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Abstract: The health and welfare of older adults have raised increasing attention due to global aging.
Cycling is a physical activity and mode of transportation to enhance the mobility and quality of life
among older adults. Nevertheless, the planning strategies to promote cycling among older adults are
underutilized. Therefore, this paper describes the nonlinear associations of the built environment
with cycling frequency among older adults. The data were collected from the Zhongshan Household
Travel Survey (ZHTS) in 2012. The modeling approach was the eXtreme Gradient Boosting (XGBoost)
model. The findings demonstrated that nonlinear relationships exist among all the selected built
environment attributes. Within specific intervals, the population density, the land-use mixture, the
distance from home to the nearest bus stop, and the distance from home to CBD are positively
correlated to the cycling among older adults. Additionally, an inverse “U”-shaped relationship
appears in the percentage of green space land use among all land uses. Moreover, the intersection
density is inversely related to the cycling frequency among older adults. These findings provide
nuanced and appropriate guidance for establishing age-friendly neighborhoods.

Keywords: nonlinear; built environment; cycling; older adults; XGBoost; threshold effect

1. Introduction

With the improvement of healthcare and welfare, the global population of older
adults is increasing rapidly. Up until 2017, 9% of the world population (703 million) was
65 years old or above, and the ratio has been predicted to rise to 12% in 2030 and 16% in
2050 [1]. Currently, more than one-quarter of older adults live in Asia, North America, and
Europe [2]. From 2020 to 2050, Asia may witness the fastest growth in the population of
older adults [3]. As the world’s most populated country, China is estimated to possess
around 380 million older adults by 2050 [4]. Global aging has highlighted the demand for
the improvement of living quality among older adults. Active travel (i.e., walking and
cycling) has been widely recognized as a significant intervention to promote health [5,6].
Cycling benefits cardiorespiratory fitness, musculoskeletal fitness, as well as bone health,
and contributes to sleep quality via the physical activity performed while moving [7].
Older adults are advised to conduct physical activity over 150 min per week to reduce the
risk of social isolation [8]. Cycling can be one of the recommended choices to keep fit [9].
Moreover, as an environmentally friendly activity [10], cycling also contributes to energy
saving and air quality control [11,12].

The travel behaviors among older adults may vary in different regions. In some
developed countries, driving is the top choice for daily travel among older adults [13].
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In the United States, only 0.5% of older adults prefer cycling over other modes [14]. On
the contrary, one-quarter of older adults in Finland choose cycling [15]. In China, 20.59%
of older adults preferred cycling or using an e-bike [16]. To promote cycling among older
adults, it is essential to detect the factors that may impact their cycling activity. Existing
studies have investigated how the built environment is related to cycling among older
adults. The significant built environment characteristics include cycling infrastructure
design, distance to transit, destination accessibility, and safety. Most studies have assumed
a linear relationship between various factors and cycling activity. The commonly used
methods include Poisson regression [17], negative binomial regression [18], and multilevel
logistic regression [19]. However, recent studies have displayed nonlinear relationships be-
tween the built environment and travel behavior [20–26]. A complex nonlinear association
may also exist between the built environment and cycling activity among older adults.

This study contributes twofold. Empirically, the built environment–travel behavior
research was enriched by investigating the nonlinearity and threshold effects of the built
environment on the cycling frequency of older adults. The findings will facilitate plan-
ning practice to promote cycling activity among older adults. Technically, the eXtreme
Gradient Boosting (XGBoost) model, a machine learning method, was employed. This
modeling method seized an intricate relationship between the built environment and cy-
cling frequency among older adults with explanatory variables. The results indicated that
the XGBoost model was more effective than linear regression models in describing the
nonlinearity of the built environment.

This paper consists of six sections. Section 2 reviews the literature on the influence of
the built environment on older adults’ cycling activity and the built environment–travel
behavior research with nonlinear methods. Sections 3 and 4 introduce the data collection
and modeling approach, respectively. Section 5 displays the results of the model. Section 6
discusses the results and concludes the study.

2. Literature Review
2.1. Built Environment and Cycling among Older Adults

Cycling is one of the most common physical activities among older adults [27,28]. Prior
studies have attempted to explore the linear associations between the built environment
and cycling activity among older adults in different contexts [19,29–31]. However, few
studies have investigated the associations with a focus on older adults in Eastern Asia.
The built environment variables prevailingly employed in the built environment–cycling
activity research are categorized as the “five Ds”: density, design, diversity, distance to
transit, and destination accessibility [32].

Research in China has observed a positive relationship of population density on
cycling frequency among older adults [18]. However, a study in the Netherlands found
that urban density is negatively correlated with older adults’ cycling activity [33]. Cycling
infrastructure design has been highly discussed in prior studies due to its positive impacts
on cycling activity among older adults [14,29,34–36]. Mixed land use development is
attributed to the higher tendency of cycling for older adults [18,19,27,29,34]. Being adjacent
and accessible to amenities (i.e., CBD and living services) is also linked to an increase
in cycling frequency [29,30,37,38]. Living far from bus stops is found to foster cycling
activity as cycling is an alternative mode for medium-distance trips if a transit service
is absent [27,29,39]. Aesthetics, represented by green spaces and parks, is also a critical
determinant of older adults’ cycling [40]. Additionally, safety concerns may be another
influencing factor. Both the cyclists’ safety and the bicycle safety (safety from crime) have
been proven to have significant effects on cycling frequency [19,30,41,42]. Hence, the
improvement of the built environment may facilitate cycling among older adults.

2.2. Nonlinear Relationship of Travel and the Built Environment

Recent studies have attempted to describe the possible nonlinear relationships be-
tween the built environment and travel behavior with machine learning [43–47]. Machine
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learning contains various methods, including sigmoid regression, gradient boosting deci-
sion tree (GBDT), the generalized additive mixed model (GAMM), semiparametric model,
random forest, and the artificial neural network (ANN). Sigmoid regression has been
applied to formulate urban land density among 28 major cities in China [48]. Traffic air
pollution has been predicted based on the ANN [49]. The semiparametric model has
been established to analyze the associations between the built environment and electric-
bike ownership [45]. The machine learning method has been gradually adopted recently
(Table 1). GBDT has been adopted to investigate the associations between the built environ-
ment and travel-related outcomes, e.g., walking distance, walkability, and walking distance.
The association between walking propensity, walking time, and vehicle ownership has been
examined by random forest (RF). XGBoost has been employed to examine the relationships
between the built environment and probability of active travel choice, travel mode, and
bus use frequency.

The nonlinear models may appear to better interpret the complex relationships than
the linear models can in some cases. Some studies have compared the outcomes between
the nonlinear models and the linear ones. Random forest and the log-linear model (a lin-
ear model) have been selected to analyze the built environment effects on older adults’
walking [20]. The mean absolute error (MAE) and root-mean-square error (RMSE) have
been introduced to examine two models. The outcomes showed that the values of MAE
and RMSE for the linear model were higher, which means that the regression effect was
worse. Two machine learning models (nonlinear models) and a conventional land-use
regression model (a linear model) have been adopted to predict traffic air pollution, and the
normalized root-mean-square error (NRMSE) has been introduced to evaluate the models.
The result showed that the values of the NRMSE for the linear model were higher, which
means that the predictions were less precise [50].

The studies mentioned above acknowledged the intricate nonlinearity of the built
environment on travel and advice to acquire more efficient environmental interventions
based on the threshold influence. However, the relevant investigation of the nonlinear
effect of the built environment on cycling among older adults is rare and remains to be
further explored.

Table 1. Selected studies on the relationships between the built environment and travel behavior employing machine
learning algorithm.

Method Study Dependent Variable Built Environment Variable

GBDT

(Huang et al., 2021) [23] Total time of physical activity

Land-use mix, population density, Number of
transit stops, Number of intersections,

Greenness, Distance from home to school,
Distance to the nearest park

(Tao et al., 2020) [51] Walking distance Population density, Pedestrian network density,
Intersection density

(Dong et al., 2019) [52] Walkability
Number of walking routes, Traffic safetySecurity

from crime, Streetlight exposureSize of open
space, Green space quality

RF

(Yang et al., 2021) [26] Walking propensity
Population density, Land-use mix, Intersection

density, Access to bus stops Access to
recreational facilities, Streetscape greenery

(Sabouri et al., 2020) [53] Vehicle ownership
transit stop density, intersection density,

percentage of 4-way intersections, population
density, housing density

(Cheng et al., 2020) [20] Walking time

Land-use mix, Street connectivity, Number of
bike-sharing stations, Number of bus stops,

Distance to the nearest square/park, Distance to
the nearest card/chess room
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Table 1. Cont.

Method Study Dependent Variable Built Environment Variable

XGBoost

(Liu et al., 2021) [24]

Probability of choosing active
travel divided by the

probability of not choosing
active travel

Population density, Job density, Land-use mix,
Intersection density, Bus stop density, Distance

to city centre

(Kim, 2021) [54] Travel mode Land use, Number of subway stops, Population
density, Number of bus stops

(Wang et al., 2021) [55] Bus use frequency

Dwelling units’ density, Intersection density,
Land-use mixture, Area coverage of commercial
establishments within 1 km from the center of a
neighborhood, Bus-stop density, Percentage of

green space land use among all land uses

3. Data
3.1. Study Case

The study case was Zhongshan City in Guangdong Province, China (Figure 1). Zhong-
shan is located in the Guangdong–Hong Kong–Macao Greater Bay Area, one of the most
economically developed city clusters in China. In those city clusters, there are about
20 cities with similar urbanization and motorization levels and urban transportation charac-
teristics to Zhongshan [29]. Therefore, the findings in Zhongshan may also be informative
to similar cities.
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Selected by stratified random sampling covering the whole Zhongshan Metropolitan
Area, the ZHTS 2012 provided the self-reported one-day cycling activity, e.g., frequency,
duration, purpose of cycling trips, together with the personal and household data of
respondents. The survey was stratified by the 274 neighborhoods. In each neighborhood,
the sample size was determined by the population of the neighborhood. The sample size of
older adults in Zhongshan was 4784 (2905 male and 1879 female) from 274 urban and rural
neighborhoods, with a sample rate of 2%. Among the respondents, 777 (16.2%) cycled at
least one time per day.

3.2. Characterization of Built Environment Attributes

The built environment variables were defined based on neighborhoods [56]. In Zhong-
shan, a neighborhood is homogeneous in terms of socio-demographics and living condi-
tions [57]. According to the administrative division of Zhongshan, the entire 274 neighbor-
hoods were selected in this study. These neighborhoods cover 1783.67 km2. The average
size of a neighborhood is 6.51 km2. The following data for the characterization of built
environment attributes came from the Zhongshan Municipal Bureau of Urban Planning:
(1) neighborhood boundaries; (2) land use in 2012 with five major types of land use (residen-
tial land, commercial and service facilities, industrial and manufacturing, green space, and
other types of land uses); (3) population, dwelling units, and employment in 2012; (4) road
networks; (5) bus stops; and (6) political boundaries such as city and zone boundaries. All
the data were then integrated into ArcGIS for further analysis.

In a built environment–travel behavior review [32], the built environment charac-
teristics were divided into five categories. They were defined as “5Ds” variables as the
five categories start with “D,” including density, design, distance to transit, destination
accessibility, and diversity. Based on the best available data, this study selected one rep-
resentative variable from each of the 5Ds (Table 2). Therefore, the five variables chosen
were population density (density), intersection density (design), distance from home to the
nearest bus stop (distance to transit), distance from home to CBD (destination accessibility),
and land-use mixture (diversity). The percentage of green space land use among all land
uses signifies the aesthetics of the urban environment. Therefore, we chose this variable as
the sixth built environment variable (Table 3).

Table 2. The description of built environment variables.

Category Meaning The Built Environment Variables Used in
This Study

Density The variables of interest per unit of area Population density (POPDEN)

Design The characteristics of the street network
inside an area Intersection density (INTERDEN)

Distance to transit The level of transit service at the residences
or workplaces

Distance from home to the nearest bus stop
(BUSDIST)

Destination accessibility Ease of access to a certain location Distance from home to CBD (CBDDIST)

Diversity The number of different land uses in a fixed
area and the represented degree Land-use mixture (MIX)

Aesthetics Attractiveness and appeal of a place Percentage of green space land use among all
land uses (GREEN)
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Table 3. The description of variables used in the analysis.

Variable Description Mean/Percentage(%) SD

Cycling Activity

Frequency Daily cycling frequency 2.31 0.82

Household Characteristics

HHSIZE The population of a household, count 2.76 1.42

HIGHINC High annual household income (over RMB
150,000), binary, 1 = yes, 0 = no 13 \

MIDINC Medium annual household income (RMB
50,000~150,000), binary, 1 = yes, 0 = no 48 \

LOWINC Low annual household income (RMB
50,000~150,000), binary; 1 = yes, 0 = no 39 \

BIKES Bicycle ownership in a household, count 1.18 0.63
MOPEDS E-bike ownership in a household, count 0.19 0.43
MOTORS Motorcycle ownership in a household, count 0.76 0.84

CARS Car ownership in a household, count 0.17 0.46

Individual Characteristics

GENDER
Male 71 \

Female 29 \
AGE Age of respondents (≥60) 65.59 5.69

EMPLOY
Employed 35 \
Retireed 65 \

Built Environment

POPDEN Population density, 1000 persons/km2;
continuous

5.44 7.47

INTERDEN Intersection density, km/km2, continuouse 2.05 2.61

BUSDIST Distance from home to the nearest bus stop, km,
continuous 0.55 0.38

CBDDIST Distance from home to CBD, km, continuous 1.89 1.05
MIX Land-use mixture, entropy index, continuous 0.72 0.18

GREEN Percentage of green space land use among all
land uses, continuous 0.06 0.07

Note: SD = standard deviation.

The population density, intersection density, distance to the nearest bus stop, distance
from home to CBD, and the percentage of green space land use are self-explanatory. Land-
use mixture refers to the degree of mixing of different land uses in the neighborhood,
usually characterized by the entropy index (EI) [58] as follows:

EI =
n

∑
i=1

Pi log(1/Pi) (1)

where n represents the number of different functions of land; Pi represents the percentage
of land use i’s land coverage over total land coverage. Among them, 0 represents com-
pletely single land use, and 1 represents equalized land use for different purposes in the
selected area.

4. Method

The XGBoost Model is a machine learning method proposed by Dr. Tianqi Chen
in 2016 [59]. XGBoost has many advantages over traditional linear regression models.
First, XGBoost can characterize the nonlinear relationship between the independent and
dependent variables. Therefore, no assumption that a specific relationship between the
independent variable and the dependent variable is acquired when using the XGBoost
model. Secondly, the XGBoost model introduces a regular term, which can effectively
prevent the model from overfitting. Additionally, XGBoost takes the second derivative
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of the approximation term when performing Taylor expansion approximation on the ob-
jective function. Accordingly, the calculation loss is smaller compared to the traditional
decision tree models (i.e., gradient boosting decision tree, GBDT). Meanwhile, the process
of calculation is simplified and the operating efficiency is improved as column sampling
is supported by XGBoost. However, XGBoost, a machine learning model, cannot pro-
vide thorough information for statistical inference compared with statistical models. The
algorithm process of XGBoost is as follows.

Step 1: Construct the objective function, see Formula (2).

obj =
n

∑
i=1

l(yi, ŷi) + ∑
k=1

Ω( fk) (2)

where ŷi =
K
∑

k=1
fk(xi), fkεF, K is the number of trees, F =

{
f (x) = wq(x)

}
(q : Rm → T,

w ∈ RT), T is the number of nodes, w is the weight of the node, and Ω( fk) is the
regular term.

Step 2: Optimize the objective function.
Transfer Formula (2) into Formula (3),

min obj =
n

∑
i=1

l
(

yi, ŷi
(k−1) + fk(xi)

)
+ Ω( fk) (3)

and expand Formula (3) using Taylor series to acquire Formula (4),

min obj =
n

∑
i=1

[gi· fk(xi) +
1
2

hi· f 2
k (xi)] + Ω( fk) (4)

where gi =
∂l(yi ,ŷi

(k−1))
∂ŷi

(k−1) and hi =
∂2l(yi ,ŷi

(k−1))
∂2 ŷi

(k−1) .

Step 3: Introduce the structure of the tree into the objective function.
Replace the regular term with Formula (5),

Ω( fk) = γT +
1
2

λ
T

∑
j=1

ω2
j (5)

where γ is the threshold parameter and λ is the regularization parameter.
Incorporate Formula (5) into Formula (4) and simplify it to acquire Formula (6).

min obj =
T

∑
j=1

[Gj·ωj +
1
2
(Hi + λ)·ω2

j ] + γT (6)

The optimal objective function is obtained by deriving ωj in Formula (6), see Formula (7)
for details.

obj∗ = −1
2

T

∑
j=1

Gj
2

Hj + λ
+ γT (7)

Step 4: Determine the structure of the tree.
According to Formula (7), calculate the difference between the loss function value of

the node before and after the split as the characteristic value, see Formula (8) for details.

max obj∗old − obj∗new =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

(HL + HR + λ)2

]
− γ (8)

In this paper, the greedy algorithm is applied to solve Formula (8).
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5. Results and Discussion

Before modeling the XGBoost, a variance inflation factor (VIF) test was performed to
examine the possible multicollinearity among independent variables. The VIF values of
independent variables displayed in Table 4 were less than 10, a threshold for excluding vari-
ables [60]. Then, we applied the XGBoost approach to distinguish the relative importance
of selected variables and to illustrate the nonlinear association with the built environment
variables. We used the “xgboost” package in Python to establish the XGBoost model. The
parameters were all default ones. Finally, we compared the prediction accuracy among
XGBoost, GBDT, and multilinear regression.

Table 4. The results of VIF test.

Variable VIF

Household Individual characteristics

HHSIZE (Household population) 3.375
MIDINC (Medium-income household) 3.876

LOWINC (Low-income annual household) 5.869
BIKES (Bicycle ownership) 1.416

MOPEDS (E-bike ownership) 1.558
MOTORS (Motorcycle ownership) 5.503

CARS (Car ownership) 1.693

Individual characteristics

GENDER 2.160
AGE 1.520

EMPLOY (Employment status) 1.757

Built Environment

POPDEN (Population density) 6.931
INTERDEN (Intersection density) 5.135

BUSDIST (Distance from home to the nearest bus stop) 1.490
CBDDIS (Distance from home to CBD) 1.544

MIX (Land-use mixture) 1.378
GREEN (Percentage of green space land use among all

land uses) 1.634

5.1. Relative Importance of Independent Variables

Table 5 shows the relative importance of the selected independent variables. When
the relative importance ratio is higher, the corresponding independent variables are more
significant to the dependent variable (Figure 2). The relative importance ratios of the
built environment, household characteristics, and individual characteristics are 64.57%,
19.75%, and 15.68%, respectively. The built environment has a greater impact on the cycling
frequency among older adults than household or individual characteristics do. Particularly,
in certain thresholds, the population density, land-use mixture, percentage of green space
land use among all land uses, intersection density, and distance to CBD will promote
cycling among older adults as their relative importance is above the average (6.25%). The
outcome reinforces the findings in the existing literature that the built environment exerts
more influence on travel behavior than sociodemographics do [32].
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Table 5. The relative importance of independent variables.

Variable Relative Importance (%) Rank Total (%)

Household Characteristics

HHSIZE 7.13 7

19.75

MIDINC 2.32 12
LOWINC 1.53 14

BIKES 3.70 9
MOPEDS 0.90 16
MOTORS 2.85 10

CARS 1.32 15

Individual Characteristics

GENDER 2.16 13
15.68AGE 11.14 5

EMPLOY 2.38 11

Built Environment

POPDEN 12.88 1

64.57

INTERDEN 11.51 4
BUSDIST 5.54 8
CBDDIST 10.45 6

MIX 12.25 2
GREEN 11.93 3

Total relative importance 100
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5.2. Nonlinear Associations of the Built Environment Variables

Previous studies have assumed that there was a linear or log-linear relationship
between the built environment and travel behaviors. However, this assumption sometimes
failed to reflect the complex relationship between the two [61]. In this section, we explored
the nonlinear relationships between the built environment and cycling frequency among
older adults by employing the XGBoost model. As a means of extracting the influence of
the single built environment variable, the partial dependence plot (PDP) (Figure 3) can
visualize the marginal effects of the independent variables on the dependent variables [62].
In Figure 3, the X-axes represent the six built environment variables, and the Y-axes
represent the predicted cycling frequency among older adults.
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As some noise occurred in the modeling results (Figure 3), the general trend of the
relationships may be hindered. Some prior studies transferred the original curves into
smoothing curves to obtain intuitive relationships [45,51]. This study used Matlab’s cftool
toolbox to obtain the smoothing curves (Figures 4–9). As illustrated in Figures 4–9, all the
six built environment variables have relatively complex nonlinear associations with cycling
frequency among older adults. We discuss the results of the six built environment variables
in order of relative importance.
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5.2.1. Nonlinear Associations of Population Density

For population density, the cycling frequency peaks at 5000 persons per square kilome-
ter after a rapid surge. Then, it drops with a fierce fluctuation after 5000 persons per km2.
Finally, the curve becomes flat beyond 30,000 persons per km2. The results imply that the
population density of 5000 persons/km2 is sufficient to promote cycling among old adults.
That echoes the results of a recent study in Zhongshan on the nonlinearity of the built
environment on walking [25]. When the population density is around 5000 persons/km2,
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the thresholds appear both in walking and cycling frequency among older adults. In
ultra-densely populated areas, active travel (e.g., walking and cycling) among older adults
is negatively related to population density. This finding is also consistent with Cerin et al.’s
work that additional population in highly compact neighborhoods may even reduce the
propensity for active travel among older adults [63].

5.2.2. Nonlinear Associations of Land-Use Mixture

The cycling frequency among older adults is associated with the land-use mixture in
an M shape. After a steady climb, the cycling frequency arrives at its first peak at around
0.5 (entropy index). After an approximate “V”-shaped fluctuation bottoming at about 0.6,
it then reaches the second peak at 0.7, preceding a rapid drop within the range of 0.7 to
1.0. When the land use is around 0.5 and 0.7, the thresholds occur, while the threshold of
walking appears when the land-use index is 0.7 [25]. The results imply that highly mixed
land use may reduce the likelihood of older adults choosing cycling, consistent with recent
studies in Eastern-Asian cities (e.g., Seoul and Hong Kong) [64,65]. It is reasonable that
older adults are prone to forming a chain of multiple trips in one journey if residing closer
to services and destinations [66,67]. Nevertheless, further research is needed to reveal the
in-depth reasons.

5.2.3. Nonlinear Associations of the Percentage of Green Land Use among All Land Uses

For the percentage of green land use among all land uses, when it falls within 25%,
the curve shows an approximate inverse V shape with a peak at 12%. Then, the influences
become trivial after 25%. The results indicate that the percentage of green land use among
all land uses is most effective from 0% to 12%. Within this range, abundant street trees
and green corridors provide a cycling-friendly environment, contributing to the increased
cycling trips among older adults. When the percentage of green space land use is beyond
25%, the older adults tend to cycle less, in line with prior studies [68]. Presumably, in
neighborhoods with a higher proportion of green land use, the commercial and service
establishments are sparsely distributed and beyond the suitable cycling distance for older
adults. The threshold of cycling occurs when the GREEN is around 0.13, while that for
walking occurs when the GREEN is around 0.4 [25].

5.2.4. Nonlinear Associations of Intersection Density

Generally, the intersection density is negatively correlated with the cycling frequency
among older adults. Within the range of 0 to 2.0 intersections per km2, the cycling frequency
undergoes a sharp decrease in a nearly linear pattern. Afterward, it lessens steadily with
a mild fluctuation until 12 km per km2. The association indicates that in neighborhoods
with more intersections, the propensity of older adults to cycle is lower. Oftentimes, denser
intersections in Zhongshan imply a higher volume of traffic mixed with cars, motorcycles,
e-bikes, bikes, and pedestrians. Similar to our findings, prior studies have demonstrated
that, in China, the risk of traffic accidents for cyclists is high at intersections [69]. Due to
safety concerns, older adults may decide to opt for modes other than cycling [6].

5.2.5. Nonlinear Associations of the Distance to the CBD

As for the distance to the CBD, the nonlinearity pattern is intricate. Generally, a flat
“s”-shaped curve occurs. The cycling frequency climbs steadily before peaking at 0.8 km.
Then, it fluctuates downward before a “V”-shaped curve appears in the range of 1.7 to
3.2 km. Afterward, the curve becomes flat. As a low-speed travel mode, cycling can be
time- and strength-consuming for long-distance trips. Therefore, it is consistent with our
expectations that a negative association occurs when the distance to the CBD is from 0.8 km
to 2.4 km. However, when the distance to the CBD is beyond 2.4 km, the cycling frequency
among older adults is positively correlated. This is reasonable because the urban structure
of Zhongshan is polycentric. The subcenters are located over 2 km away from the CBD,
and hence, older adults may travel to the subcenters for daily activities.
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5.2.6. Nonlinear Associations of the Distance from Home to the Nearest Bus Stop

The cycling frequency drops stably when the distance from home to the nearest
bus stop increases from 0.1 to 0.5 km. Afterward, an approximate inverted “U”-shaped
fluctuation occurs, peaking at about 0.65 to 0.9 km. Following a sharp dive, the cycling
frequency remains flat beyond 1 km afterward. Oftentimes, when the nearest bus stop is
located within 0.5 km, older adults would opt for walking to bus stops. However, if the
distance is beyond a suitable walking distance, which is from 0.5 to 0.95 km in Zhongshan,
they may change to cycling over walking. That may explain the threshold effect of the
distance from home to the nearest bus stop on cycling frequency among older adults.

5.3. Model Comparison with Linear Regression

We also applied a conventional multiple linear regression model and a GBDT model
in this study for comparison with the XGBoost model. Table 6 presents the results of the
multiple linear regression.

Table 6. The details of multilinear regression.

Variable Coefficient T-Statistic p-Statistic

Household Characteristics

HHSIZE 0.08 0.354 0.726
MIDINC −0.342 −1.406 0.169
LOWINC −0.252 −0.842 0.406

BIKES −0.145 −0.983 0.333
MOPEDS −0.126 −0.817 0.42
MOTORS −0.012 −0.043 0.966

CARS 0.377 2.34 0.025 *

Individual Characteristics

GENDER 0.002 0.012 0.99
AGE −0.071 −0.467 0.644

EMPLOY 0.169 1.032 0.31

Built Environment Characteristics

POPDEN −0.45 −1.382 0.176
INTERDEN 0.383 1.366 0.181

BUSDIST −0.068 −0.45 0.656
CBDDIST 0.26 1.69 0.101

MIX −0.077 −0.534 0.597
GREEN 0.119 0.751 0.458

Note: * p < 0.05.

The mean square error (MSE), mean absolute error (MAE), and mean absolute percent-
age error (MAPE) of the three models were calculated to test the preciseness of prediction.
The model performs better when these metric values are as small as possible. These metrics
are formulated as follows.

MSE =
1
N

N

∑
i =1

(ŷi − yi)
2 (9)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (11)

where N is the total number of samples, ŷi is the predicted value for the ith sample, and yi
is the observed value for the ith sample.

The metric values of the three models are shown in Table 7. The XGBoost model
performs best in prediction among the three models.
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Table 7. The metric values of the three models.

Model

Metric
MSE MAE MAPE

Multilinear regression 0.614 0.564 25.581
GBDT 0.589 0.539 24.356

XGBoost 0.585 0.503 22.429

6. Conclusions

This study investigated the nonlinear associations between the built environment and
cycling frequency among older adults based on the XGBoost model. The dedication of the
research is summarized into three points.

First, the outcomes showed that the hypothesis of nonlinear associations between
the built environment and cycling frequency among older adults is valid. According to
the results, the nonlinearity is presented in all the six built environment characteristics. A
model comparison was also conducted in the perspective of prediction precision among
multilinear regression, GBDT, and XGBoost. The result demonstrated that XGBoost is
more accurate in the prediction of cycling frequency based on the selected built and
socioeconomic attributes. Accordingly, the nonlinear methods are more suitable for cycling
frequency prediction.

Second, the results highlighted the critical roles of built environment characteristics
in influencing the cycling frequency among older adults. Within certain ranges, all else
unchanged, denser population, mixed land-use development, fewer intersections, more
convenient bus service, and abundant green space land use may arouse older adults’ desire
to cycle. Although the conclusions may not be directly transferrable in other areas, the
modeling approach in this paper is applicable in other contexts to facilitate strategies for
land use and transport planning.

Third, the results indicated that the built environment characteristics have obvious
threshold effects on cycling frequency among older adults. A single built environment
attribute may have inequivalent effects across the whole range of that attribute. Hence,
discovering the proper interval may be economical. In Zhongshan, the population density
of around 5000 persons/km2 may be appropriate for increasing cycling frequency among
older adults. Additionally, to promote cycling among older adults, land-use mixture
entropy indexes of 0.5 and 0.7 are advisable. Moreover, for the percentage of green space
land use among all land uses, the suggested value for encouraging older adults to cycle is
around 12%.

This study has some limitations. First, the confidence interval of the predicted value
cannot be calculated based on the XGBoost model. Presumably, the distributions of vari-
ables are difficult to obtain. Accordingly, the pivot quantity cannot be established. Secondly,
due to the data availability, this study did not include all the variables that are relatively
important to the cycling frequency among older adults. In future studies, other variables
will be incorporated. Thirdly, this research was based on cross-sectional data. As with
some of the prior studies, the current work was unable to clearly verify the causal effects of
the built environment on cycling frequency among older adults.
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