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This paper takes a critical look at the concept of real-world robot evolution discussing
specific challenges for making it practicable. After a brief review of the state of the art
several enablers are discussed in detail. It is noted that sample efficient evolution is one of
the key prerequisites and there are various promising directions towards this in different
stages of maturity, including learning as part of the evolutionary system, genotype filtering,
and hybridizing real-world evolution with simulations in a new way. Furthermore, it is
emphasized that an evolutionary system that works in the real world needs robots that
work in the real world. Obvious as it may seem, to achieve this significant complexification
of the robots and their tasks is needed compared to the current practice. Finally, the
importance of not only building but also understanding evolving robot systems is
emphasised, stating that in order to have the technology work we also need the
science behind it.

Keywords: evolutionary robotics, evolution of things, reality gap, learning and evolution, simulations, triangle of life
framework

1 INTRODUCTION

The main purpose of this paper is to examine the notion of robots that evolve and investigate if it is
practicable. Considering it from a broader perspective, the issue is the feasibility of the nascent
concept of the Evolution of Things. As outlined in Eiben et al. (2012); Eiben and Smith (2015a)
artificial evolution can be positioned by the substrate where it takes place. The birth of Evolutionary
Computing in the 20th century represented a major transition of evolutionary principles from
wetware to software and the Evolution of Things amounts to a second transition from software to
hardware. Regarding the type of evolvable objects one can distinguish passive artefacts, for example,
industrial or fashion items, and active artefacts with agency, robots for short. Arguably, the latter type
is more challenging and a key question is whether the evolution of real (not simulated) robots is
different from the evolution of virtual organisms? Will robot evolution work by applying the
methods developed for digital evolution or does it represent a whole new game where old tricks do
not work, possibly spoiling the whole idea.

Obviously, there are arguments for as well as against the feasibility of robot evolution. On the
positive side, one could say that artificial evolution of robots should work because natural evolution
of living organisms has worked. That is, since we have convincing evidence that evolution is capable
of developing adequate life forms for various environments we assume that evolution is capable of
developing adequate robots for various applications. Admittedly, this may sound as wishful thinking,
but there are also solid technical arguments. Specifically, 40 plus years of evolutionary computing has
proved that evolutionary algorithms (EA) are capable of delivering high quality solutions to hard
problems in a variety of scientific and technical domains, offering several advantages over traditional
optimization and design methods Ashlock (2006); Bäck (1996); De Jong (2006); Eiben and Smith
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(2015b). One of the lessons learned is that EAs work in the face of
problem characteristics that are very challenging for traditional
approaches, for instance, the lack of analytical models, non-
differentiability, discontinuities, multiple local optima, noise, and
nonlinear interactions among the variables. To put it simply, when
the going gets tough, the EAs get going.

On the negative side, there are good reasons to be sceptical
about the feasibility of robot evolution. Specifically, our limited
understanding of the intricate mechanisms underlying natural
evolution Stanley and Miikkulainen (2003); Fernando et al.
(2011); Cheney et al. (2016) and the billions of years it took to
develop sophisticated life forms on Earth can raise doubts about
replicating this in technological artefacts on a reasonable time
scale. The first aspect concerns the deeper question whether it is
necessary to emulate the evolutionary mechanisms as they work
in natural organisms? Based on the achievements in evolutionary
computing and evolutionary robotics it can be safely asserted that
this is not necessary and implementing the principles, rather than
the specific mechanisms is enough. The second aspect relates to
the speed of evolution: If we can successfully implement selection,
reproduction and heredity in a robot population, will that system
produce high quality solutions in a few weeks or months, perhaps
years, or will it take millenniums or longer. Technically speaking,
this is the issue of sample efficiency and the core concern is that
real world robot evolution will not work, unless made very sample
efficient Hu and Banzhaf (2010).

Feasibility aside, one could also question the usefulness, that is
the expected benefits of evolving robots. In other words, if the idea
was feasible, why would we want to have such systems? The answer
is twofold distinguishing theoretical and practical advantages.
For scientific research, evolving robot systems can be considered
as hardware models of evolving organisms useful as a research
instrument to study hypotheses about evolution Long (2012). For
practical purposes, they represent a (r)evolurionary engineering
approach to develop robots for demanding applications. As
a motivational example, consider the design of robots for
monitoring rain forests in a remote region of Earth.
Conventional engineering approaches can deliver good robot
designs for not too complex, structured environments with
predictable conditions that are known in advance and do not
change over time. Rain forests do not fall into this category and
there is no well-established prior knowledge regarding optimal
robotic body forms for such environments. The space of all
possible designs is big and complex, for instance, it is not clear
whether a good robot should have legs, wheels or both? Should it be
small and flexible navigating through holes in the vegetation or big
and heavy to crush obstacles? And once an adequate body form is
found, what is the appropriate control mechanism (brain) to drive
it? These are questions that pose big challenges for traditional
engineering; meanwhile these are the kind of challenges that
evolution has solved successfully. One benefit of evolving robots
is that evolution can deliver solutions to problems that are too hard
for classic approaches. Additionally, evolution can deliver
unexpected, original solutions that are out of the box for regular
designers, see Hornby et al. (2011) for a great example. A third
benefit is the inherent ability to adapt to changing conditions. Our
current notion of machines is static with no or only very limited

adaptivity. Evolution, however, is an adaptive force that can adjust
bodies and brains of organisms if environmental changes require it.

In the long term I envision evolving robot systems become
examples of what I call second order design or second order
engineering. First order system engineering is the current practice
where robots for a certain application are developed directly by
humans. Evolutionary robot technology radically changes this
picture because it introduces a new layer: instead of directly
constructing a robotic system for a given application, humans are
constructing an evolutionary system that will construct a robotic
system. In my view this goes beyond using algorithms to support
robot design; by the evolutionary approach as discussed here
robots will develop themselves on the job.

2 STATE OF THE ART

To start the discussion let us note the difference between the
concept of real-world robot evolution and the research area of
evolutionary robotics as we know it. The field of evolutionary
robotics has emerged in the 1990s and gained wide recognition
from about 2000 when the first book fully devoted to the
subject was published Nolfi and Floreano (2000). The
broadly accepted description defines evolutionary robotics as
the field of using evolutionary algorithms for designing and
optimizing the overall morphology (body), the controller
(brain) or both for simulated and real robots Bongard
(2013); Vargas et al. (2014); Doncieux et al. (2015); Nolfi
et al. (2016). Despite this general definition encompassing
pretty much all possible options (disregarding sensors
perhaps), the practice to date is quite limited: The huge
majority of publications is in the digital realm about
evolving the controllers for fixed bodies Radhakrishna Prabhu
et al. (2018) and the few papers addressing morphological evolution,
that is, the evolution of bodies, are almost all limited to simulations
Auerbach and Bongard (2014); Bongard and Lipson (2014);
Cheney et al. (2016), Cheney et al. (2017); Banarse et al. (2019);
Miras et al. (2020); Gupta et al. (2021). This practice is in stark
contrast with the concept of real robots reproducing and evolving
in the real world.

Physically instantiated artificial evolutionary systems have
been described and extensively discussed first in 2012 in
Eiben et al. (2012). At that time there were no available
technologies to create working implementations but the
paper did outline the most important challenges and
prerequisites:

1) Body types: An appropriate design space of all possible robot
makeups.

2) How to start: A robot (re)production system to deliver
physical robot offspring.

3) How to stop: A switch to stop evolution if necessary to prevent
the “Jurassic Park problem”.

4) Evolvability and rate of evolution: The system must make
good progress in real time.

5) Process control: A human, algorithmic or combined evolution
manager to steer evolution.
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6) Body-mind coevolution and lifetime learning: A period of
infant learning to optimize the inherited brain for the
inherited body quickly after birth.

Implementing such an evolutionary system is extremely
challenging and as of to date this has never been realized.
Nevertheless, a handful of systems have come close by
demonstrating the simultaneous evolution of morphologies
and controllers and using real robots in some way. One
specific category of studies is based on the idea that the
process of evolution is conducted in a simulator and only the
result of this virtual evolution (a few good robots) is physically
constructed, for example Lipson and Pollack (2000), Auerbach
et al. (2014), and Kriegman et al. (2020). Such systems are
obviously far from the envisioned real-world robot evolution
and suffer from the infamous reality gap problem Jakobi et al.
(1995); Mouret and Chatzilygeroudis (2017).

Among the existing systems where real world robots play a
prominent role the first one is that of Long et al. investigating the
evolution of vertebrae through swimming robot fish Long (2012);
Cho (2014). This landmark project clearly demonstrated the
potential benefits of robot evolution for fundamental research.
In the meanwhile it also illuminated the practical problems, for
instance, manual construction of new generations took days to
weeks, which severely limited the number of experiments and the
number of generations per experiment.

Another study on the morphological evolution of physical
robots showcased a solution to challenge two above based on
modular robot morphologies Brodbeck et al. (2015). Two types of
cubic modules (active and passive) formed the raw materials and
robot bodies were constructed by stacking and gluing a handful of
such modules. The robot bodies were simple and they were not
autonomous (driven by an external PC) and their task was to
locomote. Robot genomes encoded the bodies implicitly by
specifying the sequence of operations to build them by a
robotic arm. The construction of new robots (“birth process”)
was hands-free in some of the reported experiments, but required
human assistance in some others.

The Robot Baby Project.1 was a proof-of-concept study to
demonstrate robot reproduction, and implicitly robot evolution,
in a real-world habitat Jelisavcic et al. (2017). While the system is
simple, a unique feature is that robots coexist and can (inter)act in
the same physical space where they can “meet and mate”, thus
producing offspring. In the usual evolutionary robotics setup,
including the systems in Long (2012); Brodbeck et al. (2015), a
traditional EA performs evolution, where robots are manifested
one by one and evaluated in isolation during the fitness evaluation
step of the EA cycle.

The most recent development is taking place within the
Autonomous Robot Evolution project.2 that is aiming at the
construction of the first evolutionary system of autonomous
mobile robots with complex body plans, sensors and
controllers Eiben et al. (2021). The system is based on a Robot

Fabricator, the RoboFab, to implement robot (re)production
without human assistance Hale et al. (2019). The project is
still running, but the experiences with an autonomous
manufacture and assembly process revealed that real-world
robot reproduction introduces new constraints on evolution
that are not apparent in simulation Buchanan et al. (2020).

Before finishing this section let me mention two related areas
with an interesting future potential for evolving robots in new
substrates. Soft robots go beyond the currently dominant
mechatronical designs by using soft materials that can
facilitate new types of sensing and actuation and these can be
combined with evolutionary approaches Rieffel et al. (2013);
Laschi et al. (2016); Howison et al. (2021). However, to date
such systems are either in simulation or are limited to “body
parts”. The evolution of autonomous, untethered soft robots is
still unfeasible. Another interesting development of late is formed
by 4D-printed origami-robotic or soft robotic systems Hann et al.
(2020); de Marco et al. (2018). This technology enables robots
capable of dynamic morphological changes driven by
environmental stimuli. Nevertheless, in their current form
such systems are not evolutionary because there are no
mechanisms for reproduction and inheritance.

In summary, the current state of the art is limited in two
important ways. First, most studies rely on simulation to first
evolve designs before constructing a physical robot. Systems
where reproduction and evolution takes place in the real
world are scarce. Second, the robot designs are usually very
simple, robots contain only a few simple components, have no
sensors and are driven by elementary open-ended control
mechanisms that can not take environmental information into
account. This implies that the behaviors these robots exhibit and
the tasks they can solve are extremely simple, making any real-
world counter part, a physical twin, practically useless.

3 DIFFERENT SYSTEM TYPES

Regarding the overall architecture, evolving robot systems can be
divided into different categories by considering human
involvement in the two principal components of evolutionary
processes, selection and reproduction, as shown in Table 1.

The need for human assistance in reproduction is rooted in the
current lack of technology to 3D-print a fully functional robot at
once. For instance, high quality motors and logic boards cannot
be printed, and thus must be prefabricated and assembled with
the 3D-printed components. Hence, human assistance may be
necessary if a fully automated combination of 3D-printing and
assembly line is infeasible.

Human involvement in the selection component of an
evolutionary process is nothing new. Interactive evolutionary
computation has been around for decades Takagi (2001) and
human-driven selection is practiced for thousands of years by
breeders of plants and domestic animals. For increased clarity it is
useful to divide evolutionary selection into mate selection (parent
selection in evolutionary computing) that determines what
individuals can reproduce and propagate their genes and
environmental selection (survivor selection in evolutionary

1https://www.youtube.com/watch?v�BfcVSb-Q8ns.
2https://www.york.ac.uk/robot-lab/are/.
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computing) that determines what individuals survive and live
long enough to reproduce. One could argue that in a robot system
that evolves in the real world environmental selection is for free.
However, for mate selection the users need to design and
implement algorithms or play the selection mechanism
themselves. Choosing the latter option, or a combination of
algorithmic and human selection, can significantly increase the
feasibility of creating and operating evolving robot systems.

Distinguishing these four types of evolving robot systems is
relevant because this taxonomy shows that there exist important
shortcuts making the implementation of evolving robot systems
easier without invalidating the main principles: selection,
reproduction, heredity. To illustrate the practical differences
between these types of systems let us discuss examples for the
two extremes, Type 1 and Type 4.

A system of Type 1 can be applied when evolution is used as a
design method. In this case, the purpose of the evolutionary
process is to find an optimal robot makeup for a given application
in an off-line fashion. The process is halted if it delivers a robot
that can operate in the given environment and performs well on
the given tasks. This concludes the design process with the
optimal robot as output and initiates the production process
where many copies of this robot can be manufactured and
deployed in the real-world. Based on the analogy with human
farmers, such a setup can be seen as robot breeding. For the
example of robots for inspecting rain forests this means to build a
mock-up environment, for example, a garden, and to supervise
the evolution of good solutions by monitoring and steering the
evolutionary process.

In this example, and in most evolutionary computing
applications, evolution is (ab)used as an optimizer that is halted
when a satisfactory solution is found. Real evolution, however, is
not about optimization, but about adaptation that never stops. This
feature can be implemented through evolving robot systems of
Type 4 allowing robot populations adapt to previously unknown
and changing conditions on-the-fly without direct human
oversight. This can be essential in hostile or inaccessible
environments, like seafloors, cave systems or space. To illustrate
the latter, imagine a mission for terraforming on another planet,
where designing an optimal morphology and control system in
advance is unfeasible. An evolutionary engine operating
autonomously on the planet can mitigate this problem. Given
that reproduction and selection are the two main forces behind
evolution, an evolutionary engine should have two major
components. The first component is a (re)production facility
that can construct a large variety of robots. Depending on the
specific circumstances and the applied technology, such a (re)
production facility can make use of a repository of prefabricated
components, an ‘organ bank’ that stores, for example, CPUs, servo

motors, and cameras. Alternatively, it can utilize local resources,
such as the gases in the atmosphere and the soil of the planet, and
convert them into raw materials for the advanced 3D-printer that
produces the new robots. The second component of an
evolutionary engine is a twofold selection drive, such that robots
become fit for the environment as well as fit for purpose.
Environmental selection (for viability) is for free, as robots with
a poor feature set will not be able to operate adequately. Mate
selection, in turn, can be pre-programmed such that robots have a
‘basic instinct’ to chose mating partners with a high task
performance (utility). The evolving robot population will then
become increasingly adapted to the given planet and adjust their
bodies and brains when the conditions change. Let us note that the
terraforming application is closer to biological evolution, while a
breeding farm is more like a usual evolutionary design process
Bentley (1999).

4 LEARNING AND ROBOT INFANCY

Learning within an evolutionary process is a classic subject of
studies in natural as well as artificial systems Smith (1987); Depew
and Weber (2003); Nolfi and Floriano (1999). In the context of
artificial evolution learning has been an optional feature with
advantages and disadvantages Cecconi et al. (1996); Mayley
(1997) but Eiben et al. (2013) argued that learning is a must
for robots that evolve in real-time and real-space. Consequently, a
generic system architecture underlying real-world robot
evolution must inherently include a learning component. This
stance was recently summarized in one sharp statement: “If it
evoles it needs to learn”, cf. Eiben and Hart (2020).

This need for learning is rooted in the joint evolution of bodies
and brains. In particular, by the stochastic reproduction of bodies
and brains there are no generic guarantees that the inherited body
and the inherited brain of a new robot match each other well.
Even though the parent robots had well-matching bodies and
brains (otherwise they would not have been fit enough to be
selected) randomized recombination and mutation can result in a
mismatch in the offspring. For instance, the body of the offspring
may have actuators for which the inherited brain does not have
appropriate control mechanisms. To mitigate this, a “newborn”
robot must optimize its inherited brain quickly after “birth” such
that it can adequately control the inherited body. Additionally, in
the space of all possible brains for the ‘newborn’ body, the
inherited brain is just one possibility. In other words, the
evolutionary search operator (reproduction) only considers
one sample in that brain space, leaving room for
improvement. This improvement can be achieved by an
additional search process in the brain space, making the robot

TABLE 1 | Different types of evolving robot systems depending on human involvement.

Selection with humanAssistance
(breeding)

Selection
withoutHuman assistance

Reproduction with human assistance Type 1 Type 2
Reproduction without human assistance Type 3 Type 4
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smarter by finding a better brain for the inherited body.
Therefore, the life span of a robot should not consist of two
stages, the morphogenesis stage before ‘birth’ and the actual
operating period after ‘birth’. Instead, it should consists of
three stages: the morphogenesis phase, a learning phase, and
the actual operational phase. This idea is conceptualized by the
notion of the Triangle of Life as introduced by Eiben et al. (2013)
and illustrated in Figure 1. This triangle captures the life cycle of
evolving robots from conception (being conceived) to conception
(conceiving their offspring) through three stages:

1) Morphogenesis: The process of creating a robot phenotype
based on a genotype. For real-world robot evolution this is the
toughest technical challenge, since it amounts to constructing
a fully functional robot phenotype according to the
specifications represented in a given genotype.

2) Infancy: The period when the “newborn” robot is learning to
optimize its performance on a number ofmorphology dependent
tasks or skills, such as locomotion, obstacle avoidance, terrain
negotiation, and object grabbing.3 The infant learning process is
concluded by an examination testing the robot’s performance
and calculating its fitness. If the robot successfully passes this
examination then it is declared a fertile adult and can start its
mature life, otherwise it is removed from the system. An essential
feature here is that the robot is not fertile (not eligible for
reproduction) during the infancy stage.

3) Maturity: The stage when the adult robot operates normally,
that is, tries to survive, performs its tasks, and reproduces, thus
starting a new cycle. Naturally, robots can learn in this stage
too, but as opposed to the supervised learning in the Infancy

stage, for adult robots self-supervised or unsupervised
learning is more appropriate.

The essence of the Triangle of Life is the designated learning
stage, when the robot body does not change, but the brain driving
it does because it undergoes a learning process. This learning
process is in fact a search process through the space of all possible
controller configurations to optimize the control of the inherited
body and realize its maximum potential. It is important to note
that in principle any search algorithm is applicable as a learning
method, if only it can search in the space of possible controllers.
Options to this end include Bayesian optimization, simulated
annealing, reinforcement learning, and evolutionary algorithms.

Using an evolutionary algorithm as a learning method
represents a special case that leads to a double evolutionary

FIGURE 1 | Generic system architecture for robot evolution conceptualized by the Triangle of Life, after Eiben et al. (2013).

FIGURE 2 | Pseudocode for robot evolution based on the Triangle of Life
framework. Following the color code of Figure 1, the green lines correspond
to the main evolutionary loop, the blue ones show the learning loop during the
infancy stage. Note that the dichotomy of body and brain in the robots’
makeup translates to twofold genotypes divided into a body-coding segment
and a brain-coding segment. These segments can have their specific
recombination and mutation operators.

3Tasks that do not depend on morphologies need not be included here as they can
be hard coded in all robots. For example, image processing or wireless
communication abilities will not depend on the specific robot makeup and can
be installed on all “newborn” robots regardless the given body form.
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system in a nested structure: an EA for lifetime learning (the blue
circle in Figure 1) which optimizes a controller in a fixed body
inside an outer evolutionary loop (the green triangle in Figure 1)
which optimizes both body and brain. Obviously, the details of
these two EAs may be completely different regarding the
representation, mutation, recombination, and selection
operators. From the evolutionary perspective of the outer loop
selection is suspended during the Infancy stage, because fitness is
only measured at the end after finishing the learning process as
shown in the pseudocode of Figure 2. This property prevents
reproduction of infant robots that have not demonstrated a good
fitness (yet), hence it can save resources.

Interestingly, a system based on the opposite philosophy has
also been proposed. Cheney et al. (2017) describe a morphological
innovation protection mechanism which is in essence a variation
of the Triangle of Life concept in that it allows additional
optimization of the controller in a “newborn” body. By design,
the authors do not apply specific learning operators to search
through the space of brains, but use the mutation operator of their
evolutionary algorithm. This is why controller optimization
during the protected period is not perceived as learning, but
as applying “several generations of evolutionary change restricted
to the control subsystem”. Obviously, this is just a difference in
perception and terminology, but the morphological innovation
protection mechanism differs from the Triangle of Life also in a
technical detail, because only survivor selection is suspended
during the learning period and mate selection is not. In other
words, during the protected Infancy period a robot can produce
offspring, but it cannot be selected for removal from the
population. In this respect the method is based on different
priorities: Instead of protecting the population from being
contaminated by the (possibly inferior) genes of a new
individual, it protects a new individual from being wiped out
by the (possibly superior) population members. An empirical
study comparing these approaches is ongoing.

Obviously, the Triangle of Life framework is not restricted to
being used for real-world robot evolution. A system with a
specific Infancy stage can just as well be applied in simulation.
However, I argue that while for simulated systems it is a neat-to-
have, for real-world robot evolution it is a need-to-have. The
reason is that in a real-world application learning forms a
relatively fast and cheap way of reducing the number of slow
and expensive evolutionary steps. To be specific, we can
distinguish learning trials and evolutionary trials. An
evolutionary trial equals to producing, activating and testing a
new robot, including the manufacturing of its body, while a
learning trial means producing, activating and testing a new
controller in a given robot. Because controllers are digital
entities, just pieces of code, learning trials cost much less time,
effort and material resources than evolutionary trials.

For the proverbial calculation on the back of an envelope let us
estimate the time of manufacturing a new robot by 12 h, the time
needed for computing and installing a new controller to be tried
by 10 s and let us set the duration of one fitness evaluation at
1 minute. (For the sake of the argument assume that these
numbers are independent from the robot morphologies.) Then
1,000 evolutionary trials using one (re)production facility need

approximately 501 days, while 1,000 learning trials cost less than
1 day. This emphasizes the need for sample efficient evolution
that does not need to generate and test many robots to achieve
good performance. To this end, the role of learning is to maximize
the performance of a given robot by acquiring a top-quality
controller that realizes the full potential of the given morphology.

Fortunately, the idea of designing controllers for robots
through using machine learning techniques is gaining traction
independently from evolutionary robotics Hwangbo et al. (2019);
Lipson (2019). Methods developed in that field are likely to be
applicable in combination with evolution, although the
evolutionary context poses an extra challenge: In the current
practice the robot morphology is known to the developers and
this knowledge can be exploited to customize and optimize the
learning method, whereas in an evolving robot system “newborn”
robots are not known in advance. This requires robust learning
methods that work independently from the given robot
morphology.

5 EXPLOITING THE ARTIFICIAL

The history of evolutionary computing in general and of
evolutionary robotics in particular shows an ambivalent
attitude with respect to copying tricks from natural evolution.
On the one hand, the very idea behind both fields is to mimic
Nature’s solutions and implementations of natural mechanisms
in an artificial substrate appears to have an intrinsic value for
many researchers. On the other hand, many evolutionary
mechanisms need to be oversimplified to be transferable from
wetware to software which can create quite a gap between natural
and artificial evolution. This section argues and demonstrates that
unnatural elements in an evolving robot system need not be a bad
thing, on the contrary, they can be instrumental to make the
system work. The main message is to embrace the artificial and
gladly exploit the possibility to do tricks that do not exist in
natural evolutionary systems.

5.1 Genotype Filtering
One of the crucial differences between the evolution of life on
Earth and the evolution of robots is the scale. This concerns the
population sizes as well as the affordable number of generations.
To put it simply, natural evolution is extremely wasteful
(produces large numbers of organisms many of which die
before they could reproduce) and has all the time in the
world, while practical evolutionary robot systems do not have
the luxury to waste robots and time. This means that every newly
created robot must count, that is, it should have the potential of
being good and providing valuable information to steer the
evolutionary process towards superior solutions.

For a better perspective, let us note that evolutionary
computing and robots evolving in simulation are much less
sensitive to such constraints than robots that evolve in the
real-world. The reason is obvious, physical resources are much
more scarce than digital ones. Rendering and activating a new
robot in a simulator is way faster and cheaper thanmanufacturing
one and activating it in the physical environment. Furthermore,
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computational resources are easier to scale-up by more powerful
computers or bigger clusters. Thus, we are facing an issue that
would make real-world robot evolution not work.

The solution tomitigate this issue is to use an unnatural trick: a
sophisticated assessment of a new robot genotype (created by
recombination and mutation of the genotypes of existing robots)
before it is transformed into a new phenotype, that is, before
starting the construction of the corresponding physical robot. A
recent study introduced two notions to this end:
manufacturability and viability Buchanan et al. (2020).
Manufacturability is the property that a certain body plan can
indeed be constructed with the given system for robot (re)
production. This property is inherently practical, it does not
only reflect whether the body plan is physically possible, for
example, has no overlapping components, but also whether it can
be built with the given machinery. Relevant details for the latter
include possible overhangs in the parts that need to be 3D-printed
and the geometry of the robot arms that are putting together the
components that make up the complete robot body. Viability is a
more generic notion in the sense that it applies to not only
physical but also to virtual robots. A robot is considered viable if it
satisfies the minimal requirements for being able to operate at all.
For example, a robot (regardless whether it is manufacturable)
may not be viable if it has no sensors or no actuators or battery.

Manufacturability and viability are two examples of a more
generic notion of a genotype filter. In general, a genotype filter an
observable or computable property of the genotypes that can be
used to distinguish desirable and undesirable ones. Real-world
robot evolution systems can and should apply such filters and
prevent wasting resources by letting through only those
genotypes that are worth being instantiated as physical
phenotypes. Further to the practical relevance of such filters
they raise intriguing questions about the influence of the (re)
production mechanisms on evolutionary pathways, the accessible
regions of the evolutionary search space, and ultimately on the
practically accessible optima of the given design problem.

5.2 Hybrid Evolution: Two Populations, One
Species
As explained in Long (2012) a simulated evolutionary robot
system can be implausible in two different ways, biologically
or physically implausible. The main message of Exploiting the
Artificial is that in the context of evolving robots for practical
applications we do not need a biologically plausible setup. The
fact that a certain mechanism does not exist in living organisms
does not make it useless. Physical plausibility is a different matter
because of the reality gap. If a simulation violates the laws of
physics, then its practical use if very limited. However, this does
not mean that simulations are useless in a real-world evolutionary
robot system. There are several studies in the literature that evolve
robots in simulation and during the evolutionary process
occasionally construct a robot in the real world to validate the
actual behaviour and thus the real fitness of the given design Koos
et al. (2013); Mouret and Chatzilygeroudis (2017).

The notion of such a mixed evolutionary system where all
robots are evaluated in simulation and some robots also in the

real world can be taken even further. The concept of a hybrid
evolutionary system as outlined by Howard et al. (2019); Eiben
et al. (2021) is based on a deeper integration between simulated
and real evolution. The idea is to simultaneously evolve a
simulated and real robot population where a real robot does
not necessarily have a digital twin and vice versa. However, the
two populations are deeply integrated by considering them as one
species where any two individuals can produce offspring. A key
feature to this end is using the same genetic representation in both
worlds. This means that the set of syntactically correct genotypes
is the same for the physical and the virtual robots. This enables
cross-breeding so a new robot can have physical or virtual
parents, or a combination of both. The inverse side of this
property is that a newly created genotype can be instantiated
in the physical world, in the simulator or both. Additionally,
using the same genetic representation enables transferring robots
between environments simply by sending a genotype from one
environment to the other and applying the appropriate
morphogenesis protocol to create the corresponding
phenotype, a virtual or a physical robot.

The advantages of such a combination are straightforward.
Physical evolution is accelerated by the virtual component that
can find good robot features with less time and fewer resources
than physical evolution, while simulated evolution benefits from
the influx of genes that are tested favourably in the real world. In
an advanced system, the physical trials can help improve the
accuracy of the simulator as well, thus reducing the reality gap.

6 HOW TO MAKE IT WORK

The science and technology of robot evolution is in an
embryonic stage which implies that much needs to be
researched and developed. Discussing all options is beyond
the scope of this paper, so let us mention only three lines of
research here: more realistic robots that work in the real world,
sample efficient evolution and learning, and instruments to
formally describe and analyse relevant properties of
evolutionary robot systems.

To have an evolutionary system that works in the real world
we need robots that work in the real world. Compared to the
current practice in evolutionary robotics this requires (at least)
the following three improvements. Firstly, robots with sensors
and closed loop controllers that can take sensory inputs into
account should be used. This is not only an engineering challenge,
but also an extension of the scientific and conceptual framework
from evolving body plans and brains to evolving body plans,
sensors, and brains Tapia et al. (2020); Ferigo et al. (2021).
Secondly, robots should be evolved for more and more
practical tasks. In the current evolutionary robotics literature
robots are usually evolved for one task that is very simple, for
example, locomotion in an empty arena or navigation in a small
maze. Real robots must posses multiple basic skills that can be
used when performing more complex tasks. Practical skills
include simple locomotion (gait), targeted locomotion
(homing), object following, negotiating different terrains,
obstacle avoidance, object grabbing, object transporting, just to
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name a few. Complex tasks, for example, exploring an
environment and counting all red objects or going to a given
area and collecting soil samples, can be performed only if the
robots possess an adequate set of basic skills. Importantly, many
of these skills is morphology dependent, hence each “newborn”
robot with a novel morphology needs to acquire them anew. Thirdly,
the evaluation of robot behaviour needs to be automated. This is
essential to automate the learning process during the Infancy period
and to determine fitness in the population of mature robots without
human assistance. To this end, it is helpful to distinguish the robots’
performance regarding the basic skills learnt during the Infancy
period and the performance considering the more complex tasks
they are supposed to perform. In the long run–for Type 4
systems–autonomous reproduction needs to be accompanied by
autonomous selection without a human in the loop.

Having a working evolutionary robot system with
autonomous reproduction and autonomous selection is an
ambitious goal, but still not enough for practical purposes if
it is too slow Hu and Banzhaf (2010). To increase the sample
efficiency of robot evolution, human assistance, genotype
filtering, and hybridization with simulation as discussed
before can be used. Furthermore, the existing knowledge
developed in evolutionary computing offers several other
tricks. For instance, multi-parent reproduction is known to
speed up evolution Eiben (1999) and the use of surrogate
models can reduce the time of fitness evaluations Dutta et al.
(2020). Additionally, learning can act as an accelerator for
evolution because improving the brain in a given body is
relatively cheap in terms of resources and time, while it can
significantly improve the robots’ fitness. A further advantage
of learning is known as the Baldwin effect Baldwin (1896);
DeJager (2016) that is somewhat controversial in biology, but
demonstrated to occur and cause a useful effect in artificial
evolutionary systems of different types French and Messinger
(1994); Whitley et al. (1994); Aguilar et al. (2019); Valdivieso
et al. (2006). Recently it has been shown that in
morphologically evolving robot systems combined with
learning the learning ability of the evolving morphologies is
increasing over generations Miras et al. (2020); Gupta et al.
(2021). Furthermore, results with a Lamarckian combination
of evolution and learning where learned properties of
controllers can be coded back to the robots’ genotypes, are
very promising Jelisavcic et al. (2019). Ultimately, the learning
methods can be also be evolved, making the transition from
evolution and learning to the evolution of learning Soltoggio
et al. (2018).

The third line of research I recommend concerns instruments
to formally describe and analyse evolutionary robot systems. To
this end, one can use methods from the theory of evolutionary
computation Doerr and Naumann (2020) or borrow from the
toolkit of evolutionary biology Freeman and Herron (2015);
Futuyma and Kirkpatrick (2017). However, evolution in a
robotic context represents new challenges and opportunities
compared to these fields. Compared to usual EC, evolving
robots induce more complex notions of phenotype and fitness.
Robots are complex entities with bodies and brains embedded in
time and space and their fitness is determined by their behavior

(which in turn depends on complex interactions of their body,
brain, and the environment), evaluated by a given set of tasks.
Analysing such a system is arguably harder than describing the
behaviour of an evolution strategy on a synthetic fitness landscape
defined by a numerical optimizaton problem. Compared to
biology, the robotic context offers extra options for analysis
and experimentation, because the bodies, the brains and the
behaviours of the robots are more programmable, controllable,
and observable than those of natural organisms. A good angle to
observing and tracking system dynamics is to look into the three
main search spaces that correspond to the bodies, the brains, and
the behaviours of robots. For instance, it is possible to define
quantifiable morphological traits reflecting the dimensions, the
geometry, or the symmetry of the robots’ body and use these for
statistical analyses and insightful visualisations Miras et al.
(2018). Similarly one could identify structural and functional
properties that capture relevant aspects of the robot brain and
define a controller trait space, for instance, by the density of the
neural network or the periodicity of a given signal. While these
are just a few examples, in general such tools will enable
systematic studies on system parameters and the induced
dynamics, the interactions of various components, like the
body and the brain, and likely deliver useful knobs to steer the
outcome of a complex evolutionary process. The long term
relevance of this line of research is significant, because
constructing and operating evolutionary robot systems will be
impossible without understanding them.

To conclude, let me recall the main subject of this paper:
physically implemented evolutionary robot systems. This
brings up the notion of EvoSphere and the issue of
controllable robot reproduction as introduced and discussed
in Eiben (2015). An EvoSphere stands for an evolutionary
robot habitat based on the three stages in the Triangle of Life,
morphogenesis, infancy, and mature life. Hence, an EvoSphere
consists of three components, the Robot Fabricator, the
Training Facility and the Arena that represents the outside
world where the mature robots need to operate. The Robot
Fabricator is the unit where new genotypes are converted into
new phenotypes, that is, where “newborn” robots are
constructed. With the current technology, this is possible by
using a combination of 3D-printers, a set of prefabricated
modules (an “organ bank”), and automated assembly by
industrial robot arms.

It is important to note that, while the Triangle of Life is neutral
about the actual system for morphogenesis, there is a principal
decision behind the EvoSphere concept. Specifically, an
EvoSphere contains a designated system component to
implement robot (re)production. This is not only a pragmatic
engineering solution, but a deliberate design choice for the sake of
ethics and safety. The underlying motivation is to reject robotic
equivalents of cell division, laying eggs or pregnancy because such
mechanisms could enable robots that can reproduce anywhere
without control. In general, I argue that all forms of distributed
reproduction systems should be avoided, including self-assembly
of new robots consisting of autonomous components Kernbach
et al. (2009); Levi and Kernbach (2010). Instead, for reasons of
safety, a real-world robot evolution system should based on
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centralized reproduction, implemented by one Robot Fabricator.4

From the perspective of the robots, this is a single point of failure,
from the human viewpoint, this is a safety switch. Shutting down
the Robot Fabricator can stop robot reproduction, hence robot
evolution, if necessary. The rationale is obvious, runaway
evolution in a computer can only do limited harm, such as
memory overflow or computer crash, but the consequences in
the real world can be much more severe. I consider this an
important issue and emphasize that all physically embodied
evolutionary robot systems must be designed with a shutdown
option to prevent the ‘Jurrasic Park problem’ as stated in Eiben
et al. (2012).

Figure 3 shows the two examples of Robot Fabricators I
know of at the moment. To my knowledge, currently there
are no working examples of Training Facilities, where
“newborn” robots learn using feedback from a computer
vision system or a human user or both. However, considering
the advances in material science, rapid prototyping,

automated assembly, and the increasing interest in
embodied intelligence and machine learning, I expect to
see working Robot Fabricators and Training Facilities
integrated with a test ground that serves as the Arena
within five to 10 years from now.
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