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Abstract: The development of reliable predictive models for individual cancer cell lines to identify
an optimal cancer drug is a crucial step to accelerate personalized medicine, but vast differences in
cancer cell lines and drug characteristics make it quite challenging to develop predictive models that
result in high predictive power and explain the similarity of cell lines or drugs. Our study proposes a
novel network-based methodology that breaks the problem into smaller, more interpretable problems
to improve the predictive power of anti-cancer drug responses in cell lines. For the drug-sensitivity
study, we used the GDSC database for 915 cell lines and 200 drugs. The theory of optimal mass
transport was first used to separately cluster cell lines and drugs, using gene-expression profiles
and extensive cheminformatic drug features, represented in a form of data networks. To predict
cell-line specific drug responses, random forest regression modeling was separately performed for
each cell-line drug cluster pair. Post-modeling biological analysis was further performed to identify
potential biological correlates associated with drug responses. The network-based clustering method
resulted in 30 distinct cell-line drug cluster pairs. Predictive modeling on each cell-line-drug cluster
outperformed alternative computational methods in predicting drug responses. We found that among
the four drugs top-ranked with respect to prediction performance, three targeted the PI3K/mTOR
signaling pathway. Predictive modeling on clustered subsets of cell lines and drugs improved the
prediction accuracy of cell-line specific drug responses. Post-modeling analysis identified plausible
biological processes associated with drug responses.

Keywords: drug sensitivity; optimal mass transport; network-based clustering; cell lines

1. Introduction

Recent significant advances in investigating drug sensitivity have been driven by
advances in high-throughput technologies that can generate large amounts of biological
data at low cost. Pioneers of such datasets include the NCI-60 database [1], Genomics
of Drug Sensitivity in Cancer (GDSC) project [2], and Cancer Cell Line Encyclopedia
(CCLE) project [3]. Collectively, these databases have demonstrated that pharmacogenomic
profiling of cancer cell lines from clinical tumor samples can help guide the development
of new cancer therapies [4,5]. The NCI-60 project is one of the first established studies for
in vitro drug screening, and has significantly improved the philosophy and research of
human cancer drugs [1,6]. This panel has led to many important discoveries, including
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a general advance in understanding the underlying mechanisms of cancer in response
to drugs [7,8]. However, the panel only consists of 60 cell lines, which limits its use
for developing reliable predictive models. By contrast, the GDSC database (http://www.
cancerRxgene.org, accessed on 9 December 2021), on which we focus in this study, annotates
a comprehensive landscape of drug responses of∼1000 human cancer cell lines for 265 anti-
cancer drugs. Importantly, the genomic and transcriptomic profiles of all cancer cell lines
employed in GDSC were extensively characterized as a part of the COSMIC cell line project
(CCLP, https://cancer.sanger.ac.uk, accessed on 9 December 2021). These resources have
the potential to link anti-cancer drug sensitivity to detailed genomic information and
facilitate the discovery of relevant molecular biomarkers when coupled with powerful
analytical tools to cope with the high-dimensionality and complexity of these datasets.

A variety of approaches have been proposed for investigating drug sensitivity in
cancer cell lines. One of the first models was developed by Staunton et al., which employed
a weighted voting classification model for anti-cancer drug sensitivity based on NCI-60
gene-expression data [9]. Recent approaches can be grouped either as regression models
to predict the concentration required for inhibition, or classification prediction models of
drug responses as sensitive vs. resistant [10], or a mathematical modeling approach [11].
Machine learning tools deployed include support vector machines [12], random forests [13],
neural networks [14], and logistic ridge regression [15]. For example, Riddick et al. built
an ensemble regression model with random forest to predict in vitro drug responses using
gene-expression profiles [16].

In the present study, we demonstrate that cell-line and drug clustering prior to ma-
chine learning modeling can significantly improve the accuracy of cell-line drug-sensitivity
prediction. We first represented genomic profiles of cell lines and chemical features of
drugs in the form of separate feature networks. Several network-based papers for drug-
sensitivity prediction have been previously published. For instance, Wang et al. proposed
a heterogeneous network model of cell lines, drugs, and targets [17,18]. Zhang et al. pro-
posed a dual-layer cell-line drug network model for the prediction of drug responses [19].
These studies found that similar cell lines respond very similarly to a given drug, and
structurally related drugs also have similar responses to a given cell-line. Stanfield et al.
introduced a network-based method for drug-response prediction using a large, heteroge-
neous network consisting of genes, cell lines, and drugs, where each cell- line and genes
with mutations in the given cell-line were linked. Sensitivity and resistance scores were
then computed for each cell-line drug pair [20]. Ahmed et al. employed a network-based
feature selection method using a gene co-expression network [21]. The resulting output
was then used in neural network models for drug-response prediction. Compared to
these network-based models, our method has some potential advantages. In particular,
we employed machine-learning-based modeling on integrated gene-expression profiles
from cell lines together with cheminformatic features from drugs. More importantly, the
predictive modeling was performed on more homogeneous subsets after the clustering of
915 cell lines and 200 drugs based on the similarity between them, resulting in improved
predictive power. Post-modeling biological analysis identified key biological correlates as-
sociated with specific clusters (paired clusters of cell lines and drugs). More specifically, we
clustered cell lines using optimal mass transport (OMT) theory applied to gene-expression
profiles, as represented by a network from the Human Protein Reference Database (HPRD,
http://www.hprd.org, accessed on 9 December 2021). [22]. This resulted in a distance
between each pair of cell lines, called the Earth Mover’s Distance (EMD), or the Wasserstein
distance [23–25]. This distance measures the magnitude of the expression signal that needs
to be moved from one expression distribution to the other within the network at the mini-
mum cost. A clustering method was then applied to the resultant distance matrix to group
the cell lines. Similarly, this procedure was applied to a network of molecular descriptors
of drugs, resulting in a set of clusters of drugs. Random forest regression modeling was
then conducted on each paired cluster (a cluster of cell lines and a cluster of drugs). This
approach outperformed previously developed network-based methods [19,26]. It was also
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observed that the Wasserstein distance metric is more powerful in predicting the drug
responses than Pearson correlation that is generally used in network-based models.

In summary, the heterogeneity of pan-cancer cell lines and structurally diverse drugs
in large-scale pharmacogenomic databases makes prediction of drug sensitivity challenging.
In this work, we propose a novel computation method for clustering cell lines and drugs in
an unsupervised way, followed by a supervised prediction-modeling of drug responses.
Our results demonstrate that modeling on homogeneous data significantly improves the
prediction accuracy. Moreover, clustering increases the focus for understanding potential
biomarkers and mechanisms of drug sensitivity.

2. Results
2.1. Clustering of Cell Lines and Drugs

Hierarchical clustering of the cell lines resulted in six clusters with the highest average
silhouette score. The numbers of cell lines in each cluster were 149, 113, 130, 174, 208, and
141, respectively, labeled clusters 1 through 6. Figure 1 illustrates the results of clustering
for 17 major cancer types. As shown in Figure 1, cluster 1 perfectly grouped the liquid
cancers of leukemia and lymphoma, including only one solid tumor cell-line. It is well
known that liquid tumors respond very differently to anti-cancer drugs compared to solid
neoplasms [27]. Interestingly, some clusters, such as cluster 5, consisted of heterogeneous
cancer types, perhaps indicating a closer relationship in drug responses. On the other hand,
hierarchical clustering of the drugs resulted in 5 clusters. The numbers of drugs in each
cluster were 10, 23, 86, 26, and 55, respectively, labeled clusters 1 through 5.

Figure 1. The clustering results of cell lines for the major 17 cancer types. The sidebar indicates the
number of cell lines in each element.

2.2. Prediction of Drug Responses in Paired Cell-Line Drug Clusters

For each of the 30 paired clusters (six clusters for cell lines and five clusters for
drugs), random forest regression models were trained and validated, using 635 genes and
165 cheminformatic features. A three-fold cross-validation approach was employed, such
that in each cross validation, 2/3 of the data were used for training, and 1/3 of the data were
used for validation of the model. After performing the three-fold cross validation in each
paired cluster, correlation (R) and coefficient of determination (R2) values were computed
for the predicted and observed log(IC50) values. Figure 2 illustrates the distribution of R
and R2 of the predicted and observed log(IC50) values in the 30 paired clusters of cell lines
and drugs.
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Figure 2. The distribution of correlation (R) and coefficient of determination (R2) of the predicted
and observed log(IC50) values in the 30 paired clusters of cell lines and drugs. The average values of
R and R2 were 0.88 and 0.78, respectively.

To evaluate the performance of prediction for the whole dataset, we concatenated the
predicted and observed log(IC50) values for all the 30 clusters and then calculated R and
R2 (Table 1). For comparison, we also performed a three-fold cross validation scheme via
random forest on the whole dataset without prior clustering. As shown in Table 1, our
method using prior clustering of cell lines and drugs resulted in prediction accuracies of
R = 0.89 and R2 = 0.79, outperforming the modeling results (R = 0.77 and R2 = 0.60) obtained
via random forest on the whole dataset (183,000 cell-line drug pairs) using a three-fold cross
validation scheme. Further, R and R2 in the best and worst paired clusters with respect to
prediction accuracies were (R = 0.96 and R2 = 0.93) and (R = 0.79 and R2 = 0.62), respectively
(Figure 3). The cell-line cluster 3 and drug cluster 1 pair, shown in Figure 4A, achieved
the best accuracy. This cluster mainly consisted of glioma and melanoma (Figure 1). In
addition, the cell-line drug complex network (CDCN) model coupled with the Wasserstein
distance outperformed the model using Pearson correlation.

After applying the modeling pipeline, we investigated the prediction accuracy for
individual cell lines and drugs. Figure 5A,B illustrate prediction performance for the cell
lines and drugs with the highest prediction accuracy. As shown in Figure 5A, three of the
top four cell lines were from head and neck (including thyroid) cancer. Interestingly, three
out of the top four drugs target the PI3K/mTOR signaling pathway, and the remaining one
targets the related ERK/MAPK signaling pathway [28].

Table 1. Performance comparison of four different models. CDCN: Cell-line drug complex network;
WD: Wasserstein distance.

Models R R2

a. Random forest using prior WD-based clustering 0.89 0.79

b. CDCN model with WD 0.86 0.59

c. Random forest on the whole data 0.77 0.60

d. CDCN model with Pearson correlation 0.74 0.53
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Figure 3. The best (red) and worst (blue) clusters among the 30 paired clusters with respect to
prediction accuracy. The best prediction lies in the pair of cell-line cluster 3 (mainly glioma and
melanoma) and drug cluster 1. The worst prediction lies in the pair of cell-line cluster 6 (mainly
consisting of breast, head and neck, large intestine, and stomach cancers) and drug cluster 5.

Figure 4. Overview of the network-based clustering and modeling of drug responses: (A) For
clustering of cell lines, the gene-expression profiles for 915 cell lines were analyzed on the HPRD
network. Invariant measures for individual nodes were then computed, and the Wasserstein distance
(EMD) was computed between each pair of cell lines on the network. Lastly, hierarchical clustering
was performed on the resultant Wasserstein distance matrix. For clustering of drugs, we obtained the
cheminformatic features of 200 drugs, and built a data-driven network of cheminformatic features
using the graphical LASSO. Similar to cell lines, hierarchical clustering was performed on the resultant
Wasserstein distance matrix; (B) A random forest model was built on each paired cluster of cell lines
and drugs to predict drug responses in log(IC50) values.
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Figure 5. Prediction performance: (A) The top four cell lines with the best prediction performance.
Cell-line names along with their cancer types are shown. Three out of the top four cell lines belong to
head and neck (including thyroid) cancer; (B) The top four drugs with the best prediction performance.
Drug names along with their targeted pathways are shown. Three out of the top four drugs target the
PI3K/mTOR signaling pathway.

2.3. Biological Analysis

To identify significant genes, we employed a two-step approach: (1) the importance
score for each gene was derived based on its contribution to the random forest accuracy [29]
and (2) using a t-test, differentially expressed genes were further identified. For example,
we investigated a paired cluster: cell-line cluster 4 and drug cluster 1, which is one of the
highest performing cluster pairs. Initially, the top 200 genes were selected based on the
importance score in random forest modeling, and 70 out of the 200 genes met a Bonferroni
corrected p-value < 0.05. For these 70 genes, gene ontology enrichment analysis was
performed using MetaCore software to discover significant biological correlates. Table 2
shows the top five biological processes, yielding the related processes of apoptosis and
programmed cell death as the top two biological processes, with extremely low false
discovery rate (FDR) values of 2.55 × 10−20. The hypergeometric distribution was used
to compute unadjusted p-values. For further insight, a protein–protein interaction (PPI)
network with direct connections among the set of 70 gene products was constructed as
shown in Figure 6.

Table 2. The top five biological processes obtained from gene ontology enrichment analysis using
70 significant genes.

Ranking Biological Processes FDR Number of Input Genes

1 Regulation of apoptotic process 2.55 × 10−20 40

2 Regulation of programmed cell death 2.55 × 10−20 40

3 Regulation of cell death 4.94 × 10−20 41

4 System development 1.93 × 10−18 56

5 Positive regulation of nitrogen compound metabolic process 5.35 × 10−18 48
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Figure 6. A protein–protein interaction network using a set of key gene products in a paired cluster
of cell lines and drugs. Bcl-6 is a hub in the network with the highest node degree.

3. Discussion

In this study, we developed a network-based method for predicting the drug sen-
sitivity of pan-cancer cell lines in the GDSC database. Several studies have proposed
network-based methods for drug response prediction on single omics data [20,21], whereas
the current study used multi-modal genomic and cheminformatic data. The CDCN mod-
eling introduced by Wei et al. [26] and its extended method [19] also used genomic and
cheminformatic data [26]. An advantage of our approach compared to the CDCN model is
that we employed unsupervised and supervised machine learning methods in connection
with OMT theory, demonstrating that random forest modeling in the resulting distinct
pairs of cell-line and drug clusters can produce better predictive power. This is in line with
a previous study that showed that data preprocessed by a clustering algorithm improved
the prediction accuracy of random forest models [30]. We also found that the CDCN model
coupled with the Wasserstein distance can improve predictive power compared to the
original method using Pearson correlation [18]. In addition, our results indicate that cell
lines judged to be similar, according to the Wasserstein distances computed between invari-
ant measures from gene-expression profiles, exhibit similar responses to the (structurally)
similar drugs [19,26].

In the application of machine-learning techniques to biology, interpretability is very
important. Clustered cell lines and drugs, and the resulting random forest models in
individual paired clusters, can be deeply interrogated to gain further insights into the
determinants of cell-line drug effectiveness. We have demonstrated that post-modeling
analysis using bioinformatics techniques enables the identification of plausible biological
correlates. For example, we investigated the pair of cell-line cluster 4 and drug cluster 1
(see Figure 4A). Cell-line cluster 4 consisted mostly of non-small-cell lung cancer (NSCLC),
kidney cancer, mesothelioma, and glioma. Drugs in drug cluster 1 have been shown to
mainly target mitosis and DNA-replication including antimetabolites. The PPI network,
resulting from the set of key genes relevant to the paired cluster, is illustrated in Figure 6. As
shown, Bcl-6 (B-cell lymphoma 6) is a hub in the network with the highest node degree. Bcl-
6, encoded by the BCL6 gene, was initially discovered as an oncogene in B-cell lymphomas,
driving a malignant phenotype via the repression of DNA damage and proliferation
checkpoints [31]. BCL6 has also been implicated in an expanding spectrum of solid and
hematologic tumors, including leukemia, breast cancer, and NSCLC [32]. Additionally,
BCL6 expression has been implicated in the modulation of apoptotic responses of malignant
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cells to chemotherapeutic reagents, suggesting the development of BCL6 inhibitors as a
potential therapeutic option [33].

A limitation of this study is that using IC50 as the measure of drug sensitivity may
be biased, due to different growth rates of cancer cells growing in culture [34]. Moreover,
the change in control cell numbers during the observation period can also lead to a bias in
IC50 values [35]. Furthermore, we limited our analysis to 635 genes based on the OncoKB
database, potentially resulting in a loss of useful information. However, all of the OncoKB
genes are known to be related to cancer, and thus highly relevant to this study. Future
applications could include organoid or PDX response modeling, which would provide
more insights into applicability and anti-cancer drug sensitivity. In the clustering of drugs,
highly correlated cheminformatic features were removed in an unsupervised way while
keeping non-redundant informative features. Despite this trimming of data, our method
achieved better predictive power than other approaches.

4. Materials and Methods
4.1. Data and Preprocessing

We used the anti-cancer drug-response data from the GDSC database. GDSC is a
publicly available large-scale pharmacogenomic database that includes drug-screening
data for more than a thousand human pan-cancer cell lines. The dataset consists of 265
compounds, including cytotoxic chemotherapeutics as well as targeted therapeutics. GDSC
drug responses are given as log-transformed IC50 values (natural log of drug concentration
required to inhibit 50% of growing cells using a proliferation assay) and the area under
the curve (AUC) for a fitted model. We used log(IC50) as the degree of drug responses.
Genomic mRNA expression profiles (Affymetrix Human Genome U219 Array) of the cell
lines within GDSC were obtained from the CCLP database. A protein–protein interaction
(PPI) network was obtained from the HPRD database. Cell lines with missing data for more
than 80% of the drugs were removed, leaving 915 cell lines (Table S1, Figure S1).

The CCLP and HPRD datasets had 8483 genes in common. Even though our method
is applicable to large scale data, in this study, we wanted to focus on genes of known
relevance in cancer. Thus, we used a smaller set of genes from the OncoKB (Precision
Oncology Knowledge Base) database (http://oncokb.org/, accessed on 9 December 2021)
that consists of 1019 genes. Among those 1019 genes, 796 genes were common to both CCLP
and HPRD. In the HPRD network with those 796 genes, the largest connected network
component consisted of 635 genes, which we focused on in this study (Figure S2). To extract
cheminformatic descriptors of drugs, we obtained the chemical structures of the drugs
from PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 9 December 2021) and
downloaded the SMILES (Simplified Molecular Input Line Entry Specification) string of
241 drugs, for which the PubChem ID was provided in the GDSC database. Two-hundred
drugs had response values for more than half of the cell lines, resulting in 183,000 cell-line
drug pairs (915 cell lines × 200 drugs; Table S1). We then extracted 1500 cheminformatic
descriptors (drug features) of those 200 drugs using Dragon software (version 7.0) by
Kode-Chemoinformatics (https://chm.kode-solutions.net/, accessed on 9 December 2021).
The descriptors included functional groups, fragment counts, and estimated chemical
properties as well as simple atomic descriptors. The overview of data analysis is shown in
Figure S2.

4.2. The Invariant Measure of Gene Expression in a PPI Network

We have previously found that Markov chain modeling of gene-expression networks
results in greatly improved classification. Markov chains model expression levels as a
stochastic message-passing process where signals are passed between nodes [36,37]. Hence,
we follow a similar approach here. We constructed a weighted graph on the given PPI
network as a Markov chain in the following manner. Consider a gene i and its neighboring
genes j ∈ N(i) in the interaction network (here in HPRD) for a given sample. Let gei denote
the expression level of gene i in a given sample. The principle of mass action implies that

http://oncokb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://chm.kode-solutions.net/
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the probability
(

pij
)

of the interaction of gene i to gene j is proportional to their expressions,
i.e., pij ∝ (gei)(gej) [38]. By normalizing pij so that ∑j pij = 1, we can form the stochastic
matrix p of the Markov chain associated with the network as follows:

pij :=
gej

∑k∈N(i) gek
(1)

If we let this stochastic signal-passing process proceed from an initial state based on
gene expressions, in repeated steps according to these probabilities (called a Markov chain),
it can be shown that the system reaches a stationary distribution, implying that the system
is invariant under a right multiplication by p, i.e., πp = π [36]. Solving this formula for the
special stochastic matrix p, π has the explicit expression:

πi =
1
Z

gei × ∑
j∈N(i)

gej

, (2)

where Z is a normalization factor making π a probability vector. Of note, this normalization
is necessary since we need the invariant measure to be a probability distribution over all
genes for each specific sample. The invariant measure defined by Equation (2) gives a
value to each gene which is not only dependent on the gene expression of the gene i, but
also on the total gene expressions of the neighboring genes j ∈ N(i). For each sample, a
vector π = (πi) i=1,··· ,n for all the n genes was computed. The Wasserstein distance was
then computed to measure the distance between a pair of vectors of the form π assigned to
every two cell lines. Lastly, using the resultant Wasserstein distance matrix in a hierarchical
agglomerative clustering method, cell lines were clustered, as described below.

4.3. Network Construction of Cheminformatic Drug Features via Graphical LASSO

We initially extracted molecular descriptors of the 200 drugs from Dragon software.
The following descriptors were removed: descriptors that are constant or near constant and
descriptors with missing values, yielding 1500 features. We further removed many highly
correlated features via unsupervised clustering, using the Spearman’s correlation between
the features. We selected a representative feature from each cluster, which had the highest
average correlation to all other intra-cluster features. This further reduced the number of
features to 500. We then constructed a network of these cheminformatic features via the
graphical LASSO, which suppressed unimportant feature connections to build a sparse
network (see the Appendix A for more information about the graphical LASSO) [39–41].
The largest connected network component consisted of 165 cheminformatic features. The
graphical LASSO method uses regularization to squeeze out less important network edges,
while minimizing information loss. We then normalized cheminformatic features on the
largest connected network component to sum up to one to be considered a probability
distribution. Note that we did not compute the invariant measure used in the PPI network
for cell lines, since the data-driven network of cheminformatic features represents the
correlation between features rather than the biological interactions. After assigning the
resultant network probability distributions to individual drugs, we calculated the Wasser-
stein distance to measure the similarity between each pair of drugs. Lastly, the resultant
Wasserstein distance matrix was input to a hierarchical agglomerative clustering method to
cluster drugs.

4.4. Network-Based Clustering via the Wasserstein Distance

As described above, cell lines and drugs were separately clustered, using gene-
expression profiles and cheminformatic features, respectively, represented in the form
of fixed-topology networks. Our network-based clustering method is based on the the-
ory of OMT [23–25], employing the W1 Wasserstein distance (EMD) metric (Figure S3).
OMT is a rapidly developing area of research that deals with the geometry of probabil-
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ity densities [23]. The work on OMT was initiated by Gaspard Monge in 1781 [42] who
formulated the problem of finding the minimal transportation cost to move a pile of soil
to fill an excavation site (see the Appendix B for more information about the Wasserstein
distance) [43,44]. Wasserstein distances have unique properties that capture the overall,
system-wide differences in data patterns.

The resultant pair-wise Wasserstein distance matrix was input to a hierarchical ag-
glomerative clustering method, resulting in a set of clusters of cell lines or drugs. To find
the optimal number of clusters, the silhouette score was used [45]. The silhouette score is
a measure used to evaluate the goodness of the number of clusters created by clustering
methods. More specifically, for each sample i, the silhouette score is defined as follows:

s(i) :=
b(i)− a(i)

max{a(i), b(i)}

where a(i) is the average distance of the sample i to all samples within its own cluster,
and b(i) is the minimum average distance of the sample i to samples in a different cluster,
minimized over clusters. The optimal number of clusters then has the highest average
silhouette score over a range of possible values.

4.5. Prediction of Drug Responses in Paired Cell-Line Drug Clusters

Predictive modeling of drug responses was conducted in each cell-line drug cluster,
employing random forest regression on the associated gene-expression profiles and chemin-
formatic features. We chose the number of decision trees to be 100. For all other parameters,
the default settings were used: the minimum number of samples in the terminal nodes
was set to 5, and the mtry parameter was set to p/3, where p is the number of features [29].
Figure 4 illustrates the pipeline of clustering and random forest modeling. Our method
was compared with a cell-line drug complex network (CDCN) model introduced by Wei
et al. [26], which is the extension of the dual-layer cell-line drug network model [19]. We
assessed the CDCN model with a closed-form formula in each paired cluster of cell lines
and drugs, comparing two different metrics of Wasserstein distance and Pearson correlation
(see the Appendix C for more information about the CDCN model).

5. Conclusions

This study proposed a novel network-based clustering method based on OMT theory
for drug response prediction. Clustering was performed for cell lines and drugs using
gene-expression profiles and cheminformatic drug features, respectively, represented in the
form of data networks. Random forest modeling was then performed for each cell-line drug
cluster pair. Prediction modeling on clustered homogeneous data is likely to improve the
prediction accuracy for drug sensitivity, as well as enhance the biological interpretability
compared to modeling using all the data together. We plan to apply the proposed approach
to several biomedical problems with multi-modal data, including genomics and medical
imaging.
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Appendix A

Graphical LASSO
Consider n observations having a multivariate Gaussian distribution with mean

µ (= 0) and covariance matrix Σ. The graphical LASSO is a regularization framework for
estimating the covariance matrix S, under the assumption that its inverse (precision matrix),
Θ = Σ−1, is sparse. If an element θjk = 0, this implies that the corresponding variables
(vertices) of indices j and k are conditionally independent, given other variables. This can
justify removing the edge connecting these two vertices (j and k). The graphical LASSO
imposes an l1 penalty for the estimation of Σ to increase the graph sparsity. The graphical
LASSO problem minimizes an l1-regularized negative log-likelihood as follows:

argminΘ≥0(−log det(Θ) + tr(SΘ) + λ||Θ||1),

where S is the empirical covariance matrix, ||Θ||1 denotes the sum of the absolute values of
Θ, and λ is a tuning parameter controlling the amount of l1 shrinkage. Here, we tune l1
to make the network as sparse as possible, such that it does not decrease the accuracy of
drug-response prediction.

Appendix B

Wasserstein Distance
Optimal mass transport theory handles the problem of finding the minimal trans-

portation cost to move a pile of soil, with a mass density ρ0, to an excavation site, with a
mass density ρ1. A relaxed version of the problem was introduced by Leonid Kantorovich
in 1942. Let ρ0, ρ1 ∈ P(Ω) where Ω ⊆ RN and P(Ω) =

{
ρ(x) :

∫
Ω ρ(x)dx = 1, ρ(x) ≥ 0

}
.

The W1 Wasserstein distance, also known as the Earth Mover’s Distance (EMD), is defined as
follows:

W1

(
ρ0, ρ1

)
= inf

γ∈Γ(ρ0,ρ1)

∫
RN×RN

∣∣∣∣∣
∣∣∣∣∣x− y

∣∣∣∣∣
∣∣∣∣∣dγ(x, y),

where Γ
(
ρ0, ρ1) denotes the set of all couplings between ρ0 and ρ1, that is, the set of all joint

probability measures γ on Ω×Ω whose marginals are ρ0 and ρ1. Here, the cost function of
the transportation is defined as the ground distance d(x, y) =||x− y||.

The optimization problem has an analogous formulation on a weighted graph. Let
us consider a connected undirected graph G = (V, E) with n nodes in V and m edges in E.
Given two probability densities ρ0, ρ1 ∈ Rn on the graph, the Wasserstein distance problem
seeks a joint distribution ρ ∈ Rn×n with marginals ρ0 and ρ1 minimizing the total cost
∑ cijρij:

W1

(
ρ0, ρ1

)
= min

ρ

{
n

∑
i,j=1

cijρij

∣∣∣∣∣∑k ρik = ρ0
i , ∑k ρkj = ρ1

j , ∀i, j

}
.

Here cij is the cost of moving unit mass from node i to node j in the shortest path.
Therefore, the Wasserstein distance in our study is a network-based metric that considers
the network connectivity in calculating the cost function.

Appendix C

Cell-Line Drug Complex Network Model
Assume that r(c, d) is a log(IC50) value of a pair of cell-line c ∈ C and drug d ∈ D

where C and D denote a set of cell lines or drugs, respectively. For a new cell-line c∗

and a new drug d∗, we would like to predict the drug response, r(c∗, d∗), based on the

https://github.com/mskspi/drugsensitivity/
https://github.com/mskspi/drugsensitivity/
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known values r(c, d). Using the metric dD (Wasserstein distance), we can cluster D ∪ {d∗}.
Denote by Cd∗ the cluster in which d∗ lies, but with d∗ removed from it. Similarly, we can
compute Cc∗ in the cell-line space using the dC . We define a similarity weight function as

w(c, c∗) = e−
|dC (c,c∗)|2

2α2 between cell lines and a similarity weight function between drugs as

w(d, d∗) = e
− |dD (d,d∗)|2

2β2 with the vector of decay parameters, i.e., ζ = (α, β). These similarity
weights are defined such that their values are higher when the samples are more similar to
each other. Therefore, in case of using Pearson correlation for these similarity measures, we
substitute dC with 1− ρC for cell lines and dD with 1− ρD for drugs, where ρ denotes the
Pearson correlation. Consequently, we compute the drug response by:

R∗(c∗, d∗) =
∑d∈Cd∗ ∑c∈Cc∗

wC(c, c∗)wD(d, d∗)r(c, d)

∑d∈Cd∗ ∑c∈Cc∗
wC(c, c∗)wD(d, d∗)

.

The decay parameters ζ = (α, β) can be optimized on the training set by minimizing
the error of response prediction as follows:

ζ∗ = argminζ ∑(c,d)∈Γ(r
∗(c, d)− r(c, d))2,

where r∗(c, d) is the prediction of drug response r(c, d) in the training set.
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