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Abstract

Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at
best only partially protect infants.

Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and
exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed
reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin
inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where
parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity
to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected
mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive
vaccine trial data solidly substantiate this model experimentally.

Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites,
systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to
significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces
fundamental reassessment of central precepts determining vaccine development. This has major implications for
accelerated local eliminations of malaria, and significantly increases potential for eradication.
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Introduction

The malaria vaccine paradoxes
A solitary subunit vaccine marginally [1,2,3,4,5,6] protects children

in endemic areas [7,8] against malaria, and only partially protects

infants [9,10,11], similarly to malaria-naı̈ve adults [12,13]. Adults in

endemic areas remain unprotected [14,15]. These data crystallize the

paradoxes central to 80 years of malaria vaccine research. Endemic

populations display T cell [16,17,18,19,20,21,22,23] and antibody

[24,25,26,27,28,29] responses to all malaria lifecycle stages and rapidly

acquire immunity to bloodstage parasites, mitigating adult disease and

death [29,30,31,32,33]. Immunity to earlier skinstage parasites

however does not develop, and endemic populations remain tolerant

to continual reinfection [32,33,34] remaining at risk for severe malaria

should immunocompetence weaken. Similarly, potentially protective

[17,35,36,37,38] T cell responses elicited by diverse attenuated-parasite

[20,39,40,41,42,43,44,45,46,47,48,49,50,51] and subunit [52,53,

54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] malaria vaccines,

and laboratory infections [35,42,51,70,71,72,73,74,75,76,77] provide

sterile immunity [38,47,78,79,80] to infection, yet are ineffective in

endemic populations [14,15,81,82,83,84] and are effectively blocked

by the parasite [85]. Ostensibly, protection is blocked only in endemic

areas, implying a conditional difference between laboratory and field

infections which systematically triggers an immunological block to

vaccine function in the field. This rationale pinpoints an activatable

immune mechanism which blocks existing T cell responses. Obvious

candidates are the normal immune mechanisms suppressing autoim-

munity and allergy, or self- and nonself-tolerance. These mechanisms

centre largely around suppressive function of regulatory T cell subsets

(Tregs) [86,87]. Activated natural (nTreg) and induced (iTreg) Tregs

suppress effector T cell [86,87] and B cell responses [88,89,90,91,92]

and tolerize dendritic cells (DC) [93] to maintain self-tolerance and

regulate inflammatory responses to injury [94], tissue grafts [95,96,97],

pathogens and allergens [98,99,100].

A major regulatory immune organ, rich in regulatory T cells

[101,102], is human skin. This suggests the initial path of malarial

infection will profoundly affect systemic host responses to

subsequent lifecycle stages. Most experimental infections bypass

the skin entirely. Natural malaria infection however, starts in the

skin [103,104,105,106,107]. Infected mosquitoes inject motile
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[108] skinstage (sporozoite) parasites; within minutes, a few

migrate to proximal lymphatic vessels and skin-draining lymph

nodes (LN) [107]. Another few [107] invade blood vessels, rapidly

[109,110,111] migrating to the liver; the remainder linger in the

skin [107]. Liver invading parasites differentiate [112] and

multiply (for days) asymptomatically [32] until bloodstage-filled

vesicles bleb [113,114] into the blood, causing the systemic

inflammatory reaction [115], immunologically similar to sepsis

[115], underlying initial symptoms of clinical malaria. We

compile the immunobiology of Anopheline mosquito bites and

human skin, with the molecular and behavioural characteristics

of skinstage parasites, to show that natural infection leads

inevitably to systemic immunotolerance. We further show, via

comprehensive meta-analysis of fully protective vaccine trials,

that bypassing or disrupting natural parasite-host immune

interactions in the skin profoundly affects host responses to

vaccine antigens, and leads to protective immunization against

malaria.

Methods

Literature Searches for completely protective vaccine
trials, for meta-analysis

Searches were performed following MOOSE (Meta-analysis of

Observational Studies in Epidemiology) guidelines for conduct

and PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-analysis) reporting protocol for Systematic Reviews and

Meta-analysis [116]. Studies showing complete protection to

malaria challenge in mammals were identified by searching the

PubMed database (www.ncbi.nlm.nih.gov/pubmed/) with search

terms: malaria OR plasmodium & (complete &) protect* OR

immuni* OR vaccine OR human/man/chimpanzee/monkey/

mouse/rat/rabbit/dog/goat/OR

Aidoo/Ballou/Beaudoin/Clyde/Corradin/Daubersies/Druilhe/

Doolan/Egan/Good/Herrington/Hafalla/Hill/Hoffman/Hollingdale/

Heussler/Kappe/Kester/Krzych/Khusmith/Langhorne/MacColm/

McCarthy/Marsh/Mazier/Miller/Most/

Matuschewski/Nardin/Nussenzweig/Playfair/Plebanski/Orjih/

Orton/Patarroyo/

Renia/Rieckmann/Riley/Rodrigues/Sauerwein/Sedegah/Schofield/

Siddiqui/

Snounou/Tartz/Tsuji/Urban/Vanderberg/Vaughan/Weiss/Weidanz/

White/Yoshida/Zavala/&/OR year (1965 – 2009). Searches were

performed by adding two or three qualifiers at a time to the basic

search string: [‘‘malaria’’ OR ‘‘plasmodium’’ AND protect*’’ OR

‘‘immuni*’’], and rerunning the search each time. We ran searches

without, then with, qualifier term ‘‘complete’’ to allow wide retrieval

sensitivity. Retrieved records were combined and replicates removed.

Compiled single records were then screened by search term and

abstract perusal for traveller, bednet, thalassemia, genetic, pharma-

cokinetic, drug intervention, insecticide, repellent or mosquito

physiology content without reinfection follow-up, and excluded; we

also contacted authors to verify conditions where necessary. This

search strategy, (outlined in Figure 1), provided meticulous coverage,

as determined by random spot-checks for coverage. Last complete

database searches were carried out 9–13 September 2009; final

update searches were run 13 February 2010. We also examined cited

reference lists in studies and reviews identified. Late-breaking studies

were manually added to this final database.

Selection of studies for meta-analysis data–Inclusion/
exclusion criteria

Inclusion criterion: Identified full-text immunization studies

were then checked individually by full-text inspection for

experimental immunization and challenge conditions, and results

of challenge, and sorted with regard to complete protection criteria

(defined below). Immunization studies showing complete protec-

tion of all immunized subjects and infectivity in all control

infections (in any part of the study), were included in a final dataset

for analysis (Defined in Figure 1; listed in Table S1). No other

inclusion criterion was used. Studies in English, French, Spanish,

Portuguese and German were assessed, and sufficient discrimina-

tory data was available in English abstracts, for most studies

identified published in further languages. Studies in Oriental

languages without abstract (5) were not evaluated. Included studies

were further sorted for analysis according to experimental data as

described below in Validity and Sorting Criteria. Exclusion

criteria: Studies showing incomplete protection in immunized

subjects, or incomplete control infectivity, were excluded. No

other exclusion criterion was used on the immunization studies

identified by the search method described.

Figure 1. PRISMA Flow Diagram showing inclusion/exclusion
criteria for studies documenting complete protection 1965-
February 2010.
doi:10.1371/journal.pone.0010685.g001
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Validity Assessment and Sorting Criteria
Complete protection criteria: bloodstage parasites undetectable

after challenge in all immunized subjects AND 100% of non-

immunized controls became parasitemic. Experiments document-

ing complete protection were further sorted into 8 categories, (a–

h), defined first by route and method of immunization, and then

route of challenge. Experimental data publications are listed by

category in Supplementary Table S1. The route and conditions

defining immunization in each category are represented graphi-

cally in Figure 2 (and in written form in Supplementary Table S2)

on green background, and explained in the legends to Figure 2

and Supplementary Table S2. The route of challenge, either

intravenous or via moquito bite, is indicated graphically on lilac

background, (in written form in Table S2) and explained in

legends for Figure 2 and Table S2.

Data Abstraction
Final database searches as described were performed separately

twice during a three month period (June-September 2009), and

once in February 2010, by the same person, and a further search

performed once by a second person. Four separate results

databases were combined with longterm manual search archives

from over 4 years, and replicates removed. Assessment of

compliance with complete protection criteria for the final dataset

was reconfirmed in all cases by one person. From this final dataset,

by full-text inspection, we retrieved specific experimental data

regarding method and route of immunization, and method and

route of challenge.

Analysis/Summary measures
We measured the percentages of our dataset of fully protective

vaccination experiments, that involved either absence, or pres-

ence, of live parasite interaction within the skin, during

immunization, during challenge, or during both.

Results

1. Selection of studies for vaccine trial meta-analysis
Literature search, final selection strategy and data retrieval were

designed to return data completely unlinked to and irrespective of

any criterion beyond complete protection. Searches targeted any

immunization, in any mammal, generating a comprehensive

database of immunizations from 1965-February 2010. Random

spot-checks confirmed meticulous coverage. Search method,

inclusion/exclusion, assessment and sorting criteria are fully

described in the Methods section. The probability of missing any

important immunization study is therefore finite but exceedingly

small. The probability of missing an entire class of vaccines is nil.

Literature searches and resulting datasets of factors contributing to

protective vaccine function were therefore comprehensive, and

completely unfocused and unbiased with regard to parasite life-

cycle stage, antigen character, proposed immune mechanism,

mode of application or any other criterion beyond complete

protection. Data for analysis (specific experimental data regarding

method and route of immunization, and method and route of

challenge) was included according to a rigorous definition of

complete protection.

We identify 1916 immunization studies performed worldwide

between 1965 and February 2010 (Fig. 1), and retrieve an

unambiguous, comprehensive and unbiased data set of 177

experiments in 161 publications documenting completely protec-

tive immunization, versus 1627 nonprotective or partially

protective immunization results (Fig. 1).

2. Vaccine trial data implicates the skin in vaccine failure
2-i. Meta-analysis shows complete protection against

natural challenge, by immunization via unmodified skin,

does not occur. Completely protective vaccinations (177

experiments, Fig. 2; see also Supplementary Table S2, and

Fig. 1) employing diverse vaccines, fall into 8 categories (Fig. 2a–h)

according to method, and routes of immunization and challenge.

These reveal that, unlike endemic populations (Fig. 2i), all

protected subjects (Fig. 2a–h, with verifiable exception of one

individual [117]) are malaria-naı̈ve (unexposed to malaria-infected

mosquitoes) prior to first immunization (Fig. 2A). Most protective

vaccinations also physically bypass live parasite interactions in the

skin at either immunization or challenge (90%, Fig. 2B, a,b,c,e,h).

Bypass is either by intravenous (i.v.) injection, or use of dead

parasites, purified antibody or protein, or recombinant DNA, at

immunization (84%, Fig. 2a,b), or i.v. injection at challenge (84%,

Fig. 2a,c,e,h), usually by i.v. injection at both (78.5% Fig. 2a). Skin-

based immunization (via infected mosquito bite), completely

protective against virulent natural challenge (Fig. 2d,g) in

humans [118,119,120,121,122,123] and mice [124] occurs only

under conditions significantly altering the immune context in the

skin during immunization. These immunomodulary conditions are

illuminating and are examined in detail in Sections 3 and 4, and

entirely account for the remaining 10% of completely protective

immunization.

2-ii. Partially and non-protective studies strongly suggest

parasite skin interactions actively depress host

immunity. Otherwise, in mice, live-parasite immunization ‘‘via

the skin’’ (this includes subcutaneous injection (s.c.) which bypasses,

but inevitably contaminates, the skin) is usually non-protective

[125,126]. Where documented, skin-based immunization provides

complete [127] (Fig. 2f) or substantial [124,128,129] immunity only

against less infective Plasmodium berghei natural challenge, but not

against ,100-fold more infective [130] P. yoelii natural challenge

[127,128]. Intravenous immunization with P. yoelii protects

completely against intravenous challenge [128,129], but mosquito

delivered [128,129], or high-dose injected intradermal [128]

immunization does not. This suggests skin-immunization generates

immunity less efficiently [124,128], or increases intrinsic parasite

infectivity [124,128,131].

However, after identical intravenous infective challenge (by-

passing the skin) [128], diminished immunity with high dose skin

immunization (compared to intravenous) [128] must derive from

deficient host responses (activated less efficiently, or actively

depressed, or both), not parasite-intrinsic changes.

Therefore, since skin immunization with less infective [130] P.

berghei protects completely against intravenous infection (20,000–

50,000 parasites) [124,132], but not against a 20–200X lesser skin

challenge (10 bites) [124], (roughly 250–1000 parasites [107,110])

the data argue strongly for parasite-skin interactions increasing

host susceptibility by actively depressing host immunity.

2-iii. Immunity generated via unmodified skin is easily

broken. Intravenous mouse [128] and primate [68,133]

attenuated-sporozoite immunizations withstand repeated

intravenous challenge. Immunity generated by live parasites via

skin however, is reversed by small increments (5 additional bites,

or 125–500 more parasites) in natural challenge dose [124,128],

but withstands heavy intravenous challenge (20,000–100,000

parasites) [124,125,126,128,132] (see also Fig. 2c,e,h). Likewise,

skin-generated immunity in humans [119,134] (see also Fig. 2d)

despite immunizing doses 100-fold greater than challenge,

succumbs to increased [119,134], and usually, sequential

[119,123,134,135,136] natural challenge. Immunity generated

transiting skin, therefore, is marginal, and reversible.

Skin and Malaria Tolerance
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2-iv. Bloodstage vaccines do not protect against challenge

via the skin. Finally, intravenous immunization with bloodstage

parasites [76,77,137,138], fully protects against intravenous

bloodstage challenge in humans [77] and monkeys [137] and

both bloodstage [138,139] and sporozoite [76] intravenous, but

not mosquito-bite, challenge [138] in skinstage-naı̈ve mice.

Similarly, major bloodstage-antigen vaccines (eg. MSP-142,

AMA-1), show strong antibody-correlated [61,67,140] efficacy

against symptomatic malaria after intravenous challenge in

monkeys [67,140] and induce similar antibody responses in

people from endemic areas [83,141,142]. Protective efficacy

against infection however, is negligible, despite some evidence of

reducing risk of symptom severity and parastaemia density

[143,144]. No bloodstage antigen in over 16 trials and 10,300

humans vaccinated to date, protects against infection by mosquito

bites [83,84,142,143,145,146,147] (and Figure 2i).

2-v. Summary: Vaccine trial data implicates the skin in

vaccine failure. Collectively, these data show that in malaria-

naı̈ve subjects, (which excludes bloodstage immunosuppressive

effects) live-parasite immunization transiting unmodified skin is

inefficient. Immunity diminishes after unmodified skin-parasite

interactions and is significantly less robust generated via skin than

if intravenously. The bulk of experimentation shows immunization

avoiding parasite-skin interaction withstands heavy, repeated

intravenous challenge, but only limited challenge transiting the

epidermis. Importantly, the data imply parasite-skin interactions

Figure 2. Protective vaccination physically bypasses skin at immunization or challenge (90%) or involves skin immunomodulation
(10%). A. Exposure to parasites in the skin coincides closely with vaccine failure. Green background- immunization procedures. Lilac background-
challenge procedures and percent of total experiments showing complete protection (% total) formed by a subset of studies (category) using a given
experimental procedure (categories a-i; supporting data in references listed below). Inclined syringe- administration route is intravenous (i.v.) for live
parasites, or, the method does not involve live parasites, but uses dead parasites or purified antigen, antibody, or recombinant DNA (dead/Ag/Ab/
subunit) and therefore bypasses parasite interactions with host skin. Multiple mosquitoes- live parasites administered by multiple simultaneous
mosquito bites. Single mosquito- live parasites naturally transmitted by 4–15 bites. Mosquito in aromatic ring- live parasites administered by 12–15
bites/session with chloroquine. Vertical syringe- live parasites delivered subcutaneously (s.c) or intradermally (i.d.) or intramuscularly (i.m.); (i),
uncontrolled exposure to endemic mosquitos. B. Protective immunization physically bypasses the skin at either immunization or challenge in 90% of
cases (a,b,c,e,h). Protective immunization which transits skin during immunization (c,d,e,f,g,h) either: bypasses the skin physically at challenge (c,e,h);
or, involves skin immunomodulation during immunization (d,g, 10% of cases). Within A and B: Red lines and numbers- experiment bypasses parasite-
skin interactions at stage indicated by red lines; black lines and numbers- parasites interact with skin at stage indicated by black lines. Asterisk (*)-
immunization via unmodified skin, limited to less-virulent P. berghei (f). Skin bypass- method physically avoids live parasite interactions in the host
skin. Malaria exposure- skin exposure to infected mosquito bite before first immunization; naı̈ve- no pre-exposure; exposed (endemic)- chronic
exposure. x- this study shows complete protection of 40 of 41 mice challenged. y: one person in one study [117] was infected one time via the skin
prior to protective immunization and was therefore moderately tolerized. Data pertaining to experimental categories (a–h):
a:[35,42,47,49,50,51,57,68,70,71,72,73,74,75,76,78,85,124,125,126,128,129,130,133,137,138,139,150,151,166,169,171,173,185,267,335,336,337,346] [355,
356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386] [387,388,389,390,391,
392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409] [410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,
428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451]. b: [47,48,124,128,129,138,171,387,452,453]. c:
[124]. d: [36,44,118,119,120,121,122,123,124,134,135,136,172,454,455,456]. e: [111,132,457]. f: [127]. g: [163]. h: [48,111,388,458,459]. Studies containing
data for multiple relevant experimental conditions are referenced accordingly in each appropriate category. Multiple experiments contributed by a
single study are indicated beneath study reference number (eg. reference 124 X2) in Supplementary Table S1. (Meta-analysis data extended reference
list).
doi:10.1371/journal.pone.0010685.g002
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actively diminish host protective responses. Avoiding parasite/host

skin interactions during both immunization and challenge

however, associates solidly with immunity.

3. Altered immune context in the skin during
immunization protects against natural challenge and
suggests a skin-linked immunosuppressive mechanism

3-i. Immunization under pro-inflammatory skin

conditions confers protection. Complete human protection

with irradiation-attenuated [40,118,120,122,136] P. falciparum or

P. vivax requires 1000 or more mosquito bites [120,134] (usually

80–240 bites/session). This causes coalescing skin inflammation

[40,134], lasting several hours [134]. Immunity is reversed by

relatively small increases [119,134] in challenge dose, as for mice

[124,128]. Fewer total immunizing bites (,1000) are not reliably

[134], or (,700) not at all [52,135] protective when delivered in

low density bites/session [52,118,119,135], or with strongly anti-

inflammatory topical cream [40] and/or heavier parasite

irradiation [40,52]. However, 440 infected bites, delivered with

additional uninfected bites, increasing bite density, is protective

[123]. Rather than parasite dose alone [134,148], therefore,

protection appears influenced by degree of parasite attenuation

(limiting liverstages [149]), density of simultaneous bites, and pro-

inflammatory local context.

3-ii. Immunization via unmodified skin suppresses

available protective responses. Systemic proinflammatory

context confers resistance to malaria infection in mice

[150,151,152] and correlates strongly with human resistance

[153,154,155]. In uninflamed mouse skin, increasing immunizing

dose from 2 mosquito bites (roughly 50–200 parasites [107,110]) to

4 bites, significantly increases parasite-specific (CD8+) T cell

responses [79]. More immunizing bites yield no further increases

[79]. Yet, 100-fold higher immunizing doses (20 000 parasites)

delivered directly (i.v.) to the liver, provide almost twice the

protection of 10 000 parasites [47], proportionally increasing

specific T cell responses [79]. This reveals higher protective

responses to direct liverstage infection are available, which become

unavailable when parasites transit uninflamed skin. An

intravenous immunizing dose completely protective against i.v.

challenge of 20,000 parasites, but not against 10 bites [124] (20-

80-fold fewer parasites), is further consistent with skin-linked

immunosuppression.

These data suggest inflammatory skin context potentiates

immunization via skin, implying inflammation relieves a skin-

linked suppression of immunity to liverstage malaria unassociated

with prior bloodstage infection.

3-iii Skin-immunization under chloroquine (CQ)

immunomodulation also confers protection. CQ, a widely

immunomodulatory 4-aminoquinolone, accumulates preferentially

in human skin and lymphocytes [156], to levels 200–20,000 -fold

those in the liver, and remains in human skin, (not plasma) for 6

months [157]. Prophylactic in vivo concentrations (100–500 ng/ml

liver plasma [157,158]) inhibit antigen presentation in human

antigen-presenting dendritic (DC) and B cells in vitro

[159,160,161].

Immunization via skin with a drastically lower (but normally

100% infective [162]) dose of unattenuated P. falciparum (15

infected bites/session, x3), if co-administered with prophylactic

chloroquine (CQ), instead protects malaria-naı̈ve individuals from

challenge (5 infective bites) [163]. CQ provides greater immunity

than parasite attenuation: considerably greater immunizing doses

of irradiated parasites without CQ do not protect mice [47] or

humans [134] against natural challenge. CQ treatment either

allows greater and/or antigenically broader immune responses

consequent to robust expression of liverstage antigens

[47,163,164], or lowers a barrier to immunity, or both. We

examine the evidence for both, below.

4. Protective effects of skin inflammation and CQ
immunomodulatory mechanisms implicate early, skin-
induced Tregs in systemic immunotolerance

4-i. The liverstage antigen concept for protective

immunity. That protection requires robust expression of

liverstage-antigens has significant correlative support.

Primaquine (PQ) eliminates all forms of liverstage parasites

[47,165] and concomitantly abrogates protection [165,166];

incremental parasite irradiation increasingly limits parasite

liverstage proliferation [149,165] and corresponds to decreasing

antigen synthesis [167] (implying decreased antigen presentation)

and diminished protectivity [165,167,168,169,170]. CQ

attenuation however, does not affect parasite liver stages [47],

allowing fullscale liver infections, abrogated after emerging from

the liver [47]. These data imply robustly expressed mid-

lateliverstage parasite antigens provide immunity [47,170] to

subsequent natural challenge.

4-ii. The liverstage antigen concept does not explain all

the data. Although widely accepted [163], this concept does not

reconcile important data. Genetically attenuated liverstage

parasites (p52/36, delivered i.v.), persisting in hepatocytes less

than 6 hrs [171] (minimizing antigen presentation) nonetheless

protect against stringent P. yoelii [171] natural challenge. Similarly,

protective responses to liverstage infection (delivered i.v.) are swift

[46,111], but do not increase with prolonged antigen presentation

[79]. Stable, protective [172] memory T cell populations to

skinstage parasites are induced and maintained by exposure to

sporozoite and bloodstage parasites in skinstage immunized,

(malaria-naı̈ve) people [172]. Finally, endemic populations

remain susceptible to reinfection, despite multiple fullscale

liverstage infections, widespread use of CQ in adults, and

evidence for unimpaired development and recall of liverstage-

cognate memory responses during [80,173,174] and after [174]

bloodstage infection. These discrepancies suggest CQ co-

administered with skin-infecting parasites in malaria-naı̈ve

people, confers protection in some way beyond allowing a

fullscale liverstage antigenic repertoire.

4-iii. CQ inhibits antigen presentation pathways vital to

Treg induction in skin. CQ disrupts all MHC II antigen

presentation [157,175,176] to CD4+ T cells. CQ also specifically

blocks [160] the rapid, seconds-to-15-minute [159] noncanonical

MHC I recycling pathway [160,161] for extracellular antigen

cross-presentation to cytotoxic (CD8+) T cells, which in human

plasmacytoid-DC (pDC) [160] enables very rapid cytotoxic

responses [160]. CQ does not block classical MHC I antigen

cross-presentation [161], which takes 6-18 hrs [160] for optimal

presentation.

Therefore, only slow, classical MHC I cross-presentation,

(efficiently functional in human skin-resident epidermal Langer-

hans DC (L-DC) [177,178], dermal DC (d-DC) [179] and other

immune and parenchymal cells [180] such as traversed [181] skin

or malaria-infected liver cells [111,182]), is available to generate

protective cytotoxic (CD8+, MHC I) responses to malaria antigens

presented at the skinstage [18,28,183,184] in humans. In

agreement, protection provided by attenuated sporozoites against

intravenous challenge in mice, requires MHC I cross-presentation

[185]. Also, in humans, one therapeutic dose of CQ strongly

inhibits CD4+ T cell responses while strongly inducing CD8+
effector responses in vivo to a particulate viral antigen [186].

Malaria parasites constitute particulate antigen. Evidently, CQ
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treatment will affect antigen presentation in the skin during the

earliest stages of malaria infection: the mosquito bite. Antigen-

specific responses dependent on rapid cross-presentation of

exogenous MHC I, and all MHC II antigen presentation,

including any regulatory T cell induction or activation, will be

blocked. CQ therefore, affects the balance of earliest host immune

responses triggered to malaria antigens, which are first encoun-

tered in the skin.

4-iv. Normal host response to mosquito-bite inflammation

triggers tolerizing cascades, facilitating parasite-cognate

Treg induction early in infection. Mosquito bites cause severe

local or systemic allergic inflammation [187], unless rapidly

dampened by in situ suppressive activity induced in antigen-cognate

T cells (iTregs) [91]. Human skin is rich (,100,000 per cm2)

[101,102] in suppressive [102], skin-resident [101,102], circulating

[188,189] and LN-homing [102] nTregs, and local inflammation,

which recruits DCs and T cells [91,190] preferentially increases Treg

infiltration [91,191,192]. Tregs further accumulate at inflammatory

sites [91,193,194] via DC (antigen-presenting) dependent and

independent [102] mechanisms.

In skin, sunlight and allergen induced inflammations cause

keratinocyte signalling molecules [195] to interact with densely

interwoven epidermal [196] L-DC. This increases antigen

scavenging [195] in L-DC, and induces L-DC to generate de novo,

and proliferate, antigen-specific Tregs [195]. These skin-triggered

Tregs repress allergic inflammatory reactions both locally, in skin

and draining LNs, and systemically [195].

Mosquito saliva allergens [187], in sensitized subjects [152]

such as endemic populations also trigger [197] almost instanta-

neous [198] inflammatory extravasation [152,187,190], IgE-

mediated [199] and independent mast-cell TNF-a [190] and

local IFN-c and inflammatory cytokine secretion [152,187,190].

This induces chemokines [200] enabling [201] local skin

inflammations to rapidly recruit leukocytes [152,187,190],

including circulating immature monocyte-derived DC (mDC)

[200], pDC [200,202,203,204,205,206,207] not normally present

in skin, and skin-resident dDC and immature L-DC [200]. While

immature L-DC are initially tolerogenic [208,209,210], secreting

high levels of TGF-b [178,211], strong inflammatory stimuli

mature L-DC [178] to preferentially [178] crosspresent [177,178]

MHC I epitopes. This drives high avidity, antigen-specific

cytotoxic T cell responses against epidermally acquired antigens

[178]; human dDC preferentially stimulate antibody responses

[178].

However, in Anopheline mosquito-bites, infiltrating mast cells

rapidly degranulate [190], releasing stored TGF-b1 [212] and

bioactivating molecules [212], activating TGF-b signalling [213].

Exogenous bioactive TGF-b inhibits maturation and endogenous

antigen presentation by immature human L-DC after antigen

uptake [212,214], and upregulates IL-10 secretion in T cells [215]

and mDC [216] subsets (this includes L-DC [217]).

Immature human mDC [216,218,219,220,221,222] and antigen-

activated human pDC [222,223,224], (which also secrete chemokines

that attract circulating T cells [202]), prime IL-10-secreting,

immunosuppressive iTregs from interacting antigen-cognate T cells.

Suboptimal [225], or immature DC antigen presentation

[218,219,226] and low antigen dose [225,227,228] preferentially

[229] activate Tregs over effectors, and increasing local TGF-b and

IL-10 concentrations further activate Tregs [93,230,231,232]. This

tolerogenic cascade will act on recruited T cells and Tregs, potentially

including malaria-crossreacting specificities [233] present in malaria-

naı̈ve people [55,77,234].

Once activated, nTregs also secrete bioactive [87] TGF-b1

[87,235,236,237], and most iTregs produce high levels of IL-10

[221,222,238,239] and/or TGF-b [194,222]. These cytokines mediate

multiple Treg activation [87,216,221,231,240,241,242,243], induction

[91,216,238,239,244,245,246,247] and suppression mechanisms both

antigen specific [95,231] and non-specific [87]. Also, independently of

DCs, accumulating human antigen-activated CD4+ Tregs can

themselves generate suppressive iTreg via TGF-b-dependent

[247,248,249] or IL-10 dependent [230,238] infectious tolerance.

These cascading mechanisms will efficiently expand miniscule numbers

of cognate Tregs [93,100,247] initially activated or induced in location,

such as an Anopheline bite-site or draining LN.

4-v. Antigen presentation during mosquito bites provides

for opportunistic systemic subversion to malaria- specific

tolerance. Critically, Tregs normally home to inflamed tissue

[193] and LNs [250] according to homing molecules expressed

[251], and in inflamed skin [91,102,195] and LNs [252], rapidly

out-proliferate [252] and suppress priming [229,253] and

proliferation [252] of same-specificity effector T cells. Under

such Treg-dominated [88,254], or tolerogenic IL-10-rich

microenvironments [238,255], mature human mDC will also

generate iTregs [238,255,256]. This further facilitates specific

systemic tolerization to skin-encountered antigens. High,

tolerogenic IL-10 levels normally prevail within 8 hours in LNs

draining uninfected Anopheline mosquito bites [190,257]. The

normal response to Anopheline bites therefore, provides a

tolerogenically predisposed microenvironment, in which

parasites, when transmitted, will drive parasite-specific

tolerization.

Evidently, antigen presentation in skin during malaria-infected

mosquito bites provides major sources of antigen-specific Tregs

capable of repressing local [91,100], LN and systemic [195,258]

inflammatory reactions to bite-site antigens. T cell repertoires in

malaria-naı̈ve people include malaria-cognate specificities

[55,77,234]. Malaria proteins contain amino acid sequences

highly conserved in human housekeeping proteins [233], implying

the pre-existence of malaria-cognate nTregs. These T cell and

Treg repertoires, responding to mosquito-allergen inflammation,

and the minimal malaria antigen doses transmitted in bites,

provide amply for de novo malaria-specific suppressive iTreg

generation, and expansion of pre-existing, potentially cognate

[233] nTregs, via Treg induction and expansion mechanisms

[225] documented in the basic literature (see above Section 4-iv).

Existing mechanisms for rapidly expanding Treg number

[221,222,225,249] and specificity spectrum [93] clearly support

rapid induction of antigen-specific Tregs and systemic tolerance

[93]. These conditions (part of the normal host response to

mosquito bites), occur in malaria infections at earliest skinstage,

well before bloodstages emerge. This facilitates opportunistic Treg

induction triggered at the skinstage by transmitted parasites. In

corroboration, in naı̈ve animals, sand-fly transmitted skinstage

Leishmania parasites induce de novo parasite-specific Tregs (previ-

ously undetectable in the animal) [259] which inactivate robust,

protective cytotoxic responses [260] concomitantly elicited by

parasite infection. Conversely, and significantly, people in endemic

areas deficient in basic functions driving Treg induction (TGF-b
production, TGF-b receptors, FOXP3, CTLA-4) resist infection

[155], not just bloodstage disease, specifically implicating the

mechanisms of Treg induction and expansion described, in host

susceptibility.

4-vi. CQ specifically blocks Treg-inducing antigen

presentation: this prevents malaria-specific tolerance

induction via bite-site parasite interactions in the

skin. Skin-accumulating CQ disrupts bite-site antigen

presentation leading to Treg-induction and activation. Malaria-

naı̈ve people treated simultaneously with CQ develop strong
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immunity via infected bites [163]. A malaria-naı̈ve person

therefore, develops protection against natural challenge when

rapid cross-presentation of exogenous MHC I, and all MHC II

antigen presentation, and consequently also, major sources of

rapid antigen-specific activation and de novo induction of

tolerogenic CD4+ and CD8+ regulatory T cells in the skin and

skin-draining LN, are blocked at the skinstage during immunizing

skin infections. Slower, protective CD8+ responses to liverstages,

also primed in the peripheral lymph nodes [111,261] are

uninhibited. As seen (Section 4-ii), protection due to expression

of a broader liverstage antigen repertoire permitted by CQ, as

proposed by others [163] is inconsistent with lifelong susceptibility

in populations from endemic areas, and other, experimental data.

Therefore, live parasite immunization via the skin under CQ

immunomodulation, results in protection [163] because CQ

coadministered with naturally transmitted parasites, in malaria-

naı̈ve people, effects an immunological bypass of rapid, initial

skinstage antigen-specific tolerization and suppression, enhancing

slower-developing immunity, and memory responses.

4-vii. Enhancing inflammation also counteracts

tolerization via the skin. Multiple-bite immunizations deliver

unnaturally high allergen/parasite-antigen doses, provoking

strongly pro-inflammatory microenvironments. Pro-inflammatory

conditions counteract [100,262], and inhibit [227,263] DC

tolerization and directly disrupt Treg-induction and activation in

mucosal skin [264], and can convert Tregs to effectors [265].

Multiple-bite immunizations therefore, support immediate,

predominantly cytotoxic [178] malaria-specific protective

immune responses, effectively disrupting skinstage tolerization,

and enhancing protective memory responses.

5. A role for the skin accommodates conflicting data
Consistent with this perspective, genetically attenuated immu-

nizing parasites, (p52/36 [171] or p36 [128]) administered

intravenously, entirely bypass skinstage interactions. Multiple

short immunizing liverstage infections, of sufficient dosage [171],

accumulate enough antigen exposure to establish protective

responses. Without inhibitory skinstage interactions, intravenous

immunization eliciting swift [46] limited [46,79] responses to

incipient liverstage infection will protect [79,266] against natural

challenge without antigen persistence [171,267], reconciling these

(and other [165,166], see Supplementary Text S1) contradictory

data.

In strong support, multiple cycles of intravenous infection and

subsequent elimination with primaquine (PQ), a parasiticidal drug

cure, administered during liverstage development (allowing limited

antigen presentation by infected hepatocyte [268] before PQ-cure)

builds robust protection to natural challenge [129]. Immunization

via skin, however, with identical PQ-cure cycles, reduces

protection [129] even against intravenous challenge, again

implicating the skin in inefficient development of immunity.

Finally, 56% [9] 266% [10,11] of infants (3–17 and 2–4

months old, respectively) from seasonal [269], high transmission

areas can be immunized against natural challenge [9,10] with a

skinstage antigen (CSP) vaccine, that negligibly protects, or does

not protect adults from endemic areas [14,15].

Adult endemic-region populations are largely pre-exposed

[270,271,272] to malaria parasites in the skin: high-transmission

areas provide over 2 infected bites per night [30,273,274].

However, neonates are skinstage malaria-naı̈ve. Babies 0–6

months old, enrolled in medical trials, have significant chances

of being skinstage-naı̈ve upon immunization, and remaining so for

3–6 months. Urbanizing environments [271], increased bednet use

(about 80% compliance [9]) and seasonal transmission relative to

birthdate, all reduce exposure to mosquitoes. This allows many

intramuscularly immunized infants to pre-establish robust protec-

tive responses before encountering skinstage parasites.

6. A critical role for immune mechanisms within the skin
in malaria vaccine malfunction

Chronic pre-exposure of skin to live parasites coincides closely

with failure of clinically functional vaccines (Figure 2A). Immu-

nization reliably protects against natural challenge only in

skinstage-naı̈ve individuals where robust responses are established

before infective parasites ever interact with unmodified skin

(Figure 2b,d,g). Available epidemiological and vaccine trial data

strongly implicate the skin in a block to protective immunity

dependent on the presence of skinstage parasites and functional

CD4+ and rapid CD8+ exogenous-antigen presentation in the

skin, and independent of prior bloodstage infection. T cell memory

responses develop normally during [80,174,275] and after [275]

bloodstage infection, and human bloodstage-induced immunosup-

pression [276,277,278,279] is usually limited to acute malaria

[279,280,281]. The low incidence of acute malaria in semi-

immune [32,33] endemic adults cannot, therefore, account for

unmitigated susceptibility to reinfection, nor uniform inability of

diverse clinically functional vaccines to protect healthy, endemic

adults.

We conclude potentially protective liverstage and vaccine-

generated T cell responses, which indisputably exist, are disabled

by parasites in the skin.

7. Timing, behaviour and molecular characteristics of the
malaria parasite skin stage are aggressively tolerogenic

7-i. A role for the bite-site and parasite behaviour in early

systemic tolerization. Malaria-infected mosquito bites of 1

minute deposit around 20 [107] sporozoites in nanolitres [152] of

saliva into epidermal [107,110] and dermal [110] skin. Within an

hour, in mice, about 10–15% [107] (normally, 2–3) of deposited

sporozoites enter proximal skin-draining lymph nodes (LN)

[103,107,111], rapidly metamorphosing into bloodstage-like

forms [107], (we propose the term ‘‘pseudomorphs’’) expressing

antigens [107,282] characteristic of later liver and bloodstages

[282]. After 7 hours [107], most LN parasites are inside [107] or

entwined around CD11c+ [107] (cross-presenting) dendritic cells.

Some parasites (,10) remain in the skin [107], and their exact fate

is formally unclear. Antigens draining from these will initially

reflect the skinstage. However, host cell environment differentially

affects expression profile in malaria parasites [283,284]. Given the

metamorphic propensity of LN parasites, antigenic representation

of further lifecycle stages in skin-lingering parasites cannot be

excluded.

These data are crucial: they reveal the very earliest stages of

natural infection immediately expose the host immune system, via

skin and rapidly developing ‘‘pseudomorphs’’ in skin-draining LN,

to very low doses of (minimally) both skinstage and liverstage

antigens. These conditions anad location are highly conducive to

antigen-specific Treg induction and activation, and particularly

rapid induction of systemic tolerance [285], and therefore, rapid

systemic tolerance to parasite antigens arriving in the LN.
7-ii. Normal bite-site responses lead rapidly to systemic

tolerance. Tregs activated in skin bite-sites and LN by

migrating parasites and draining antigens will rapidly orchestrate

systemic tolerance. Tregs tolerize surrounding microenvironments

[88,100,254], downregulating mDC antigen presentation [286]

and upregulating mDC TGF-b and IL-10 secretion

[254,286,287]. This favours further Treg activation. Tregs also

reverse TLR activation of strong proinflammatory responses in
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human mDC [286,287,288], normally triggered by pathogen

ligands [289]. Contact with accumulating Tregs induces immature

human L-DC and mDC to remain semi-immature [286,287] and

migrate to draining LNs [287]. LN-migrating mDC can transfer

peripheral antigen to LN-resident DC [290] such as human pDCs,

which congregate in densely packed [291] naı̈ve T cell regions

[292]. More immediately, pDC cross-presentation will induce IL-

10-secreting Tregs [223,224] in response to rapidly draining skin-

located antigens [291] (eg. from bite-site) and LN-migrating

parasite antigens, potentially within an hour of the mosquito bite.

Later arriving [293] semi-mature L-DC, trafficking antigen [293]

to naive T cell regions of the LN [294,295] will therefore

encounter pre-established, tolerizing microenvironments.

Accordingly, skin inflammations [296], Anopheline mosquito-

bites [190,257], and activated TNF-a producing mast cells [199],

all increase immature [296] L-DC migration and accumulation in

the LN [190,257,296]. Also, for isolated Anopheline mosquito

bites leukocyte infiltration [190] cross-presenting DCs [190]

carrying sporozoite antigen [111] and IL-10 concentration [257]

rapidly increase in draining LNs.

These data strongly suggest skinstage parasites capitalize on host

responses to isolated, uninfected Anopheline bites, (which are

normally immunosuppressive [257]), efficiently misdirecting sys-

temic responses to ensure tolerance to subsequently developing

parasites.

7-iii. Skinstage parasite molecules are intrinsically

tolerogenic. Malaria parasites also display aggressive

molecular intervention strategies. Critically, gliding sporozoites

[297] transiting skin cells [298,299] the LN lumen [107] and

invading LN DCs [107], will shed circumsporozoite protein (CSP)

and thrombospondin-related-adhesive protein (TRAP) [297,300].

Cytoplasmic CSP, shed by infecting parasites, inhibits host

transcription activator NF-Kb [301], strongly downregulating

multiple pleiotropic pro-inflammatory (anti-parasitic [302])

activities including IL-6 [301] during plasmodial liver infection.

It is well established in non-malarial systems that IL-6 averts

CD4+ iTreg formation [303,304,305,306] and crucially,

suppresses the antigen-specific CD4+ Treg activity [307,308],

which inhibits both T cell activation to foreign antigen [307] and

CD4+ and CD8+ T cell memory development [308,309]. This

directly infers IL-6 blockade by malarial CSP [301] prevents

immediate protective T cell activation and memory responses in

the skin, LN and infected hepatocytes, simultaneously stimulating

in these locations antigen-specific Treg formation

[303,304,305,306,310,311] and expansion [305], triggered by

malaria antigens. This will limit any malaria-specific responses

arising. Accordingly, immediate in vivo T cell responses to malaria-

infected hepatocytes [46] are ‘‘self-limiting’’ [79,266], and

plasmodial liver infection, (an extensive tissue insult), is non-

inflammatory and asymptomatic [114]. Further, high dose

antigen-presentation, which counteracts Treg suppression [227],

in the case of malaria-antigens [312] relieves self-limitation of

malaria-specific responses [312], implicating malaria-specific

Tregs in self-limiting immune responses to infected hepatocytes.

Also, P. falciparum TRAP (expressed in both skin and blood

stages [313]), like human thrombospondin, bioactivates latent

human TGF-b [314] via the TSR-1 domain [315]. Thrombos-

pondin, by a TGF-b-dependent [316] mechanism [212,239],

converts cognate CD4+ T cells into suppressive iTregs in situ [316]

conferring localized tissue tolerance in mice [316]. In humans,

parasite-driven TGF-b bioactivation [314,317] precedes and

correlates strongly with significantly increased Treg numbers

and parasitaemia densities [317], and suppresses proinflammatory

responses in humans [317] and mice [318]. In unimmunized mice,

co-inhibition of TGF-b and IL-10 early [318] in infection, or

depletion of Treg [319], restores proinflammatory responses and

parasite clearance. Correlative, functional data therefore strongly

suggest Treg-inducing skinstage function for TRAP molecules.

7-iv. Skinstage parasite behaviour is potently

tolerogenic. Human allergen therapy boosts antigen-specific

systemic tolerance by chronic low doses applied via the skin

[285,320], and requires Treg induction and activation [258,320].

Tolerization is drastically accelerated by low-dose antigen

frequently introduced directly into skin-draining LNs [285].

Similarly, people constantly exposed to infected bites inevitably

collect frequent low numbers of CSP/TRAP-shedding, LN-

migrating, and skin-lingering ‘‘pseudomorphic’’ parasites. This

directly infers parasite instigation of continuous Treg activation

and induction in both skin and LN, and inevitably, potent

intralymphatic, antigen-specific systemic tolerization to exposed

malaria antigens.

8. A model for skinstage-initiated immune subversion
incorporates normal immunobiology of Treg induction
and mechanism, and the cadence, behaviour and cellular
biology of the parasite lifecycle stages

8-i. The model. Cellular and molecular data indicate isolated

malaria-infected mosquito bites drive rapid systemic tolerization to

malaria antigens at the skinstage. Since naturally transmitted

parasites progress from skin to liver to blood, liver infections

inevitably present malaria sporozoite [182,268] and liverstage

antigens to an already efficiently compromised host immune

system.

Tregs from human skin are highly proliferative in vivo, develop

alongside effector responses at the site of a skin inflammation

[321], and can be induced in vivo and ex vivo from highly

differentiated memory T cells, by antigen reencounter [321,322].

Tregs in vivo are preferentially [102,228] induced and activated,

and have an in vivo proliferative advantage [102,252,323] over

non-Tregs. These properties provide a clear systemic advantage to

any suppressive malaria-specific Tregs generated at the skinstage,

over simultaneously elicited malaria-specific [111] protective

cytotoxic T cell responses.

Skinstage pre-exposure of later life-cycle antigens [107] provides

an additional temporal advantage: liverstage infections subse-

quently presenting CSP [268] and pre-exposed liverstage epitopes

(eg TRAP, EXP-1) will enhance pre-established parasite-protective

Treg populations, suppressing swift cytotoxic responses initiated

against infected hepatocytes. B cells require activated T cell help to

initiate IgG antibody responses, and Tregs will also directly,

antigen-specifically and non-specifically, inhibit or kill activated B

cells [89,90,92,324]. Antibody responses and B cell function will

therefore also be vulnerable to repression by skin-induced,

malaria-specific Tregs, from the skinstage onwards. Infection,

and reinfection, not sterile immunity, will prevail in natural

transmission.

Induction of broad-spectrum malaria-specific Tregs in the skin

therefore, ensures liverstage infections always develop into

transmissible blood stages. At least 281 bloodstage proteins are

expressed at the skin stage, including AMA-1, PfEMP and

STEVOR proteins [325]. More than one liver- and bloodstage-

expressed antigen (eg TRAP, EXP-1) [313,326,327] is definitely

exposed at the skinstage [107,313], and therefore to the skin-based

tolerizing mechanisms we define. Once Tregs are induced, numerous

mechanisms (see Sections 4-iv, 4-v, 7-iii) exist allowing small numbers of

Tregs of one specificity to expand, outgrow, convert non-Tregs of different

specificities to suppressive function (infectious tolerance), and also non-
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specifically suppress responses to other antigens (bystander suppression) [93].

Therefore, a Treg response specific and suppressive to one

liverstage or bloodstage antigen (eg. TRAP or EXP-1), triggered

initially during skinstage, can later re-expand upon specific antigen

re-encounter at the liver or bloodstage, and non-specifically

suppress T cell (or ablate memory B cell) responses to further

parasite antigens co-expressed only at the later stage, eg. responses

to MSP-1, specific to late-liver and bloodstages. Pre-induction of

bloodstage-specific Tregs provides an obvious protective advan-

tage promoting the establishment of bloodstage parasites emerging

from the liver. Re-expansion of pre-induced Tregs will initiate a

tolerogenic cascade and immunosuppressive environment condu-

cive to bloodstage expansion, which is further enhanced by the

bloodstage parasite themselves. Bloodstage parasites generate Treg

activity [317,319,328,329] and nonspecific immunosuppressive

conditions [85,314,329,330,331,332], enhancing systemic toler-

ance [328,333] conducive to multiple parasitaemia cycles, thereby

increasing probability of gametocyte transmission, and also

reinfection [85,334].

8-ii. Model outcomes: experimental versus field

infections. Experimental, intravenous sporozoite infections

bypass skin/LN Treg activation (Figure 3B). Consequently,

predominant immune responses to liverstage infection, which

prime in the peripheral LN [111,261] are unhindered, rendering

the immunodominant CSP molecule and also TRAP,

experimentally protective [335,336,337].

Like physical bypass of immune interactions in the skin at

immunization or challenge (Fig. 3B), immunological bypass by CQ

inhibition of antigen presentation (Fig. 3C), or inflammatory

inhibition of tolerizing cellular cascades (Fig. 3D) during

immunization, consistently result in protection to natural skinstage

challenge for malaria-naı̈ve subjects.

Natural, skin-initiated infections however, pre-establish antigen-

specific tolerance to parasite antigens presented in the skin and LN

(Fig. 3A). In fundamental opposition to current opinion [338] and

vaccine dogma, this model shows CSP and TRAP are pleiopo-

tently immunosuppressive molecules when deployed within the

cadence of natural infection. Other lifecycle-stage antigens pre-

exposed by skinstage ‘‘pseudomorphs’’ [107], such as liver and

bloodstage antigens, broaden the scope of immunosuppressive

systemic responses to parasite antigens subsequently encountered

during liverstage or bloodstage infection (or immunization).

Critically, again directly opposing prevailing opinion, further

exposure to infected mosquitoes will boost tolerance, and

suppression of protective responses, not immunity.

8-iii. Selective vaccine failure: who, where and why. Adults

chronically exposed to infected mosquitoes from birth will

accumulate broad repertoires of regulatory T cells, becoming

potently pretolerized. Vaccination deploying skinstage-exposed or

bloodstage antigens will activate both pre-existing cognate Tregs

[225,252,339] as shown for foreign antigen in mouse systems, and

malaria-specific T cells, (effector and other subsets) as shown in

humans [340,341]; challenge by mosquito bite will preferentially

boost pre-existing Treg-based tolerance [225,339], suppressing

protective concomitantly elicited and recall responses [339].

Vaccines which substantially protect malaria-naı̈ve adults [12,13]

will negligibly, or not, protect endemic-area adults [14,15], as solidly

evidenced by adult vaccine field trials.

Neonates, initially skinstage-malaria-naı̈ve, are easier to protect

from mosquito bite. Accumulation of skinstage-induced regulatory

T cells specific for malaria will be negligible, and immunization

will (potentially unrestrictedly) favour [69] immunity. Endemic-

area infants, like malaria-naı̈ve adults, should be better protected

by formulations that negligibly protect endemic-area adults. This

profile is precisely corroborated by results for leading CSP-

containing RTS,S, vaccine formulations. These protect malaria-

naı̈ve adults partially [12,13], endemic-area infants (2–17 month-

old) similarly partially [9,10,11], older children poorly [7,8,342]

and endemic-area adults negligibly [1,14,15].

Discussion

Limitations of the study
Using rigorous systematic literature search, and individual

screening with unambiguous criteria on nearly 2000 studies, we

have identified the great majority of peer-reviewed, experimental

evidence documenting complete protection to malaria infection.

Meta-analysis of experimental conditions involved shows only

immunizations that avoid live parasite interaction in the skin, or

inhibit regulatory T cell induction within the skin during skin-

immunization, fully protect against infected mosquito bites. Our

main conclusion, that very early, skinstage-induced, antigen-

specific regulatory T cells block malaria vaccine function therefore

rests empirically but solidly on a straightforward meta-analysis of

unbiased experimental data. The data were retrieved from

experiments carried out worldwide, by hundreds of groups, using

many different protocols over many decades, and drawn from

extensive literature reporting skinstage, liverstage and bloodstage

vaccine trials. This minimizes both experimental bias and the

impact inherent in overlooking any one published study, but does

not specify a mechanism. However, detailed molecular/cellular

immunological data from experiments carried out independently,

in the main by basic research groups unconcerned with malaria

(and therefore unbiased), define a mechanism of tolerogenic

induction via the skin which strongly supports this conclusion.

Combined with the cadence of the parasite lifecycle stages, and the

behaviour and detailed cellular and molecular character of

skinstage parasites during transmission, we define a novel

immuno-epidemiological model for vaccine success/failure. This

identifies differential exposure to infected mosquitos and malaria-

specific Treg accumulation as the basis for selective vaccine failure

in endemic-area populations, and defines a skin-triggered

immunological mechanism for early tolerance induction, preced-

ing and independent of later bloodstage immunosuppression. The

available epidemiological and experimental vaccine trial data are

entirely consistent with the immunological mechanism and model

we propose. The model specified by these combined data easily

explains myriad long-standing incongruities, paradoxes and

contradictions in the malaria literature. In 1916 studies, we could

find no experimental immunization or natural infection data

which contradict or weaken our conclusions.

Fundamental implications for vaccine efficacy
Circumvention of malaria-specific regulatory T cell activation in

the skin fits all identified instances of protective immunization

against virulent experimental challenge, and selective protection in

endemic skinstage challenge. Fundamental immediate and long-

term implications for vaccine development and strategy are

highlighted below.

i. Live parasite vaccines. Unmodified intradermal delivery

[148] will obliterate efficacy in otherwise outstandingly successful

attenuated-parasite vaccines, advocating optimization of immune

context for dermal delivery.

ii. Antigen selection. Intrinsically tolerogenic antigens (eg.

CSP, TRAP), or those enriching skinstage and/or bloodstage-

cognate Tregs (eg. TRAP, EXP-1), (or abundant bloodstream

antigens, eg. AMA-1, MSP-1, which will almost inevitably induce

homeostatic regulatory T cell activity), are counter-productive in
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Figure 3. All protective immunization circumvents initial malaria-specific Treg activation in the skin: a functional model. A: Natural
transmission (mosquito bite) allows skinstage parasites (sporozoites, spz, green fragments) to migrate (dotted gray arrows) through skin cells to both
lymph nodes (LN) and liver (via blood vessels, bv), and induce malaria-specific regulatory T cells in the skin and LN that suppress (red blocker lines)
local and systemic protective immune responses (green arrows), resulting in bloodstage infections (gray fragments below liver), and amplification
cycles within red blood cells (rbc). B, C, D: Protective immunity develops where immunization and/or challenge avoids parasite-skin interaction and
Treg activation/induction; B: Physical bypass of the skin, (by intravenous (i.v.) attenuated parasites, purified antigen, antibody or intramuscular or
intranasal subunit vaccine) at immunization, or i.v. challenge with unattenuated infective parasites, avoids all induction or activation of skin and
liverstage-specific Tregs. C: Chloroquine (CQ) accumulates and blocks all MHC II and rapid, (but not classical, slow) MHC I malaria-antigen
presentation in the skin, which would otherwise immediately induce/activate antigen-specific Tregs. D: Multiple simultaneous mosquito bites create a
strongly pro-inflammatory local skin and/or systemic milieu which inhibit Treg activation and induction processes. LN Inset: Inside LN,
metamorphosing skinstage sporozoite parasites (spz) are in close contact with, or invade, host antigen presenting dendritic cells (DC).
doi:10.1371/journal.pone.0010685.g003
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pre-tolerized individuals, although initially effective in malaria-

naı̈ve individuals, such as neonates. With age, increasing bite

exposure and skin-induced malaria-specific Treg accumulation

will repress T cell and B cell responses, eroding [90,92] skinstage-

specific, antibody-correlated [10,343,344,345] infant protection

elicited by leading vaccines such as RTS,S. Of particular concern,

vaccination with intrinsically tolerogenic antigens although

initially protective in malaria-naı̈ve infants, will also predispose

bite-exposed growing children to severe malaria, increasing

individual risk of later childhood death. Late-midliverstage

antigens (unexposed at skinstage) however, should initially escape

significant Treg induction and memory inhibition in the skinstage,

and do show protectivity [17,26,27,68,346,347] into adolescence

[347]. This makes late-midliverstage antigens rationally preferred

candidates for more universally applicable subunit vaccines with

less hindered immune memory.

iii. Infant mortality. Neonates protected from mosquitoes will

not accumulate skinstage-specific Tregs. Immunization under Treg

pre-emptive conditions from birth (non-tolerogenic antigen, CQ

accumulation in the skin, scrupulous use of bed-nets/insect-repellent),

inducing abundant skinstage-specific antibodies should substantially

reduce infant infections beyond currently obtainable protection.

Additional early-infancy immunization with liverstage [347] and

bloodstage antigens [29,30] will rapidly [29,30,33,348,349] provide

robust [29,30] bloodstage immunity. This provides critical protection

against increased risk of severe malaria [274] due to decreased

exposure to bloodstage disease. Substantially reduced childhood

morbidity and mortality, and shrinking transmission reservoirs,

should result.

iv. Eradication. Discarded vaccines, ineffective in endemic

adults but pretested for safety, immunogenicity and tolerability can

be rapidly retested (given voluntary patent rescindication [350]) for

protectivity in neonates under Treg pre-emptive conditions.

Bednets and CQ are cheap, CQ is usually well-tolerated,

including during pregnancy [158,351], and is transmitted

transplacentally at therapeutic doses and via breast milk at

subtherapeutic dosages [351]. CQ accumulates preferentially in

the skin, so significantly reduced, subtherapeutic dosage may

suffice. Treg-blocking (immunomodulary) pharmacological effects

of CQ are on the host, not parasite, eliminating parasite-resistance

obstacles. Current infrastructure (http://www.theglobalfund.org)

allows largescale immunization across (primarily African) endemic

regions worldwide.

Malaria outside Africa is mostly hypoendemic [270], and not all

Africa is holoendemic [270]. With increasing bednet/insecticide

use, transmission drops [270,272,352,353]. Coordinated neonate

vaccination generating additional concerted widespread reduc-

tions (herd effects) in infectious reservoirs is feasible, even with low

efficacy vaccines [354]. Conditions pre-empting Treg induction at

early skin stage will amplify trends leading to interrupted

transmission, catalyzing [272] significantly accelerated local

elimination, and facilitating worldwide eradication of malaria.

Existing adult transmission reservoirs however, will counteract

shrinking infant reservoirs [272,354]. Skinstage-induced-Treg

evasion and memory enhancing vaccines, preventing adult re-

infection, and transmission-blocking vaccines targeting parasite

development within the mosquito, and antimalarials blocking

bloodstage transmission, are therefore essential to fast-track

eradication.

Wider perspective
Skinstage activation of parasite-specific Treg-based systemic

immunosuppression provides a fundamentally new, experimental-

ly widely substantiated, immunological rationale, and precise

focus, for research and vaccination strategy leading to potentially

accelerated malaria eradication. The concept, and implications for

vaccination, apply to closely related and economically important

(Toxoplasma, Theileria, Babesia spp.) pathogens.

Supporting Information

Table S1 Complete protection data (177 experiments) reference

list for meta-analysis.

Found at: doi:10.1371/journal.pone.0010685.s001 (0.24 MB

DOC)

Table S2 Protective vaccination physically bypasses the skin at

immunization or challenge (90%) or involves skin immunomod-

ulation (10%). A. Exposure to parasites in the skin coincides closely

with vaccine failure. Green background- immunization proce-

dures. Lilac background- challenge procedures and percent of

total experiments showing complete protection (% total) formed by

a subset of studies (category) using a given experimental procedure

(categories a-i; supporting experimental data for each category is

in references listed below; also Supplementary Table S1). Parasite

immunization administration routes: (a,b): live parasites given

intravenously (i.v.), or the method does not involve live parasites,

but uses dead parasites or purified antigen, antibody, or

recombinant DNA (subunit) and therefore bypasses parasite

interactions with host skin; (c,d,e,f,g,h): live parasites are

administered via the skin; (c,d): by multiple simultaneous mosquito

bites/session; (e,f): live parasites are naturally transmitted by 4–15

bites; (g): live parasites are administered by 12–15 bites/session

with chloroquine; (h): live parasites delivered subcutaneously (s.c)

or intradermally (i.d.) or intramuscularly (i.m.); (i): uncontrolled

exposure to endemic mosquitos. Challenge route is either i.v. or by

mosquito bite, as indicated. B. Protective immunization bypasses

the skin at either immunization or challenge in 90% of cases:

categories (a,b,c,e,h) shaded blue with red crosses. Protective

immunization which transits skin during immunization (c,d,e,f,g,h)

either: bypasses the skin physically at challenge (c,e,h) (red cross);

or, involves skin immunomodulation during immunization (d,g,

10% of cases). Asterisk (*)- immunization via unmodified skin,

limited to P. berghei (f). Skin bypass (red cross)- method physically

avoids live parasite interactions in the host skin. Malaria exposure-

skin exposure to infected mosquito bite before first immunization;

naı̈ve- no pre-exposure; exposed (endemic)- chronic exposure. x-

this study shows complete protection of 40 of 41 mice challenged.

y: one person in one study [117] was infected one time via the skin

prior to protective immunization and was therefore moderately

tolerized. Data pertaining to experimental categories (a–h):

a:[35,42,47,49,50,51,57,68,70,71,72,73,74,75,76,78,85,124,125,1-

26,128,129,130,133,137,138,139,150,151,166,169,171,173,185,2-

67,335,336,337,346] [355,356,357,358,359,360,361,362,363,364,

365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,-

380,381,382,383,384,385,386][387,388,389,390,391,392,393,39-

4,395,396,397,398,399,400,401,402,403,404,405,406,407,408,40-

9][410,411,412,413,414,415,416,417,418,419,420,421,422,423,4-

24,425,426,427,428,429,430,431,432,433,434,435,436,437,438,4-

39,440,441,442,443,444,445,446,447,448,449,450,451]. b: [47,

48,124,128,129,138,171,387,452,453]. c: [124]. d: [36,44,118,

119,120,121,122,123,124,134,135,136,172,454,455,456]. e: [111,

132,457]. f: [127]. g: [163]. h: [48,111,388,458,459]. Studies

containing data for multiple relevant experimental conditions are

referenced accordingly in each appropriate category. Multiple

experiments contributed by a single study are indicated beneath

study reference number (eg. reference 124 X2) in Supplementary

Table S1. (Meta-analysis data extended reference list).

Found at: doi:10.1371/journal.pone.0010685.s002 (8.70 MB TIF)

Skin and Malaria Tolerance

PLoS ONE | www.plosone.org 11 May 2010 | Volume 5 | Issue 5 | e10685



Text S1 Antigen persistence in liverstages is not required for

protection. Directly contradictory data [165,166,171,267] is also

easily reconciled. Like increasing irradiation [149,165], the drug

primaquine (PQ) eliminates liverstages [47,166]. PQ however, also

disrupts membrane and vesicular trafficking [159,268], temporar-

ily eliminating all antigen presentation. This prevents immunity if

used during immunization [166], creating an apparent correlation

between protection and parasite persistence [166]. Used after

intravenous immunization [129], allowing early liverstage antigen

presentation, however, multiple PQ-cure cycles provide sufficient

cumulative antigen presentation to build immunity, without

antigen persistence.

Found at: doi:10.1371/journal.pone.0010685.s003 (0.07 MB

DOC)
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