(2013) to be promising, were used under this framework to impute
missing values without information on markers’ genomic location and
order. After a description of the variability present in the panels under
study, we examine the general behavior of inferences in multiple
imputation compared to more traditional methods that would not
fully account for imputation uncertainty. Then, we present our results
of GWAS performed in a multiple-imputation framework and de-
scribe the significant markers in light of where they map onto the
B. distachyon genome.

MATERIALS AND METHODS

Populations

Three panels were assessed in this study: two randomly segregating
populations derived from biparental crosses (LP1 and LP2) compris-
ing 177 and 189 clones, respectively (Supporting Information, Table
S1), and one association panel (AP) comprising 590 clones originating
from North America and Europe (Table S1). LP1 and LP2 were de-
rived from two distinct crosses involving genotypes of WROO0, a tetra-
ploid cultivar originating from Wisconsin. In AP, four populations
(AR Upland, Superior, PI-284179, and PI-236525) were accessions of
P. caesia (hexaploid). The AP subset consisting of only the 550
P. arundinaceae clones is referred to as AP-4x.

Clones were assessed in spaced-plant trials arranged in a Sets-
in-Reps design with two replicates. The trials were performed in
two locations: Arlington, Wisconsin (43.3°N, 89.4°W) and Ithaca,
New York (42.6°N, 76.4°W). Soil type was Plano silt loam (fine-
silty, mixed, mesic Typic Argiudoll) in Arlington and was Niagara
silt loam (fine-silty, mixed, active, mesic Aeric Endoaqualf) in
Ithaca.

Phenotypic data

Traits related to disease resistance (Ds), morphology [standability
(St); leaf width (LW); leaf length (LL); total stem count (STC);
plant height (PH); full height (FH)], phenology [heading date
(HD); anthesis date (AD)], and quality [dry matter percentage
(DM); neutral detergent fiber (NDF); acid detergent fiber (ADF);
NDF digestibility (NDFD); acid insoluble ash (AIA); Klason lignin
(Lignin); crude protein (CP); Ash (ASH); calcium (Ca); chlorine
(Cl); copper (Cu); iron (Fe); potassium (K); magnesium (Mg);
manganese (Mn); sodium (Na); phosphorus (P); sulfur (S); zinc
(Zn); glucose (GLC); galactose (GAL); xylose (XYL); arabinose
(ARA); GLC conversion efficiency (GLC_Eff); XYL conversion
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efficiency (XYL_Eff); energy content (BTU)] were determined on
plants grown in Ithaca in 2009-2011 and in Arlington in 2010-
2011 (Table 1). Quality traits were predicted from near-infrared
reflectance spectroscopy (NIRS) measurement, using methodology
described by Vogel et al. (2011). The NIRS prediction equations
were developed on a diverse set of 110 reed canarygrass samples
from the experiments described by Casler et al. (2009b). Wet-
laboratory traits were determined for these samples using the pro-
cedures described by Vogel et al. (2011). The validity of predictions
from the predictive models was verified by the extremely low fre-
quency of outliers: nine biomass-quality samples with Mahalanobis
distance more than three out of a total of >3300 samples (Shenk
and Westerhaus 1991). The raw phenotypic data are available for
download from http://dfrc.wisc.edu/sniper/.

Association analyses were performed on best linear unbiased
estimations (BLUEs) of genotypes’ performance for a given trait,
inferred from the following linear mixed model:

Table 1 Summary of field traits and quality traits

Yijimre = mean + genotype; + location; + year(location);

+ rep.(location);,, + (year xrep.(location));,,

+ (genotype xlocation);; + (genotype X year (location)) ;

+ plot(year(location))ﬂrc + Eijim

where yjjjure is the measurements at one of the 35 traits considered,
genotype; is the genotypic value of clone i, modeled as fixed (to
guarantee convergence of the fitting algorithm and to avoid as-
sumptions about genotypes’ sampling). For all other terms, the
corresponding effects were considered random, independent,
and identically normally distributed: location; is the effect of location
j; year(location), is the effect of year [ within location j;
rep.(location),,,, is the effect of replicate m within location j; X
indicates interactions; and plot(year(location)),,  is the effect of
the plot at row r and column ¢, within an environment (year [ within
location j). Plot effects within environments were modeled as

Trait Code Unit Environments Comment

Disease Ds 1-9 109 Resistance to biotic stress

Standability St 1-9 109, 110 Resistance to lodging

Leaf widtha LW Cm 109, 111, A11 Component of leaf area

Leaf length? LL Cm 109, 111 Component of leaf area

Total stem count TSC Count 110, 111 Biomass yield component

Plant height? PH M 109, 111, A11 Biomass yield predictive trait

Full height FH M 109, 111, A11 Biomass predictive trait

Heading date HD DOY 110, 111, A11 Length of vegetative stage

Anthesis date AD DOY 110, 111, A11 Length of vegetative stage

Dry matter percentage® DM % 111 Positively correlated with maturation and, therefore, with
cellulose and lignin content (Dien et al. 2006)

Neutral detergent fibert NDF %DM 111 Lignin + celluloses + hemicelluloses

Acid detergent fiber? ADF %DM 111 Lignin + cellulose

NDF digestibility? NDFD % 111 Digestible fraction of NDF in vitro (Tilley and Terry 1963)

Acid insoluble ash® AlA %DM 111 Positively correlated to DM digestibility (Van Keulen
and Young 1977)

Klason Lignin® Lignin %DM 111 Inhibits cellulosic fermentation (Vogel and Jung 2001)

Increases conversion efficiency in thermochemical

processes (Boateng et al. 2006)

Crude protein® CcpP %DM 111 Protein + nonprotein nitrogen (excluding nitrate)

Ash content ASH %DM 111 Fouling of bioreactors and disposal costs
(Brummer et al. 2002)

Calciumb Ca %DM 111

Chlorine® Cl %DM 111

Copper® Cu png.g—1 111

Ironf Fe pg.g—1 111

Potassium® K %DM 111

Magnesium® Mg %DM 111

Manganese? Mn png.g—1 111

Sodiump Na %DM 111

Phosphorus? P %DM 111

Sulfurp S %DM 111

ZincP Zn pg.g—1 111

Glucose? GLC mg.g—1 111

Galactose® GAL mg.g—1 111

Xylose? XYL mg.g—1 111

Arabinoseb ARA mg.g—1 111

GLC conversion efficiency? GLC_Eff % 111 Expected fraction, on a mass basis, transformed

XYL conversion efficiency® XYL_Eff % 111 into ethanol

Energy content? BTU BTU/kg 111 1 Btu =~ 1055 J

DOY, day of the year; %DM, percentage of dry matter; BTU, British thermal unit; A, Arlington (Wisconsin, USA); |, Ithaca (New York, USA). The two digits refer to the year.

¥ The trait was also measured in A10 and 110, in the LP1 and PL2 panels only.
The trait was also measured in A10, in the LP1 and PL2 panels only.
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Normal(0, (>, ®>" C)(r;,at), where >, ®3" . is the Kronecker
product of the first-order autoregressive covariance matrices on rows
and on columns, respectively. The mixed models were fitted using
ASREML-R (Butler et al. 2007).

The matrix of genotypes’ BLUEs, computed as described above,
can be downloaded from http://dfrc.wisc.edu/sniper/.

Marker data and quality control

Genome reduction, by ApeKI restriction, and sequencing were per-
formed according to Elshire et al. (2011). Reduced DNA samples
were sequenced on the Illumina HiSequation 2000, with 95 samples
plus one negative control per lane. To simultaneously discover SNP
markers and call genotypes, the UNEAK pipeline was used (http://
www.maizegenetics.net/gbs-bioinformatics; Lu et al. 2013). This pipe-
line trims reads to a 64-bp length to limit sequencing errors and
speedup computation, and discards markers based on a network filter
designed to detect and eliminate markers showing complex relation-
ships with others, which suggests paralogy and/or sequencing errors
(Lu et al. 2013). A total of 29,313 SNPs were called out of the UNEAK
pipeline. Marker genotypes were coded as allelic dosages: —1 for
homozygotes at the reference allele, 0 for heterozygotes, and 1 for
homozygotes at the alternate allele, assuming disomic inheritance in
reed canarygrass (Carlson et al. 1996). The raw genotypic data are
available for download from http://dfrc.wisc.edu/sniper/.

Markers were selected based on proportion of missing values
(PMV) <0.90 in each of three panels, separately. It is typical to filter
out GBS SNPs by a predetermined low missing rate (e.g, PMV
<0.20). However, we did not filter these markers to avoid removing
potentially useful information, and also because a rigorous study of
the behavior of the MI approach at different missing rates is merited.

After this first filtering step, 18,818 markers were retained. Marker
variables were then discarded if they met one of the following criteria:
(i) being “constant”, i.e., having a variance close to 0 (only 24 markers
were discarded based on that criterion) or (ii) being “collinear”, i.e.,
being correlated by at least 0.999 (in absolute value) to some
other marker variable with a smaller amount of missing values in
the dataset. This filtering step was recommended by van Buuren and
Groothuis-Oudshoorn (2011) and was implemented in the mice R
package. This avoided overly conservative tests in GWAS due to in-
adequate adjustment for multiple testing on highly correlated test sta-
tistics and also ensured that multiple imputations were not biased, as
a result of strong correlations among predictors, and appropriately
reflected imputation uncertainty. At this point, 6138 markers were
considered for further analyses. Figure 1 shows the distributions of
PMV and MAF for marker data after the first filtering step (18,818
markers) and after the second filtering step (6138 markers). As
expected, filtering for variability and noncollinearity preferentially dis-
carded markers with high PMV and low MAF. Note that filtering out
markers on PMV <0.80 across panels (which is still a very lenient
criterion) would have resulted in only 3419 markers being considered
for subsequent analyses (Table S2). Also, for markers not meeting the
criteria of van Buuren and Groothuis-Oudshoorn (2011), estimates of
marker effects from averaged imputed data ((AD); see Association anal-
yses) tended to show larger deviations from those obtained based on
nonmissing data only ((CC); see Association analyses), no matter what
the imputation uncertainty was (Table S3, Figure S2). Finally, effects of
discarded markers as estimated from multiple imputes ((MI); see Asso-
ciation analyses) tended to show excessively strong shrinkage in com-
parison with (AD) estimates, with little adjustment of estimates in
response to imputation uncertainty (Table S4, Figure S3).

5000-
34000’ Mean: 0.83 / 0.78
x 5D:0.08/0.11 Malrk(:_r
® :0-09/0-0. selection
E3UUU’ Range: 0-0.9/0-0.89 on PMV only
k]
52000 on PMV +
_E variability and
non-collinearit
21000_ 4 Figure 1 Summary statistics and distributions of pro-
portions of missing values (PMV) and minor allele
frequency (MAF) on markers retained after the first
0- . ] ] [ . filtering step (“on PMV only”, i.e. PMV < 0.9 by panel;
0.00 0.25 0.50 0.75 1.00 18,818 markers) or after both filtering steps [“on PMV +
Proportion of missing values (PMV) variability and noncollinearity”, i.e. PMV < 0.9 by
panel + filtering step recommended by van Buuren
and Groothuis-Oudshoorn (2011), in which collinear
and constant marker variables are discarded; 6138
¢ 1500~ markers]. Statistics are the mean, SD, and range for
o ;1;_38:1%1?1[;28 Marker “on PMV only” / “on PMV + variability and noncollinear-
E Raﬁgé: D000, 0I5 se:)%cggdr\'/ - ity”. Filtering for variability and noncollinearity preferen-
1000~ ¥ tially discarded markers with high PMV and low MAF.
o
o on PMV +
£ variability and
g 500- non-collinearity
=
0.
0.0 0.1 0.2 0.3 0.4 0.5
Minor allele frequency (MAF)
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The high values of PMV among selected markers (78% of missing
values on average) reflect low sequencing depth of the GBS. From the
quality control step, the marker data matrix X was produced, in which
missing values were coded as NA. Matrix X, used as input to the
imputation procedure, is available for download from http://dfrc.
wisc.edu/sniper/.

Marker data imputation

General principle of multiple multivariate imputation: Consider
some incomplete data set X, with X,,; and X,,;; denoting the ob-
served and missing data, respectively. Given an estimand of
interest 6 (e.g., a model parameter), multiple imputation (MI) aims
at producing a correct Monte Carlo (MC) approximation of
p(0|Xobs)? fp(@’Xabs,Xm,-s)p(Xmis|X0bs)de,-s from m imputes of
X, with X,,;; denoting some imputation of Xy,;;. One implication
of the MC approximation being correct is that, given an impute
{Xobs, Xmis}, the distribution p(B’XObS, X,uis) is well-approximated,
i.e., the sampling model is correct. Another implication that is of
particular concern when performing MI is that the distribution
p(Xm,»S\XGbS) is also well-approximated, i.e., the imputation pro-
cedure is proper (Rubin 1987), which is defined as follows: let 6 be
an estimate of 6 from a given impute, let W be the within-impute
estimation variance of 6, and let B* be the among-impute variance
of 6 (corrected for a finite number of imputes): (i) E[f|X]=6, i.e.,
the average of 6 over imputes () is an unbiased estimator of 6,
the estimate of 6 from the hypothetically complete dataset; (ii)
E[W|X]= W; and (iii) E[B*|X] = Var(f) (Rubin 1987; van Buuren
2012). Condition (i) implies correct assumptions regarding the
imputation model and the source of missingness in the data. Typ-
ically, the missing-at-random assumption (no factor other than
those accounted for in the imputation model caused missingness)
(Rubin and Little 2002) is necessary to guarantee that condition (i)
holds. Conditions (ii) and (iii) imply that inferences from MI are
confidence-valid (van Buuren 2012), i.e., that the total variance of

6 is realized in a conservative way: EW] = W+Var(d). In

this study, we assess imputation models for unbiasedness, under
specific assumptions [condition (i)], but we did not test imputa-
tion models for their ability to preserve variability in the data
[condition (ii)] or to correctly reflect among-impute variability
[condition (iii)].

When performing MI on data sets containing missing values at
several variables (SNP markers), one must sample from the joint
distribution of missing values at all variables. To achieve this, two
strategies have been proposed: joint modeling (JM) and fully
conditional specification (FCS). JM consists of sampling from the
joint distribution directly, by ordinary MC (Rubin and Schafer 1990;
Schafer 2010). This method is theoretically sound, but it requires
complex model specifications and assumptions that, if not correct,
may result in imputation bias. JM cannot accommodate tree-based
approaches that have the advantage of being flexible and not
requiring any model specification. FCS, however, implicitly samples
from some hypothetical joint distribution by repeatedly sampling
from the fully conditional distributions at each variable of interest
using a Gibbs sampling scheme (van Buuren et al. 2006; van Buuren
2007). Because it relies on Markov chain MC (MCMC), FCS can be
computationally costly. Also, there is no guarantee that the joint
distribution actually exists, so FCS is usually described as
a pseudo-Gibbs sampling procedure (Gelman and Raghunathan
2001; van Buuren et al. 2006; van Buuren 2007). However, simula-
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tion studies have suggested that FCS is robust to such issues (van
Buuren et al. 2006). A critical incentive for using FCS rather than JM
is that FCS allows for much more flexibility in the imputation pro-
cedure: each fully conditional distribution can be derived separately,
using either parametric (e.g., linear regression) or nonparametric
models (e.g., classification trees). This flexibility is particularly valu-
able when dealing with missing values at many variables, in which
case JM may simply not be practical (Gelman and Raghunathan
2001).

Implementation of multiple imputation: In this study, we sampled
missing values from p(X,ui|Xops) by FCS. In the pseudo-Gibbs
sampling process, missing values at the k™ SNP were sampled from
p(Xmi5k|Xabs,Xmisfk) based on a classification and regression tree
model (CART) (Breiman et al. 1984). For unbiasedness, imputa-
tion of X,,;; relied on the missing-completely-at-random (MCAR)
assumption, stating that missingness occurred at random, with no
factor causing SNP genotypes to be systematically missing (Rubin
and Little 2002). CART presents the advantages of not requiring
explicit model specification and conveniently accommodating non-
linear effects.
The general algorithm was:

For impute r =1,...,m:

1. For k=1,...,q; fill in missing values at the k™ marker by
& (.0
random draws X5, from Xps, .

2. Forl=1,...,L
Fork=1,...,¢q:
) from

ST
sample Xjis,

X0b57 X(r,l) X(r,l) X(r,l—l) . X(r,l—l))

misy? * 0 Ehmisg ) “imisgy 0 > “Emis,

p (Xmm

3. Return {Xobs,ngf)} as X",

where m is the total number of imputes of X, g is the number of
marker variables, and L is the number of MCMC iterations.

The number of imputes m was set to 20, based on available com-
putational and memory resources. The number of iterations L up to
which the actual sampling occurred (i.e., the burn-in period) was set
to 10, based on previous studies (Dai et al. 2006; Burgette and Reiter
2010) and available computational resources.

MI, based on CART, was implemented according to Doove et al.
(2014) with packages mice (van Buuren and Groothuis-Oudshoorn
2011) and rpart (Therneau and Atkinson 1997) in the R programming
language (R Development Core Team 2014). CART's were fitted with
pruning up to at least five donors per terminal node (i.e., no less than
five observations at each leaf in the tree). For the MI algorithm to be
computationally tractable, only a subset of SNPs was considered for
fitting the CART models: for each SNP k, only the 500 SNPs showing
the highest marginal mutual information with SNP k were considered
as potential predictors.

MI implemented as described above took 1 d per imputation
(chain of 10 iterations) on a workstation consisting of 24 Intel Xeon
X7460 CPU processors at 2.66 GHz with 264 Gb of RAM. The
procedure was parallelized on five (m/4) threads.

Two types of marker data were generated from the multiple
imputation procedure: the MI set of matrices X = {X, ... X"}
and the average-dosage (AD) matrix X = avg,(X“)) (i.e., each
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element in X was the mean of genotype codes across the m = 20
imputes). The array X and the matrix X from the imputation pro-
cedure can be downloaded from http://dfrc.wisc.edu/sniper/.

Association analyses

Data subsets: Only tetraploid samples were considered for GWAS,
and the following subsets of the data were examined separately when
testing marker-trait associations: LP1, LP2, and AP-4x (AP panel with
only P. arundinacea samples) consisting of n= 177,189, 550 individ-
uals, respectively. After discarding marker variables with MAF <0.05
(as estimated from X,), in each subset separately, 5024, 5096, and
5228 markers were assayed in association testing, respectively. Figure
S1 shows, for each subset separately, the distribution of PMV and
MAF for markers selected prior to conducting GWAS. The distribu-
tions are equivalent across subsets and similar to that observed with
the larger set of 6138 markers, with the exception that the average
MAF increased from 0.28 to 0.32.

Association model: Within each of the three data subsets (LP1, LP2,
and AP-4x), the linear mixed model of Yu et al. (2006) was fitted for
each SNP k retained, using the P3D (population parameters previ-
ously determined) approximation for computational efficiency (Zhang
et al. 2010; Kang et al. 2010):

8obs = M+ XobsB + QopsV + Zopst + €ops (CC)
g=pn+ XiB + Qv+ Zu + e (AD)
g=p+XiB + Qv+ Zu + e (MI)
u~ Normal(O, I_(O'i);e ~ Normal(O, Iof)
g=n+ XiB + Qv+ Zu + e (MI)

u ~ Normal(O, Ko-fl);erv Normal(O,Iag)

where g = {genotype;} is the n-vector of clones’ genotypic values as
described above; Xy, Xi, and Xk are the vectors of allelic dosage for
SNP k and correspond to the three types of marker data described
above; B is the effect of SNP k; Q is the matrix of the first t compo-
nents used to account for population structure (Price et al. 2006)
obtained from a principal component analysis (PCA) performed
either on X(Q) or X(Q); v is the vector of their effects; Z is the
design matrix for relating observations to clones; u is the vector of
random polygenic effects; K is the realized genetic relationship ma-
trix estimated from either X(K) or X(K); e is the vector of residuals;
and I is the identity matrix. o and o were estimated by restricted
maximum likelihood (REML). The R package rrBLUP (Endelman
2011) was used to calculate the realized relationship matrix K and
estimate o and 0. Subscript obs refers to the subset of individuals
for which there was no missing value at SNP k.

(CC) is the analysis restricted to complete cases (nonmissing
values) for a given marker tested, with the approximation of Q and K
estimated from X used as fixed, to account for population structure
and relatedness. In (AD), marker effects are assessed from X, consid-
ered as fixed. In (MI) and (MI*), marker effects are assessed from
x=x" ..., X and the variability across imputes X is accounted
for. Relying on the MCAR assumption, (CC) served as a reference for
assessing the consistency of estimates from (AD) or (MI): (AD) esti-
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mates departing too much from (CC) estimates were considered un-
reliable, especially when imputation uncertainty (7; see below) was
high. Estimates from (MI) were expected to show appropriate con-
trol over imputation uncertainty, i.e., shrinkage toward zero as y
increases. In (MI*), marker effects are assessed from X as in (MI),
but variability across imputes for estimates of Q and K is also
accounted for, through Q and K, thus allowing for full control
over imputation uncertainty in inferences regarding . Although
(CC), (AD), and (MI) are convenient to assess the impact of im-
putation uncertainty on 8 estimates, (MI*) should be the method
permitting the most statistically sound inferences regarding

marker-trait associations.
In AP-4x, population structure and relatedness were, respectively,

accounted for by one principal component and by matrix K calculated
on AP-4x individuals. In LP1 and LP2, no principal component and
no genetic relationship matrix were included in the GWAS model,
then equivalent to a single-marker analysis model.

Combination of parameter estimates in MI and calculation of p
values: In (CC) and (AD), significance of marker-trait associations
was assessed by performing an F-test for the regression coefficient
estimate 3, as described in Kang et al. (2008). In (MI) and (MI*), an
F-test was performed in which the p value was (Rubin and Schenker

1986; van Buuren 2012):
=2
B
Pr (Fl,v > ?

_ 1 5
where B = —>7, ,8(7) is the average estimate of 3 over imputations,
m

with B(r) being the estimate of B8 based on the r" imputation;
T = W+B* is the (estimated) total variance of 3 estimates, partitioned

into W = %E:"ZIVar([Bm) = E[Var(B}X(r))}, the average within-
PG N
) =

impute variance of B estimates, and B*= ZHVar,(B
Var(E [[3 ‘X(V)D, the among-impute variance of B estimates, cor-
rected by 2t for unbiasedness (= means “asymptotically equal”).

Barnard and Rubin (1999) derived a formula for the number of de-
nominator degrees of freedom v of the F-statistic:

VmVobs
Vm + Vobs

where v, = mA;I’ with A = B—T*; Vobs= Zumi; Voo (1 —A), with

Veom = 1 — (2+t) being the number of degrees of freedom for the
hypothetically complete dataset.
For a particular coefficient 3, the uncertainty in its estimate due to

imputation is characterized by v, the fraction of information about
B lacking due to missingness:

2
_ s+ v+3

1+s

with s = % (Rubin 1987; van Buuren 2012). vy reflects the depen-
dency of the inferences about 8 on the imputation procedure.
Although quite complex, the y-statistic may simply be interpreted
as A, the proportion of among-impute variance in inferences, ad-
justed for a finite number of imputes (van Buuren 2012).
In this study, y=1.026A(R* =1). According to Li et al.
(1991), 0=vy<0.2, 02=vy<0.3, and 0.3=<7y<0.5 indicate
a “modest,” “moderately large,” and “high” missing data problem,
respectively.
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False discovery rate and significance for marker-trait association:
The p values obtained from (CC), (AD), or (MI) were transformed
into adjusted false discovery rates (FDR) using the method of Storey
and Tibshirani (2003). Marker-trait associations for which FDR <0.1
in (CC) or (MI*) were deemed significant and considered for further
analyses, although evidence from (MI*) was preferred because (CC)
relied on the approximation of Q and K estimated from X used as
fixed in the GWAS model and also because (CC) was considered more
prone to false positives or false negatives due to smaller sample sizes,
nops < 1 (see Discussion). The R package qvalue (Dabney et al. 2013)
was used to compute FDR.

RESULTS
Genotypic variability in the panels

Phenotypic traits: Traits were measured in varying numbers of years
and locations (Table 1). Some traits were measured in only one location

(Ds, TSC, St, and Quality traits in AP, measured/predicted in Ithaca
only) and/or during only 1 yr (Ds only in 2009 and Quality traits only
in 2011). As a result, they would show an inflated genotypic variance.
Ds, St, LL, LW, and all quality traits showed a much higher ratio of
genotypic-to-phenotypic variance (H) in AP compared to LP1 and
LP2. PH showed a higher H in LP1 and AP compared to LP2. AD
showed a higher H in LP2 and AP compared to LP1 (Table 2).

Population structure: To analyze population structure, principal
component analysis (PCA) was performed on the average dosage
matrix X. For the whole dataset (panels LP1, LP2, and AP combined),
the first four principal components (PC) were deemed relevant for
describing population structure based on proportions of variance
explained and grouping patterns on PCs (Figure 2). Grouping patterns
in the whole dataset are consistent with race (first PC, distinguishing
accessions that are Phalaris arundinacea from those that are Phalaris
caesia), panel (second and third PCs), and geographical origin—Eastern
Europe vs. North America or Western Europe (fourth PC). The fifth

Table 2 Summary statistics on the field traits (9) and quality traits (26) in each panel

Mean Total SD H

Trait LP1 LP2 AP LP1 LP2 AP LP1 LP2 AP
Ds 7.0 6.3 4.8 2.0 2.6 2.7 0.49 0.71 0.71
TSC 97.5 122.6 69.1 61.5 54.2 75.8 0.33 0.33 0.30
St 6.7 6.1 6.5 1.6 1.8 1.9 0.192 0.102 0.66
LW 21.0 18.6 17.0 6.0 3.9 3.8 0.16 0.16 0.29
PH 109 109 99 35.8 324 42.9 0.31 0.06 0.222
LL 224 229 243 67.3 67.4 85.3 0.1 0.14 0.30
FH 162 160 143 31.2 28.5 36.3 0.31 0.24 0.32
HD 153 153 153 7.2 6.5 6.5 0.30 0.33 0.38
AD 157 158 158 7.4 6.5 7.0 0.27 0.45 0.43
DM 95.9 95.8 95.8 0.37 0.36 0.32 0.10 0.12 0.492
CP 13.6 13.4 8.7 7.3 7.3 2.0 0.09 0.03 0.49
ADF 38.9 385 40.5 5.2 53 2.9 0.08 0.03 0.71
NDF 64.8 64.6 65.8 5.6 55 3.9 0.02 0.09 0.79
Lignin 5.4 5.6 6.5 1.83 1.84 0.58 0.12 0.05 0.55
NDFD 57.5 57.3 48.3 14.4 13.6 5.3 0.18 0.09 0.59
ASH 8.0 7.9 6.8 2.6 3.4 0.9 0.09 0.06 0.37
AIA 3.7 3.9 4.0 1.14 1.07 0.88 0.12 0.08 0.43
Ca 0.33 0.33 0.26 0.14 0.14 0.04 0.14 0.00 0.302
P 0.24 0.25 0.2 0.151 0.07 0.031 0.1 0.01 0.55
Mg 0.24 0.25 0.18 0.162 0.151 0.058 0.04 0.05 0.48
K 1.9 1.9 1.6 0.93 0.35 0.35 0.26 0.18 0.69
Na 0.013 0.012 0.012 0.001 0.002 0.001 0.002 0.00 0.45
S 0.25 0.24 0.20 0.20 0.07 0.05 0.20 0.02 0.48
Cl 0.69 0.67 0.62 0.32 0.26 0.18 0.00 0.03 0.38
Fe 122 163 156 69.9 69.5 92.1 0.172 0.00 0.51
Mn 70.7 68.9 68.1 52.2 11.8 15.9 0.14 0.00 0.46
Zn 271 28.3 27.0 3.2 3.1 2.4 0.002 0.00 0.52
Cu 4.9 4.3 3.7 4.2 3.7 1.9 0.21 0.19 0.51
BTU 7790 7823 7748 163.1 1701 93.8 0.10 0.10 0.39
GLU 309 312 324 77.4 36.7 17.5 0.06 0.03 0.582
XYL 216 216 216 6.4 7.2 7.7 0.00 0.05 0.72
ARA 34.7 334 33.3 6.6 6.3 3.6 0.22 0.05 0.54
GAL 26.2 26.1 23.6 6.4 4.9 1.6 0.16 0.03 0.43
GLC Eff. 55.6 56.4 48.4 11.4 12.6 59 0.05 0.01 0.412
XYL Eff. 59.6 59.6 68.2 9.4 8.9 9.7 0.17 0.21 0.70

H, broad-sense heritability (in LP1 and LP2) or proportion of genotypic variance to phenotypic variance (in AP), calculated on an individual-plant basis, as an estimate

2
g,
of G

24 2 2
ogtogetog

, with 0 the genotypic variance, o the variance of genotype-by-environment interactions, and o2 the residual variance, from the model described in

Phenotypic data in Material and Methods, but fitted within each panel separately and with genotype as a random effect.
The spatial correlation model did not converge for the corresponding trait and panel. If the model did not converge, then a simpler model, not including the

plot(year(location)) effect, was fitted.
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and sixth PCs do not seem to reflect any grouping and explain
a small proportion of the total genotypic variation compared with
the first four PCs.

PCA was also performed for four other subsets of the data: LP1,
LP2, AP, and AP-4x (AP panel with only P. arundinacea samples).
The numbers of selected PCs for those subsets were 0, 0, 2, and 1,
respectively (data not shown). The relevant PCs in AP were consistent
with race and geographical origin, respectively, in the same way as in
the whole data set. The relevant PC in AP-4x was consistent with
geographical origin.

Analysis of imputation uncertainty

Consistency of PCs and genetic relationship coefficients across
imputes: Consistency of a variable in MI is defined as the correlation
with the same variable in (AD), in absolute value, averaged over
imputes. Such value aims at assessing to what extent it is appropriate
to use Q and K, estimated from X, as fixed, in (CC), (AD), and (MI)
association analyses. In the whole dataset, K estimates seem very
consistent over imputes (consistency of 0.90 = 0.0002; Table 3), but
although estimates of Q, (first PC) are quite consistent, the estimates
at the subsequent PCs lose coherence across imputes, with the fourth
PC having a consistency of only 0.043 (= 0.032). This result suggests
that accounting for imputation uncertainty with respect to population
structure variables—when those are estimated from marker data—is
important, which implies that (MI*) should be the most appropriate
type of analysis for assessing marker-trait associations. In the AP-4x
subset, the consistency of the only relevant PC is 0.076 (* 0.067) and
the consistency of genetic relationship coefficients is 0.934 (= 0.0002).

Consistency across imputation schemes of marker effects and
significance:

From complete case (CC) to average dosage (AD): Under the
MCAR assumption, the relationship between X, and the trait of
interest adequately reflects the effect of markers in the whole sample.
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That is, for any marker-trait association, the estimate B based on
complete cases is unbiased with respect to 3, the estimate of 8 based
on the hypothetically complete data set. It follows from the MCAR
assumption that imputations are unbiased if estimates of marker
effects from (AD), B4p, are unbiased with respect to those from
(CQC), Bcc- The plot (Figure 3A) and the regression analysis (Table
4) of B,p on Bec, across traits and markers, strongly suggest that
there is no bias from (CC) to (AD). For marker-trait associations with
low imputation uncertainty (y <0.2), there is a close relationship
between B and B,p (R? = 0.94). However, for marker-trait associ-
ations with moderate-to-high imputation uncertainty (y > 0.2), large
differences between B and B,;, can be observed, but at random.
Such differences indicate noise in inferred values of 8 and opportu-
nities for false positives or false negatives (Figure 3B).

From average dosage (AD) to multiple imputation (MI): The
purpose of MI is to make sound inferences when one bases statistical
analyses on imputed data. Therefore, MI should produce more
conservative estimates B i (B) when imputation uncertainty regarding
marker-trait associations is high, in order to avoid declaring as

Table 3 Consistency of population structure and genetic
relationship variables across imputes

Average Correlation

Variable with (AD) estimate SD Across Imputes

Q 0.74 0.026

Q, 0.48 0.088

Qs 0.21 0.100

Q, 0.04 0.032

Qs 0.05 0.039

Qs 0.05 0.034

K 0.90 0.0002
Consistency of confounder variables across imputes is reflected here
by avg,{’yCor(Off), éu)‘} for principal component j (j=1,...,6) and

avg,{‘Cor(Kfjr,), Ki)

of genotypes). Cor is the Pearson correlation.

} for realized genetic relationship (with (i,i") a given pair
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Figure 3 Concordance in inferences from (CC) to (AD) in the AP-4x subset of the data. The points’ size refers to the stability of inferences across
imputes (1—7). (A) Concordance across procedures and over all traits in marker effect estimates, standardized within each trait. (B) Concordance
across procedures and over all traits in significance [—logio(p)]; green areas correspond to significant associations according to a Bonferroni

correction on a single-trait basis (p < 9.56 x 107¢).

significant associations that are due to “fortuitous” imputations. The
plot (Figure 4A) and the regression analysis (Table 5) of 3,;; on f3,p,
across traits and markers, show that as 7y increases, estimates of 8 tend
to shrink toward zero, from (AD) to (MI). This behavior results in
higher p values (lower significance) for those associations in which
imputation uncertainty is high: whether associations inferred in (AD)
are true or false, their p values will tend to fall above the significance
threshold in (MI) if their among-impute variability is too large, but
there is good agreement between (AD) and (MI) for low values of y
(Figure 4B). Only for y = 0 (no variation among impute) would there
be no adjustment on f3,;; and Var(B,). In other words, one should
rely on (AD) for inferences only if it can be assumed that the situation
is “close enough” to the case where y = 0. Clearly, this is not the case
for these data. In Figure S4, the consistency of marker effects from
(CC) to (MI) is shown.

From multiple imputation (MI) to multiple imputation with
full account of imputation uncertainty (MI*): In (MI*), the marker
data matrix X, but also the principal component and the genetic re-
lationship matrices Q and K (both estimated from X) are allowed to
vary over imputes. Although considering Q and K as fixed (estimated
by Q and K) was convenient for studying the behavior of inferences
from (CC) to (AD) to (MI), (MI*) should permit the safest inferences
by appraising the imputation uncertainty in the imputed genotypes as
well as in the resulting Q and K estimates. Figure 5A suggests con-
cordance of B estimates from (MI) to (MI*), despite the relatively low
consistency of Q estimates across imputes (Table 3). Also, marker

effects with low imputation uncertainty seem less shrunk toward zero
in (MI*), where the variability in Q and K estimates is accounted for.
As a result, more significant associations could be detected in (MI*)
than in (MI) (Figure 5B). Values of 'y were quite consistent from (MI)
to (MI*), with increased noise around perfect concordance for values
of y above 0.2 (Figure 6).

Imputation uncertainty and potential gains in power: As Figure 7A
suggests, for y < 0.2 (i.e., markers with a modest missing data prob-
lem) there were generally small differences in significance
(—log,(p)) from (CC) to (MI*), but some opportunity for a few
outstanding gains in significance, with increases of up to 8.08 in
—log,,(p) (for the association between marker TP87762 and TSC;
see next paragraph and Table 7). Assuming that the associations
detected are true positives, this increase in significance may be con-
sidered an increase in power. This higher sensitivity in GWAS would
logically come from a higher effective sample size due to imputation,
with a modest missing data problem at the same time. For y > 0.2,
however, there was little benefit from imputation, with very few op-
portunities for higher sensitivity from (CC) to (MI*): most values for
the differential in — log,,(p) are actually negative. Those results show
again that a threshold of 0.2 for y is a good guideline for setting apart
inferences with excessively high imputation uncertainty.

Potential factors influencing imputation uncertainty: Because there
is good consistency between 7y and the apparent usefulness of

Table 4 Regression analysis of the relationship between Bcc and Bap

Intercept Slope
Selection on y Coefficient Estimate (= SE) p Coefficient Estimate (+ SE) p 62 (R?)
None 0.0010 (+0.0011) 0.34 1.00 (= 0.0012) <0.0001 0.238 (0.76)
y<0.2 —0.0024 (+0.0048) 0.61 0.99 (= 0.0053) <0.0001 0.048 (0.94)
y>02 0.0011 (+0.0011) 0.33 1.00 (= 0.0012) <0.0001 0.240 (0.76)

Model: Bcc= Intercept+Slope.Bap+e. The estimated regression coefficients suggest no systematic bias from B¢¢ to Bap (Slope = 1). However, for associations with
values of y above 0.2, inferences tend to be more erratic, as indicated by the substantially higher residual variance (62) at y= 0.2. The model meets the assumptions
of linearity but not normality of residuals. Although p values are not exact, they are provided for information. B estimates are from analyses on the AP-4x subset.
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Figure 4 Concordance in inferences from (AD) to (MI) in the AP-4x subset of the data. The points’ size refers to the stability of inferences across
imputes (1—7). (A) Concordance across procedures and over all traits in marker-effect estimates, standardized within each trait. (B) Concordance
across procedures and over all traits in significance [—logio(p)]; green areas correspond to significant associations according to a Bonferroni

correction on a single-trait basis (p < 9.56 x 1079).

imputation for increasing power, it would be helpful to identify the
factors that allow the analyst to effectively predict y and determine how
likely imputation is to generate gains in power. Figure 7, B-D, respec-
tively, show the marginal relationships between y and proportion of
missing values (PMV), MAF, or the average mutual information (AMI)
between given markers and all other markers in the data set. There seems
to be a strong positive relationship between y and PMV, with values of y
that are below 0.2 for markers that have up to approximately 25% of
missing values. As PMV increases, the slope for y decreases and the
variability around the conditional mean, as determined by a smoothing
curve, increases. There seems to be a weak correlation between y and
MAF, with markers having high MAF showing slightly higher imputation
uncertainty, especially for MAF <<0.1. However, this relationship might
be an artifact from markers with low PMV, which tended, by happen-
stance, to have lower MAF. There seems to be some (nonlinear) relation-
ship between y and AMLI, but it is not clear whether it is due to the fact
that markers with very low AMI tended to have lower PMV on average:
for AMI <0.02, average PMV is 0.45 (SD 0.32); for AMI >0.02, average
PMV is 0.80 (SD 0.071). A simple additive model fitted to the data with
arcsin(y) regressed on PMV, MAF, and AMI suggests that that all three
factors considered have a significant effect on imputation uncertainty:
MAF (usually equivalent to marker genotype variance) and—to a much
larger extent—PMV generate imputation uncertainty, whereas AMI
reduces imputation noise (Table 6). The model fitted has some predictive
value (r’cy, prediction reliability in 10-fold cross-validation, was 0.21), but
a rather large part of the variation could not be accounted for (Table 6).

Association analyses

Significance of marker-trait associations: Significant associations, for
which FDR <0.1 in (CC) or (MI*), were detected in the AP-4x subset
and in the LP2 subset; no significant association was detected in LP1.
These involved nine markers (thereafter “significant markers”):
TP140584; TP184396; TP191264; TP217634; TP268059; TP341988;
TP477925; TP521945; and TP87762. The one association involving
TP341988 was detected only in LP2 (TP341988 was not included in
the analysis in AP-4x due to the threshold of MAF >0.05), whereas
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the others were detected only in AP-4x. As shown in Table 7, behavior
of inferences from (CC) to (MI*) was highly dependent on 7: for
values of vy above 0.3 (associations involving TP184396, TP191264,
TP217634, TP268059, TP341988, and TP521945), marker effects es-
timated from (MI*) were closer to zero and significance of associations
decreased, certainly as a result of the shrinkage of marker effects as
well as the high among-impute variance. These marker-trait associa-
tions that lost significance from (CC) to (MI*) generally had a high
PMV (above 0.69). However, associations with y << 0.3 (involving
TP140584, TP477925, and TP87762), characterized by lower PMV
(below 0.34), were more prone to show higher significance from (CC)
to (MI*), with similar (sometimes larger) estimated marker effects. In
some cases, such as TP140584-TSC, TP477925-ARA, TP477925-Mg,
TP477925-Ds, TP477925-P, TP477925-TSC,TP87762-ARA, and
TP87762-Mg, associations were deemed significant in (MI*) but not
in (CC). Such behavior suggests an increase in detection power despite
the uncertainty associated with imputation. Those associations gener-
ally show consistency from (CC) to (MI*), which would bring evidence
for unbiasedness of the imputation procedure. However, for associa-
tions TP477925-Mn (y= 0.17) and TP477925-Cu (y= 0.09), marker
effects were estimated to be weaker in (MI*). Under the assumption
that the imputation procedure is proper, such results suggest that the
associations detected in (CC) were actually false positives.

1 Table 5 Regression analysis of the relationship between Bap and

Bur

Coefficient
Effect Estimate (+SE) p R?
Intercept —0.0048 (+0.0028) 0.0943 0.91
b1 Bu 1.0073 (+0.0069) <0.0001
by:y 0.0097 (+0.0061) 0.1152
b3 : By Xy 5.7864 (+0.0162) <0.0001

Model: Bp = Intercept +(bi+ bsy). By + b2y + e. The estimated regression coef-
ficients suggest no difference between Bp and By, for associations for which
vy =0 (by = 1), and shrinkage of B, toward 0 as vy increases (bz > 0). The model
meets the assumptions of linearity but not normality of residuals. Alhough p values
are not exact, they are provided for information. B estimates are from analyses on the
AP-4x subset.
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Figure 5 Concordance in inferences from (MI) to (MI*) in the AP-4x subset of the data. The points’ size refers to the stability of inferences across
imputes (1—7). (A) Concordance across procedures and over all traits in marker-effect estimates, standardized within each trait. (B) Concordance
across procedures and over all traits in significance [—logio(p)]; green areas correspond to significant associations according to a Bonferroni

correction on a single-trait basis (p < 9.56 x 1079).

The good overall concordance between observed and expected
quantiles of p values for (CC) suggests that potential confounders (due
to population structure and relatedness in AP-4x) were well accounted
for in the GWAS models (Figure 8). Regarding (MI*), the strong overall
deflation of —log,,(p) suggests that p values simply do not follow
a Uniform(0,1) distribution under the null hypothesis (no significant
marker-trait association) because of the extra variability due to imputa-
tion uncertainty, which was large for the majority of markers (Figure 6).

Correlation among significant markers: In the absence of haplotypic
information, the squared correlation between markers’ allelic dosages
(r?) was used to reflect linkage disequilibrium (LD) between markers.
The 72 values were calculated based on X. Among the nine significant
markers, there seemed to be one group of four markers in moderately
strong association with each other (TP140584, TP217634, TP477925,
and TP87762) and one group of two markers in mild association
(TP521945 and TP268059) (Figure 9). This grouping is consistent
with the associations inferred from GWAS (i.e., markers in one group
tend to be associated to similar traits; Table 7), except for TP217634,
which is not associated with the same traits as TP140584, TP477925,
or TP87762.

Homology of SNP 64-bp sequences with the Brachypodium
distachyon genome: For each marker, a 64-bp read containing the
corresponding SNP was obtained from the UNEAK pipeline. The reads
corresponding to the nine significant markers were analyzed for
homology with the Brachypodium distachyon genome (v1.0) (Table
8). Three of the nine marker reads significantly match regions of the
Brachypodium distachyon genome: (i) TP184396, shown to be nega-
tively associated to Lignin (the nonreference allele has a negative effect
on the trait), is in a region homologous to the last intron of an arginine-
tRNA ligase gene (e-value = 1.2E-6); (ii) TP268059, shown to be neg-
atively and positively associated with CP and XYL _Eff, respectively, is in
a region homologous to the only exon in a phenylalanine/histidine-
ammonia-lyase gene (e-value = 3.4E-12); and (iii) TP341988, shown
to be negatively associated with GLC in LP2, is in a region homologous
to the second exon of a translation elongation factor G gene (e-value =

ZZG3-Genes | Genomes | Genetics
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4.3E-19). The moderate significance of TP184396’s alignment to the
B. distachyon genome may be due to the fact that the marker is located
in an intron, which is usually more likely than exons to be under low
selection pressure and diverge substantially across species.

DISCUSSION

Genotype calling uncertainty

Genotype calling uncertainty in GBS typically arises from sequencing
error, which generates miscalls in SNP alleles, and low sequencing
depth, which causes heterozygotes to be miscalled as homozygotes.

0.0 02 04 0.6
™I

Figure 6 Concordance in imputation uncertainty, as reflected by the
y-statistic, over all traits in the AP-4x subset from (MI*) to (MI). The blue
dashed lines correspond to the seemingly critical threshold of y > 0.2,
beyond which the +y-statistic loses coherence across procedures.

Multiple Imputation in Association Study | 901
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Figure 7 (A) Relationship between v, in (MI*), and the difference in significance from (CC) to (MI*) [A{—log1o(p)}]. Decrease in significance
[=log1o(p)] seems to occur more often and with higher intensity for y > 0.2; presumably, there would to be more opportunities for gaining
detection power with y < 0.2. (B-D) Potential factors affecting imputation uncertainty (y): relationship between v, in (MI*), and (B) PMV (proportion
of missing values), (C) MAF (minor allele frequency), and (D) the average mutual information between one given marker and all other markers in
the dataset. In purple are the smoothed curves obtained from thin plate regression (default smoother in mgev R package; Wood 2003). The

y-statistics and p values are from analyses on the AP-4x subset.

Genotype calling uncertainty may be accounted for by applying cut-
offs on proportion of reads (e.g., calling individuals homozygous for
a SNP if >80% of their reads is of a particular allele) or probabilistic
methods (returning posterior probabilities of genotypes), which rely
on some estimates of error rate and population allele frequency at
SNPs (Nielsen et al. 2011). In this study, sequencing depth was very
low; there were, on average, 0.29 reads per SNP called (SD across
SNPs: 0.38). As a result, none of the aforementioned methods could

902 | G.P. Ramstein et al.

be used conveniently (probabilistic methods were not used because of
the high amounts of missing values, particularly prohibitive for esti-
mating population allele frequencies). Genotype calling uncertainty
was therefore not accounted for, and the genotypes were used as
returned by the UNEAK pipeline in the imputation procedure and
association tests. Because genotype calling uncertainty translates into
random error under a GWAS model, not accounting for it typically
results in shrunk marker effects and loss of power (Nielsen et al.
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Table 6 Regression analysis on potential factors affecting imputation uncertainty

Effect Coefficient Estimate (+SE) p rf:v (=SD) MSE (+SD)
Intercept 0.0934 (+ 0.0018) < 2.2e-16 0.21 (+ 0.0064) 0.00687 (= 8.7e-05) [Null model: 0.00873 (+ 1.3e-04)]
b,: PMV 0.4806 (+0.0029) < 2.2e-16
b,: MAF 0.0099 (+0.0025) 8.3e-05
bs: AMI —0.1789 (= 0.0325) 3.6e-08

Model: arcsin(y) =

Intercept + by .PMV + by . MAF + b3.AMI+ e. PMV : Proportion (between 0 and 1) of missing values. The null model is arcsin(y) =

Intercept + e. The

arcsin transformation was used to account for y € [0; 1]. The model meets the assumptions of linearity and normality of residuals, but not the assumption of homosce-
dasticity: variance of residuals tends to |ncrease as ¥ increases. The y-statistics are from analyses of the AP-4x subset. MAF, minor allelle frequency (between 0 and 1); AMI,
average mutual information (base 2); rCV squared coefficient of correlation in 10-fold cross-validation; MSE, mean squared error in 10-fold cross-validation.

2011). Because there was presumably no systematic loss in precision
(true discovery rate), any GWAS inference made from (CC) or (MI*)
was still deemed valid in this study. Nonetheless, false positives may
have arisen at random from noise (due to genotype-calling uncer-
tainty or other sources), particularly in (CC), which usually had low
sample size #ps.

The use of tree models for imputation
Here, no reference genome or genetic map was available for imputing
the GBS marker data. Although it was possible to generate genetic

maps on LP1 and LP2, the proportion of missing values was such that,
in both populations, parental SNP genotypes could not be determined
clearly (in particular, 37.6% and 25.6% of selected markers had
missing values at both parents in LP1 and LP2, respectively) and
imputation uncertainty would have to be accounted to produce
reliable genetic maps, which would have been a serious statistical and
computational challenge. Consequently, imputation methods based
on HMM, which can be very accurate, were not used. In presence of
unordered marker data with a general pattern of missingness and no
reference panel, the strategy described here to impute missing values

Table 7 Results of association analyses based on (CC) and (MI*) procedures

p (FDR) B
SNP Trait (CQ) (M) (CC) (MI%) Y MAF PMV
TP140584 Ds 2.9e-08 (0.00011) 2.9e-07 (0.00075) 1.6 1.3 0.24 0.065 0.34
Mg 1.2e-05 (0.060) 7.8e-07 (0.0014) 0.022 0.022 0.28
TSC 0.00029 (0.38) 3.6e-07 (0.00063) =17 -22 0.25
TP184396 Lignin 3.2e-05 (0.082) 0.15 (1) -0.18 —0.046 0.58 0.41 0.73
TP191264 AD 4.5e-08 (0.00023) 0.27 (1) 2.1 0.19 0.43 0.12 0.83
HD 3e-06 (0.016) 0. 47 Q) 1.8 0.12 0.38
K 1.4e-05 (0.036) 2(1) 0.21 0.031 0.49
CP 3e-05 (0.052) 0. 33 ) 0.95 0.096 0.35
Lignin 3e-05 (0.082) 0.47 (1) -0.32 —0.027 0.46
TP217634 K 3.3e-06 (0.017) 0.0033 (1) -0.26 -0.17 0.61 0.08 0.74
TP268059 CP 2.5e-05 (0.052) 0. 095 M -0.74 -0.2 0.46 0.14 0.76
XYL_Eff 3.1e-05 (0.081) 1(1) 2.9 0.78 0.43
TP341988 GLCe 1.6e-05 (0.084) 0. 034 M -13 -5.6 0.5 0.11 0.69
TP477925 Mn 1.1e-06 (0.0053) 0.00011 (0.56) 5.6 3.7 0.17 0.067 0.22
Cu 7.8e-06 (0.041) 0.00029 (1) —0.68 -0.44 0.09
St 7.9e-06 (0.040) 5.9e-10 (3.1e-06) —0.64 -0.73 0.085
PH 2.7e-05 (0.069) 1.1e-06 (0.006) -5.8 -5.3 0.063
ARA 9.9e-05 (0.25) 7.6e-09 (4e-05) 1 1.3 0.16
Mg 0.00022 (0.45) 8.1e-08 (0.00021) 0.015 0.02 0.21
Ds 0.00041 (0.26) 3.3e-06 (0.0057) 0.84 0.9 0.049
P 0.0023 (0.9¢) 8.4e-07 (0.0044) 0.0073 0.0096 0.055
TSC 0.15 (0.97) 6.7e-08 (0.00018) -53 -17 0.063
TP521945 CP 4.2e-07 (0.0022) 0.015 (1) 1.4 0.47 0.39 0.074 0.78
GAL 5.5e-07 (0.0028) 0.017 (1) 1.1 0.41 0.5
XYL_Eff 8.9e-07 (0.0046) 0.018 (1) -53 -2 0.49
P 9.2e-07 (0.0047) 0.03 (1) 0.021 0.0075 0.49
ARA 6.3e-06 (0.032) 0.045 (1) 2.2 0.81 0.54
AD 1.1e-05 (0.029) 0.024 (1) 1.9 0.73 0.41
PH 2.7e-05 (0.069) 0.048 (1) -10 -3.7 0.46
K 5.5e-05 (0.09¢6) 0.027 (1) 0.23 0.089 0.34
TP87762 Ds 4.5e-08 (0.00011) 8e-10 (4.2e-06) 1.9 1.9 0.027 0.055 0.015
TSC 1.7e-05 (0.088) 1.4e-13 (7.5e-10) -23 —38 0.044
St 1.8e-05 (0.046) 1.6e-08 (4.3e-05) —0.88 -1 0.026
ARA 0.00097 (0.50) 2.1e-07 (0.00056) 1.3 1.8 0.037
Mg 0.0013 (0.94) 8.7e-09 (4.6e-05) 0.019 0.031 0.036

Al results presented are based on the AP-4x subset of the data (AP panel with only P. arundinacea samples), except the association between TP341988 and GLC, for which
the results presented are based on the LP2 panel (in the AP panel, TP341988 has MAF <0.05). B, Estimated additive effect of the nonreference allele relatively to the
reference allele; y, Imputation uncertainty; FDR, false discovery rate, as in Storey and Tibshirani (2003); MAF, minor allele frequency; PMV, proportion of missing values.

@ One exception is the association between TP341988 and GLC, for which the results presented are based on the LP2 panel (in the AP panel, TP341988 has MAF <0.05).
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Figure 8 Q-Qplot of p values from (CC), for St, TSC, AD, CP, Lignin (in AP-4x subset), and GLC (in LP2 subset), with corresponding p values from
(MI%). Expected quantiles are from the (CC) analysis; the corresponding values from (MI*) are shown unordered to reflect how consistent quantiles
are across analyses. Open circles, —logqo(p) based on (CC); full circles, —logso(p) based on (MI*). Green symbols indicate associations for which
FDR <0.1. Gray areas correspond to the 95% C.I. of quantiles under the null hypothesis that p values follow a Uniform(0,1). The p values from (CC)
seem to follow a Uniform(0,1), indicating good control for potential confounders (population structure and relatedness). However, p values from
(MI*) do not follow a Uniform(0,1) because of losses of significance caused by imputation uncertainty.

(i.e., FCS based on tree models), should be pertinent: although com-
putationally intensive, the proposed imputation procedure was flexi-
ble, easy to implement, and appropriate for modeling marker data, as
was suggested by Dai et al. (2006).

Structure in the panels

Analysis of structure in the three panels combined revealed
stratification by panels, race, and geographical origin. The
observed stratification by race and geographical origin was
consistent with the results from Jakubowski et al. (2011), i.e.,
P. caesia being genetically distinct from P. arundinacea and, within
P. arundinacea, East European strains being distinct from West
European and North American strains. Even though accessions na-
tive to North America with a genetic background distinct from that
of European accessions do exist (Jakubowski et al. 2012), most acces-
sions of reed canarygrass found in North America, including all
those evaluated in this study, share some common ancestry with
West European accessions.

Results of imputation-based association tests
In this association study, for the rare cases in which vy was low enough
(v <0.30), there were gains of significance from (CC) to (MI*) (and,

904 | G.P. Ramstein et al.

presumably, a gain of power) (Figure 7A, Table 7). Another interest-
ing outcome from MI was the decreased significance, given one
marker (TP477925), for only a subset of the associations detected in
(CC) (Table 7). Such results suggest a possible gain of precision in MI-
based association tests. Unfortunately, no novel significant markers
could be detected from (CC) to (MI*). As expected, for high values of
v (y>0.30), MI had the desired property of decreasing significance
of associations for the sake of precision.

Values of y lower on average than 0.3 would correspond to PMV
lower than approximately 0.45 according to the model presented in
Table 6, with values of MAF and AMI set to 0.1 and 0.05, respectively.
PMV lower than 0.45 corresponded to 1.6%, 1.8%, and 1.6% of the
markers considered for GWAS in the LP1, LP2, and AP-4x subsets,
respectively. As discussed below, if a reference panel had been avail-
able for imputation, then there would have been many more oppor-
tunities for gains in power from ML

GWAS results and similarity of marker sequences to
Brachypodium distachyon

This GWAS revealed associations of markers with multiple traits,
which may indicate pleiotropy of one single tagged causal variant, LD
between distinct causal variants affecting different traits, or genetic

£ G3-Genes| Genomes | Genetics
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correlation among traits. For example, TP87762 was negatively
associated with TSC and positively associated with Ds, St, ARA, and
Mg. This result would probably suggest that, through lower tiller
density, reed canarygrass plants carrying the nonreference allele at
TP87762 were less prone to disease and lodging and had higher
concentration of arabinose and magnesium.

Significant markers could not be mapped to a particular region of
the reed canarygrass genome, because no reference map or genome
sequence is available for that species. However, the significant markers
identified here may be used in further studies making use of DNA
sequences in reed canarygrass. Potentially, our studies may bring some
insight about the function of genes in related species such as
Brachypodium or oat. However, actual causal genes were probably
not directly tagged by significant markers. Markers that did not map
to the Brachypodium genomes (TP140584, TP191264, TP217634,
TP477925, TP521945, and TP87762; because of absence of homology
or because of evolutionary divergence) were probably in LD with
unmarked functional regions, which possibly could have been mapped
to the Brachypodium genome. TP184396 and TP 341988 could be
mapped to the Brachypodium genome, but within genes with very
general purposes (both matched genes involved in mRNA translation).
Such results could be “true hits,” but this does not seem very likely.
However, TP268059, negatively associated to CP and positively asso-
ciated to XYL_Eff, was mapped to the exon of a gene coding for
Phenylalanine/Histidine-Ammonia-Lyase. Although it is entirely pos-
sible that TP268059 did not directly tag the true causal gene, it is
plausible that TP268059 is a true hit: Phenylalanine-Ammonia-Lyase

2G3-Genes| Genomes | Genetics
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(PAL) is involved in the very first step of the monolignol biosynthetic
pathway leading to the synthesis of lignin (Boerjan et al. 2003), and
a decreased ability to synthesize lignin is consistent with lower crude
protein content and higher xylose conversion efficiency because lignin
inhibits fermentation (Vogel and Jung 2001). However, one would
then expect to find significant associations involving Lignin (lignin
content) and GLC_Eff (glucose conversion efficiency), which was
not the case here. That said, the association between TP268059 and
lignification still makes good sense from the homology of the marker
in the Brachypodium genome and the relative directions of the
detected effects.

A genome-wide association study based on

multivariate MI

Historically, MI has been prevalent in epidemiological studies,
probably because of the frequent and prohibitive occurrence of
nonresponse in survey data (Rubin 1987; Rubin 1996; Klebanoff
and Cole 2008; Sterne et al. 2009). Here, the large amount of missing
values in our GBS data motivated us to use MI to account for impu-
tation uncertainty and make sound inferences about marker-trait asso-
ciations. There have been previous quantitative genetics studies that
used MI to increase the precision of significance tests for marker-
associated effects: Dai et al. (2006) used an imputation procedure
similar to that presented here and compared it with expectation-
maximization techniques. However, their study dealt with small
marker data (10 SNPs in real data and 4 SNPs in simulated data)
and limited PMV (10% or 20% of missing data). Bobb et al. (2011)

Multiple Imputation in Association Study | 905



Table 8 Sequence information on significant markers

Location in
Brachypodium
distachyon (Transcript

ID — Annotation: % |dentity
Putative Protein [% Coverage]
SNP Associated Trait(s) Sequence Read Function) (e-value)
TP140584  TSC, Ds, Mg CAGCCCGGCAGTTTGGTCTTGGGCAAG — —
TATCTCCCCATTTCTTCCTCCATCACC/T
TAACAGAGAG
TP184396  Lignin CAGCCTTATTCACCCACAATTCC/TAAAA Chr. 2: 34773626-34777668 91% [68%] (1.2E-6)
GTTGTGCATAAATTTGCACGCTCCTA (BRADI2G34680.1 —
GTGCTCAACTC Intron 17: Arginine-tRNA
ligase)
TP191264  AD, HD, K, CP, CAGCGACAAAACTCTCAAGGAC/TCACT — —
Lignin CGTGATTTAGGCAACCACCACAGCAC
TTAGCTGAAAAA
TP217634 K CAGCGCGTTCTCCTTCCTTCCTGCAAC — —
CTCTAGTAGCCTCCCTGCAAATCAATC
CGACGGA/TAAC
TP268059  CP, XYL_Eff CAGCTCAGAGCAATACGAGGCCATGG Chr. 3: 48837936-48837999 89% [100%] (3.4E-12)
CGATTTCC/GGCTCCCTTCAAGCCATAG (BRADI3G47120.1.1 —
TCCAAGCTCGGG Exon 1: Phenylalanine/
Histidine-Ammonia-Lyase)
TP341988 GLC CTGCAATTTGGAAA/TGCAAGGACACT Chr. 5: 20217343-20221405 94% [98%] (4.3E-19)
TGAATCAACATCATGGTAGGAGCCATC (BRADI5G16980.1 — Exon 2:
AACCAGCACTGA Translation Elongation
Factor G)
TP477925  St, ARA, TSC, Mg, CTGCGGATTCA/CACCCTTACTAGGCG — —
P, Ds, PH ATAGCTCTGATCTATACCTTTCCTAGG
AGAGACCACTTC
TP521945  CP, GAL, XYL_Eff, =~ CTGCTCC/TTGCCGGCGTGGTGCGTGGC — —
P, ARA, AD, TCCCGTTGCCGCTGAAAAAAAAAAAAA
PH, K AAAAAAAAAAA
TP87762  TSC, Ds, St, Mg, CAGCATTACTAGAACGTGTATACGGTG — —
ARA CCATCTTCGAAATAGAA/CCCAGAACC

TTCGATGTATGG

Sequence reads are the 64-bp reads about the SNP marker, as returned from the UNEAK pipeline; in bold: <reference allele>/<alternate allele>. Homologous
sequences are significant matches to the Brachypodium distachyon genome sequence (v1.0), found by BLAST (Altschul et al. 1997) in the Gramene database (http://

www.gramene.org; Jaiswal et al. 2006).

used MI to gain precision in QTL mapping, but they generated mul-
tiple imputes of the phenotypic data, not the genomic data. To our
knowledge, this study is the first report of MI applied in a genome-
wide context (with thousands of markers over the genome). We be-
lieve the methodology presented here could be useful in large-scale
genetic analyses involving hypothesis testing in two ways. First, it
exemplifies the use of tree models to impute unordered marker data
in GWAS and, in the context of multivariate MI, approximate the
distribution p(X,,;s|Xoss) by following the methodologies developed by
Dai et al. (2006) and Burgette and Reiter (2010). As multiplexed GBS,
which trades sequencing depth (and therefore genotyping costs) for
uncertainty in genotype calling and imputation, is increasingly used
for association mapping (Poland and Rife 2012), this type of imputa-
tion procedures in a MI context should be particularly useful in species
where no or only part of a reference genome is available, like wheat or
switchgrass. Second, it shows how estimates from different imputes
about marker effects in the unified linear mixed model (Yu et al. 2006)
could be pooled using the rules developed by Rubin (1987) to conve-
niently account for imputation uncertainty and perform statistically
valid association tests. That said, MI is not the only method that has
been developed to explicitly account for imputation uncertainty. A
basic approach would be to use expected genotype counts based on

906 | G.P. Ramstein et al.

some distribution p(Xm,-S\XObS) and to perform association tests as if
the marker data were fixed, as was done in (AD) here (Guan and
Stephens 2008; Zheng et al. 2011). As noted previously (Guan and
Stephens 2008), such simplification may yield erratic behavior in as-
sociation testing if imputation uncertainty is high and marker effects
are large, which is consistent with the results obtained here (Figure
3B). A more sophisticated approach would be to use tests with explicit
account for increased variance of parameter estimates due to im-
putation uncertainty that are based on some approximation of
p(Xm,-s\XobS) (Marchini et al. 2007; Guan and Stephens 2008; Zheng
et al. 2011). In this framework, frequentist tests include score tests
and likelihood ratio tests, implemented in SNPTEST (Marchini et al.
2007). The Bayesian counterparts of this type of tests, implemented
in SNPTEST and BIMBAM (Servin and Stephens 2007), feature some
interesting advantages compared to the frequentist tests; in particular,
they avoid an inflation in significance arising from high imputation
uncertainty (Guan and Stephens 2008). Unfortunately, both the fre-
quentist and Bayesian methods described above, in the current state of
their implementations, are limited in the type of models that can be
fitted to the data: the tests do not apply to linear mixed models
(accounting for relatedness through the K matrix), and uncertainty
in covariates cannot be conveniently accounted for, as was done in

= G3-Genes | Genomes | Genetics
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(MTI*) here. Although in human GWAS such models may be appro-
priate (e.g., Burton et al. 2007), the strong population stratification in
plant GWAS panels call for mixed models that incorporate informa-
tion on population structure and relatedness (Zhu et al. 2008). We
believe the approach used here was particularly useful in that it
allowed accounting for imputation uncertainty when using linear
mixed models for testing associations.

Properness of imputations

An imputation procedure is proper if it is unbiased and it is
confidence-valid, i.e., the variability among imputed values is equiva-
lent to what it would be if the data had been complete. Here, we
made the MCAR assumption stating that no factor (in particular,
not the phenotypes of interest) influenced missingness at the marker
data (Rubin and Little 2002; Sterne et al. 2009). Because marker
effect estimates based on complete cases are unbiased under the
MCAR assumption, (CC) analyses served as the reference to assess
consistency of imputation-based tests. Judging from regression anal-
yses on marker-effect estimates from (AD) (Table 4) and from (MI)
(Table 5), it seemed that imputations did not generate bias, with
shrinkage in marker-effect estimates from MI occurring only be-
cause of imputation uncertainty in (MI) [and (MI*)], which is
desirable. Imputation bias may have occurred if the MCAR as-
sumption—more generally, the MAR assumption—had not been
valid. This may occur in survey data but is unlikely to occur, sys-
tematically, in GBS data; the probability of a marker read being
available is unlikely to vary systematically across individuals. Con-
fidence validity could only be assumed here. For other imputation
methods, which do not preserve the variability present in the orig-
inal dataset, this assumption cannot be made. Such methods, which
include mean imputation and major allele imputation, should there-
fore be avoided in inference studies.

In the future, a simulation study might be conducted to char-
acterize the unbiasedness and confidence validity of our imputation
procedure in a setting where both marker effects and missing values
are known a priori. Similar analyses were already performed on SNP
data (e.g, Dai et al. 2006), but assessing the properness of MI based on
GBS data in a genome-wide context could certainly be useful.

Practical issues for Ml in GWAS
Here, given the amount of missing data (78% on average) and the
information available for imputation (no reference panel and no
genetic map of markers), imputation uncertainty was too prohibitive
for detecting novel significant markers when performing imputation-
based association tests. Gains of significance were nonetheless
possible, mostly for low values of y (Figure 7A), corresponding ap-
proximately to PMV <0.45 (Figure 7B). Pasaniuc et al. (2012) showed
that a very substantial gain in imputation accuracy on low-depth
GBS data in humans could be achieved when using a reference
panel (the 1000-genomes data). For example, with 0.1x sequencing
depth, they reported an increase in imputation accuracy from ap-
proximately 0.05 to more than 0.70 when the reference panel was
used. In light of the results from Pasaniuc ef al. (2012) and this
article, we recommend imputation-based association studies on
GBS data with sporadically missing values only when coverage is
high enough to produce few missing values or when a reference
panel is available for imputation.

When dealing with marker datasets that are much larger than the
one considered here (numbers of markers g on the order of 10° or
10°), implementing MI in GWAS would be a challenge. Computa-
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tional and memory requirements will of course increase and paralle-
lization should be devised accordingly. When dealing with unordered
marker data, MI based on CART should be a good choice with
regard to computational—and statistical—efficiency. However, the
mice package uses a g X g predictor adjacency matrix to keep record
of the candidate predictors for each marker. With many threads
and/or high g, memory usage can be reduced by replacing the
adjacency matrix with a g X gselected adjacency list (gserecrea: NUMber
of variables selected as potential predictors; e.g., 500 in this study)
or determining the set of candidate predictors at each iteration
with no storage, hence trading computational efficiency for mem-
ory efficiency. Both of these measures would involve modifications
of the mice code. Importantly, if a (completely typed) reference
panel H is available for imputation, then one can base imputations
of X,,;s on H only, i.e., p(Xmi§|ngg, H) becomes p(Xm,-S\H). In such
settings, when imputing a given variable k, there would be no un-
certainty about values at the predictors to account for (supposedly,
genotypes or haplotypes in H have been perfectly called). As a re-
sult, the multiple imputed datasets in MI could be sampled by
ordinary MC instead of MCMC. This would dramatically reduce
the computational and memory requirements when implementing
MI. Note also that when imputing at markers that are completely
untyped in X (in silico genotyping), basing imputations on
Pp(Xpis|H) rather than p(Xis|Xops, H) may actually yield more ac-
curate imputations (Guan and Stephens 2008). Thus, in presence of
a reference panel, MI should be not only more useful (imputations
being more accurate) but also more tractable (probably applicable
when dealing with hundreds of thousands of markers).

ACKNOWLEDGMENTS

The authors thank two anonymous reviewers for remarks and
suggestions that greatly helped with improving the manuscript. This
research was supported by the US Department of Energy & Depart-
ment of Agriculture Plant Feedstock Genomics for Bioenergy Pro-
gram Project Number DE-A-102-07ER64454, by Agriculture and
Food Research Initiative Competitive Grant No. 2011-68005-30411
from the USDA National Institute of Food and Agriculture (Cen-
USA), and by USDA-ARS Congressionally allocated funds. Mention
of commercial products and organizations in this manuscript is
solely to provide specific information. The USDA is an equal opportu-
nity provider and employer. G.P.R. was supported by the Gabelman-
Shippo Wisconsin Distinguished Graduate Fellowship at the University
of Wisconsin-Madison.

LITERATURE CITED

Altschul, S. F,, T. L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang et al.,
1997 Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25: 3389-3402.

Alway, F. ], 1931 Early trials and use of reed canary grass as a forage plant.
Agron. J. 23: 64-66.

Asay, K., I. Carlson, and C. Wilsie, 1968  Genetic Variability in Forage Yield,
Crude Protein Percentage, and Palatability in Reed Canarygrass, Phalaris
arundinacea L. Crop Sci. 8: 568-571.

Baldini, R. M., 1995 Revision of the genus Phalaris L. (Gramineae). Webbia
49: 265-329.

Barnard, J., and D. B. Rubin, 1999 Miscellanea. Small-sample degrees of
freedom with multiple imputation. Biometrika 86: 948-955.

Bittman, S., J. Waddington, B. E. Coulman, and S. G. Bonin, 1980 Reed
canarygrass - a production guide, Agriculture Canada, Ottawa, Ontario.

Boateng, A., H. Jung, and P. Adler, 2006  Pyrolysis of energy crops including
alfalfa stems, reed canarygrass, and eastern gamagrass. Fuel 85: 2450-2457.

Multiple Imputation in Association Study | 907



Bobb, J. F., D. O. Scharfstein, M. J. Daniels, F. S. Collins, and S. Kelada,
2011 Multiple imputation of missing phenotype data for QTL mapping.
Stat. Appl. Genet. Mol. Biol. 10: 1-27.

Boe, A., and D. L. Beck, 2008  Yield components of biomass in switchgrass.
Crop Sci. 48: 1306-1311.

Boerjan, W., J. Ralph, and M. Baucher, 2003 Lignin biosynthesis. Annu.
Rev. Plant Biol. 54: 519-546.

Bouchenak-Khelladi, Y., N. Salamin, V. Savolainen, and F. Forest, M.v.d.
Bank ef al., 2008 Large multi-gene phylogenetic trees of the grasses
(Poaceae): progress towards complete tribal and generic level sampling.
Mol. Phylogenet. Evol. 47: 488-505.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen, 1984 Classification
and regression trees, CRC Press, Boca Raton, FL.

Brummer, E., C. Burras, M. Duffy, and K. Moore, 2002  Switchgrass pro-
duction in Iowa: economic analysis, soil suitability, and varietal perfor-
mance, Iowa State University, Ames, Iowa.

Burgette, L. F., and J. P. Reiter, 2010 Multiple imputation for missing data
via sequential regression trees. Am. J. Epidemiol. 172: 1070-1076.

Burton, P. R, D. G. Clayton, L. R. Cardon, N. Craddock, P. Deloukas et al.,
2007 Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature 447: 661-678.

Butler, D., B. R. Cullis, A. Gilmour, and B. Gogel, 2007 ASRemI-R reference
manual, Queensland Department of Primary Industries and Fisheries,
Brisbane.

Carlson, I. T., R. N. Oram, and J. Surprenant, 1996 Reed canarygrass and
other Phalaris species, pp. 569-604 in Cool-season forage grasses, edited
by L. E. Moser, D. R. Buxton, and M. D. Casler. American Society of
Agronomy Inc., Madison, WL

Casler, M., 2010  Genetics, breeding, and ecology of reed canarygrass. Intl |
Plant Breeding 4: 30-36.

Casler, M., M. Phillips, and A. Krohn, 2009a DNA polymorphisms reveal geo-
graphic races of reed canarygrass. Crop Sci. 49: 2139-2148.

Casler, M. D., J. H. Cherney, and E. C. Brummer, 2009b  Biomass yield of
naturalized populations and cultivars of reed canary grass. BioEnergy
Research 2: 165-173.

Cherney, J., K. Johnson, J. Volenec, and K. Anliker, 1988 Chemical com-
position of herbaceous grass and legume species grown for maximum
biomass production. Biomass 17: 215-238.

Cureton, P., P. Groenevelt, and R. McBride, 1991 Landfill leachate recir-
culation: effects on vegetation vigor and clay surface cover infiltration.
J. Environ. Qual. 20: 17-24.

Dabney, A., ].D. Storey, and G.R. Warnes, 2013  qvalue: Q-value estimation
for false discovery rate control. R package version 1.34.0.

Dai, J. Y., I. Ruczinski, M. LeBlanc, and C. Kooperberg, 2006 Imputation
methods to improve inference in SNP association studies. Genet. Epide-
miol. 30: 690-702.

Dien, B. S., H.-J. G. Jung, K. P. Vogel, M. D. Casler, J. F. Lamb et al,

2006 Chemical composition and response to dilute-acid pretreatment
and enzymatic saccharification of alfalfa, reed canarygrass, and switch-
grass. Biomass Bioenergy 30: 880-891.

Doove, L., S. Van Buuren, and E. Dusseldorp, 2014  Recursive partitioning for
missing data imputation in the presence of interaction effects. Comput. Stat.
Data Anal. 72: 92-104.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto et al.,

2011 A robust, simple genotyping-by-sequencing (GBS) approach for
high diversity species. PLoS ONE 6: €19379.

Endelman, J. B,, 2011  Ridge regression and other kernels for genomic
selection with R package rrBLUP. The Plant Genome 4: 250-255.

Gelman, A, and T. E. Raghunathan, 2001  Using conditional distributions
for missing-data imputation. Stat. Sci. 3: 268-269.

Guan, Y., and M. Stephens, 2008 Practical issues in imputation-based
association mapping. PLoS Genet. 4: e1000279.

Jaiswal, P., J. Ni, I. Yap, D. Ware, W. Spooner et al., 2006 Gramene: a bird’s
eye view of cereal genomes. Nucleic Acids Res. 34: D717-D723.

Jakubowski, A. R., M. D. Casler, and R. D. Jackson, 2012  Genetic evidence
suggests a widespread distribution of native North American populations
of reed canarygrass. Biol. Invasions 15: 261-268.

908 | G.P. Ramstein et al.

Jakubowski, A. R., R. D. Jackson, R. Johnson, J. Hu, and M. D. Casler,
2011 Genetic diversity and population structure of Eurasian popula-
tions of reed canarygrass: cytotypes, cultivars, and interspecific hybrids.
Crop Pasture Sci. 62: 982-991.

Kang, H. M,, J. H. Sul, S. K. Service, N. A. Zaitlen, S.-Y. Kong et al.,

2010 Variance component model to account for sample structure in
genome-wide association studies. Nat. Genet. 42: 348-354.

Kang, H. M., N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman et al.,
2008 Efficient control of population structure in model organism
association mapping. Genetics 178: 1709-1723.

Klebanoff, M. A,, and S. R. Cole, 2008 Use of multiple imputation in the
epidemiologic literature. Am. J. Epidemiol. 168: 355-357.

Li, K--H,, T. E. Raghunathan, and D. B. Rubin, 1991 Large-sample signifi-
cance levels from multiply imputed data using moment-based statistics and
an F reference distribution. J. Am. Stat. Assoc. 86: 1065-1073.

Lu, F, A. E. Lipka, J. Glaubitz, R. Elshire, J. H. Cherney et al.,

2013  Switchgrass genomic diversity, ploidy, and evolution: novel insights
from a network-based SNP discovery protocol. PLoS Genet. 9: €1003215.

Marchini, J., B. Howie, S. Myers, G. McVean, and P. Donnelly, 2007 A new
multipoint method for genome-wide association studies by imputation of
genotypes. Nat. Genet. 39: 906-913.

McWilliam, J., and C. Neal-Smith, 1962 Tetraploid and hexaploid chro-
mosome races of Phalaris arundinacea L. Crop Pasture Sci. 13: 1-9.
Nielsen, R,, J. S. Paul, A. Albrechtsen, and Y. S. Song, 2011 ~ Genotype and SNP

calling from next-generation sequencing data. Nat. Rev. Genet. 12: 443-451.

Olmstead, J., M. D. Casler, and E. C. Brummer, 2013  Genetic variability for
biofuel traits in a circumglobal reed canarygrass collection. Crop Sci. 53:
524-531.

Pahkala, K., and M. Pihala, 2000 Different plant parts as raw material for
fuel and pulp production. Ind. Crops Prod. 11: 119-128.

Pasaniuc, B., N. Rohland, P. J. McLaren, K. Garimella, N. Zaitlen et al.,
2012 Extremely low-coverage sequencing and imputation increases
power for genome-wide association studies. Nat. Genet. 44: 631-635.

Picard, C. R,, L. H. Fraser, and D. Steer, 2005 The interacting effects of
temperature and plant community type on nutrient removal in wetland
microcosms. Bioresour. Technol. 96: 1039-1047.

Poland, J., J. Endelman, J. Dawson, J. Rutkoski, S. Wu et al., 2012 Genomic
selection in wheat breeding using genotyping-by-sequencing. The Plant
Genome 5: 103-113.

Poland, J. A,, and T. W. Rife, 2012  Genotyping-by-sequencing for plant
breeding and genetics. The Plant Genome 5: 92-102.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick
et al., 2006 Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet. 38: 904-909.

Price, D. L., and M. D. Casler, 2014 Divergent selection for secondary traits
in upland tetraploid switchgrass and effects on sward biomass yield.
BioEnergy Research 7: 329-337.

Quintanar, A., S. Castroviejo, and P. Cataldn, 2007 Phylogeny of the Tribe
Avenae (Pooideae, Poaceae) inferred from plastid Trn-T and nuclear ITS
sequences. Am. J. Bot. 94: 1554-1569.

R Development Core Team, 2014 R: A language and environment for sta-
tistical computing, R Foundation for Statistical Computing, Vienna,
Austria.

Rice, J., and B. Pinkerton, 1993 Reed canarygrass survival under cyclic
inundation. J. Soil Water Conserv. 48: 132-135.

Rubin, D. B., 1987 Multiple imputation for nonresponse in surveys, John
Wiley and Sons, New York, NY.

Rubin, D. B., 1996 Multiple imputation after 18+ years. J. Am. Stat. Assoc.
91: 473-489.

Rubin, D. B., and R. J. Little, 2002  Statistical analysis with missing data,

J Wiley & Sons, Hoboken, NJ.

Rubin, D. B., and J. L. Schafer, 1990 Efficiently creating multiple imputa-
tions for incomplete multivariate normal data, pp. 88 in Proceedings of the
Statistical Computing Section of the American Statistical Association.

Rubin, D. B., and N. Schenker, 1986 Multiple imputation for interval
estimation from simple random samples with ignorable nonresponse.
J. Am. Stat. Assoc. 81: 366-374.

£ G3-Genes| Genomes | Genetics



Rutkoski, J.E., J. Poland, J.-L. Jannink, and M.E. Sorrells, 2013 Imputation
of unordered markers and the impact on genomic selection accuracy.
G3 (Bethesda) 3: 427-439.

Sanderson, M., R. Reed, S. McLaughlin, S. Wullschleger, B. Conger et al.,
1996 Switchgrass as a sustainable bioenergy crop. Bioresour. Technol.
56: 83-93.

Schafer, J. L., 2010  Analysis of incomplete multivariate data, CRC Press,
Boca Raton, FL.

Servin, B., and M. Stephens, 2007 Imputation-based analysis of association
studies: candidate regions and quantitative traits. PLoS Genet. 3: el14.

Shenk, J., and M. Westerhaus, 1991 Population definition, sample selection,
and calibration procedures for near infrared reflectance spectroscopy.
Crop Sci. 31: 469-474.

Sterne, J. A., I. R. White, J. B. Carlin, M. Spratt, P. Royston et al.,
2009 Multiple imputation for missing data in epidemiological and
clinical research: potential and pitfalls. BMJ 338: b2393.

Storey, J. D., and R. Tibshirani, 2003  Statistical significance for genomewide
studies. Proc. Natl. Acad. Sci. USA 100: 9440-9445.

Therneau, T.M., and E.J. Atkinson, 1997 An introduction to recursive par-
titioning using the RPART routines.

Tilley, J., and R. Terry, 1963 A two-stage technique for the in vitro digestion
of forage crops. Grass Forage Sci. 18: 104-111.

US Department of Agriculture and US Department of Energy,
2005 Biomass as feedstock for a bioenergy and bioproducts industry: the
technical feasibility of a billion-ton annual supply, Oak Ridge National
Laboratory, Oak Ridge, TN.

Van Buuren, S., 2007 Multiple imputation of discrete and continuous data
by fully conditional specification. Stat. Methods Med. Res. 16: 219-242.

Van Buuren, S., 2012 Flexible imputation of missing data, CRC press, Boca
Raton, FL.

2G3-Genes| Genomes | Genetics

Volume 5 May 2015 |

Van Buuren, S., and K. Groothuis-Oudshoorn, 2011 MICE: Multivariate
imputation by chained equations in R. J. Stat. Software 45: 1-67.

Van Buuren, S., J. P. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin,
2006 Fully conditional specification in multivariate imputation. J. Stat.
Comput. Simul. 76: 1049-1064.

Van Keulen, J., and B. A. Young, 1977 Evaluation of acid-insoluble ash as a
natural marker in ruminant digestibility studies. J. Anim. Sci. 44: 282-287.

Vogel, K. P, and H. J. G. Jung, 2001 Genetic modification of herbaceous
plants for feed and fuel. Crit. Rev. Plant Sci. 20: 15-49.

Vogel, K. P, B. S. Dien, H. G. Jung, M. D. Casler, S. D. Masterson et al.,
2011 Quantifying actual and theoretical ethanol yields for switchgrass
strains using NIRS analyses. BioEnergy Research 4: 96-110.

Wood, S. N., 2003 Thin-plate regression splines. J. R. Stat. Soc., B 65:
95-114.

Wrobel, C., B. E. Coulman, and D. L. Smith, 2009 The potential use of reed
canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agricultur.
Scand. B Plant Soil Sci. 59: 1-18.

Yu, J., G. Pressoir, W. H. Briggs, I. V. Bi, M. Yamasaki ef al., 2006 A unified
mixed-model method for association mapping that accounts for multiple
levels of relatedness. Nat. Genet. 38: 203-208.

Zhang, Z., E. Ersoz, C.-Q. Lai, R. J. Todhunter, H. K. Tiwari et al.,

2010 Mixed linear model approach adapted for genome-wide associa-
tion studies. Nat. Genet. 42: 355-360.

Zheng, J., Y. Li, G. R. Abecasis, and P. Scheet, 2011 A comparison of
approaches to account for uncertainty in analysis of imputed genotypes.
Genet. Epidemiol. 35: 102-110.

Zhu, C., M. Gore, E. S. Buckler, and J. Yu, 2008 Status and prospects of
association mapping in plants. The Plant Genome 1: 5-20.

Communicating editor: K. M. Devos

Multiple Imputation in Association Study | 909



